DATABASE THEORY

Lecture 2: First-Order Queries

Markus Krötzsch
Knowledge-Based Systems

TU Dresden, 9th Apr 2019

What is a Query?

The relational queries considered so far produced a result table from a database.
Other query languages can be completely different, but they usually agree on this:

Definition 2.1:

- Syntax: a query expression q is a word from a query language (algebra expression, logical expression, etc.)
- Semantics: a query mapping $M[q]$ is a function that maps a database instance I to a database table $M[q](\mathcal{I})$
\leadsto for some semantics, query mappings are not defined on all database instances

Generic Queries

We only consider queries that do not depend on the concrete names given to constants in the database:

Definition 2.2: A query q is generic if, for every bijective renaming function $\mu:$ dom \rightarrow dom and database instance I :

$$
\mu(M[q](\mathcal{I}))=M[\mu(q)](\mu(\mathcal{I})) .
$$

In this case, $M[q]$ is closed under isomorphisms.

Review: Example from Previous Lecture

Lines:

Line	Type
85	bus
3	tram
F1	ferry
\ldots	\ldots

Stops:

SID	Stop	Accessible
17	Hauptbahnhof	true
42	Helmholtzstr.	true
57	Stadtgutstr.	true
123	Gustav-Freytag-Str.	false
\ldots	\ldots	\ldots

Connect:

From	To	Line
57	42	85
17	789	3
\ldots	\ldots	\ldots

Every table has a schema:

- Lines[Line:string, Type:string]
- Stops[SID:int, Stop:string, Accessible:bool]
- Connect[From:int, To:int, Line:string]

First-order Logic as a Query Language

Idea: database instances are finite first-order interpretations
\leadsto use first-order formulae as query language
\leadsto use unnamed perspective (more natural here)
Examples (using schema as in previous lecture):

- Find all bus lines: Lines(x, "bus")
- Find all possible types of lines: $\exists y$.Lines (y, x)
- Find all lines that depart from an accessible stop:

$$
\exists y_{\text {SID }}, y_{\text {Stop }}, y_{\text {To }} .\left(\operatorname{Stops}\left(y_{\text {SID }}, y_{\text {Stop }}, " \text { true } "\right) \wedge \operatorname{Connect}\left(y_{\text {SID }}, y_{\text {To }}, x_{\text {Line }}\right)\right)
$$

First-order Logic with Equality: Syntax

Basic building blocks:

- Predicate names with an arity $\geq 0: p, q$, Lines, Stops
- Variables: x, y, z
- Constants: a, b, c
- Terms are variables or constants: s, t

Formulae of first-order logic are defined as usual:

$$
\varphi::=p\left(t_{1}, \ldots, t_{n}\right)\left|t_{1} \approx t_{2}\right| \neg \varphi|\varphi \wedge \varphi| \varphi \vee \varphi|\exists x . \varphi| \forall x . \varphi
$$

where p is an n-ary predicate, t_{i} are terms, and x is a variable.

- An atom is a formula of the form $p\left(t_{1}, \ldots, t_{n}\right)$
- A literal is an atom or a negated atom
- Occurrences of variables in the scope of a quantifier are bound; other occurrences of variables are free

First-order Logic Syntax: Simplifications

We use the usual shortcuts and simplifications:

- flat conjunctions $\left(\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3}\right.$ instead of $\left.\left(\varphi_{1} \wedge\left(\varphi_{2} \wedge \varphi_{3}\right)\right)\right)$
- flat disjunctions (similar)
- flat quantifiers ($\exists x, y, z . \varphi$ instead of $\exists x . \exists y . \exists z . \varphi$)
- $\varphi \rightarrow \psi$ as shortcut for $\neg \varphi \vee \psi$
- $\varphi \leftrightarrow \psi$ as shortcut for $(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)$
- $t_{1} \not \approx t_{2}$ as shortcut for $\neg\left(t_{1} \approx t_{2}\right)$

But we always use parentheses to clarify nesting of \wedge and \vee :
No " $\varphi_{1} \wedge \varphi_{2} \vee \varphi_{3}$ "!

First-order Logic with Equality: Semantics

First-order formulae are evaluated over interpretations $\left\langle\Delta^{I},{ }^{I}\right\rangle$, where Δ^{I} is the domain. To interpret formulas with free variables, we need a variable assignment $\mathcal{Z}: \operatorname{Var} \rightarrow \Delta^{I}$.

- constants a interpreted as $a^{I, Z}=a^{I} \in \Delta^{I}$
- variables x interpreted as $x^{I, Z}=Z(x) \in \Delta^{I}$
- n-ary predicates p interpreted as $p^{I} \subseteq\left(\Delta^{I}\right)^{n}$

First-order Logic with Equality: Semantics

First-order formulae are evaluated over interpretations $\left\langle\Delta^{I},{ }^{I}\right\rangle$, where Δ^{I} is the domain. To interpret formulas with free variables, we need a variable assignment $\mathcal{Z}: \operatorname{Var} \rightarrow \Delta^{I}$.

- constants a interpreted as $a^{I, Z}=a^{I} \in \Delta^{I}$
- variables x interpreted as $x^{I, Z}=Z(x) \in \Delta^{I}$
- n-ary predicates p interpreted as $p^{I} \subseteq\left(\Delta^{I}\right)^{n}$

A formula φ can be satisfied by \mathcal{I} and \mathcal{Z}, written $\mathcal{I}, \mathcal{Z} \vDash \varphi$:

- $I, \mathcal{Z} \vDash p\left(t_{1}, \ldots, t_{n}\right)$ if $\left\langle t_{1}^{I, Z}, \ldots, t_{n}^{I, Z}\right\rangle \in p^{I}$
- $I, \mathcal{Z} \vDash t_{1} \approx t_{2}$ if $t_{1}^{I, Z}=t_{2}^{I, Z}$
- $I, \mathcal{Z} \vDash \neg \varphi$ if $I, \mathcal{Z} \neq \varphi$
- $I, \mathcal{Z} \vDash \varphi \wedge \psi$ if $I, \mathcal{Z} \vDash \varphi$ and $I, \mathcal{Z} \vDash \psi$
- $I, \mathcal{Z} \vDash \varphi \vee \psi$ if $I, \mathcal{Z} \vDash \varphi$ or $I, \mathcal{Z} \vDash \psi$
- $\mathcal{I}, \mathcal{Z} \vDash \exists x . \varphi$ if there is $\delta \in \Delta^{I}$ with $\mathcal{I},\{x \mapsto \delta\}, \mathcal{Z} \vDash \varphi$
- $\mathcal{I}, \mathcal{Z} \vDash \forall x . \varphi$ if for all $\delta \in \Delta^{I}$ we have $\mathcal{I},\{x \mapsto \delta\}, \mathcal{Z} \vDash \varphi$

First-order Logic Queries

Definition 2.3: An n-ary first-order query q is an expression $\varphi\left[x_{1}, \ldots, x_{n}\right]$ where x_{1}, \ldots, x_{n} are exactly the free variables of φ (in a specific order).

Definition 2.4: An answer to $q=\varphi\left[x_{1}, \ldots, x_{n}\right]$ over an interpretation I is a tuple $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ of constants such that

$$
I \vDash \varphi\left[x_{1} / a_{1}, \ldots, x_{n} / a_{n}\right]
$$

where $\varphi\left[x_{1} / a_{1}, \ldots, x_{n} / a_{n}\right]$ is φ with each free x_{i} replaced by a_{i}.
The result of q over I is the set of all answers of q over I.

Boolean Queries

A Boolean query is a query of arity 0
\leadsto we simply write φ instead of $\varphi[]$
$\leadsto \varphi$ is a closed formula (a.k.a. sentence)
What does a Boolean query return?

Boolean Queries

A Boolean query is a query of arity 0
\leadsto we simply write φ instead of $\varphi[]$
$\leadsto \varphi$ is a closed formula (a.k.a. sentence)
What does a Boolean query return?

Two possible cases:

- $I \not \vDash \varphi$, then the result of φ over I is \emptyset (the empty table)
- $I \vDash \varphi$, then the result of φ over I is $\{\rangle\}$ (the unit table)

Interpreted as Boolean check with result true or false (match or no match)

Domain Dependence

We have defined FO queries over interpretations
\leadsto How exactly do we get from databases to interpretations?

- Constants are just interpreted as themselves: $a^{I}=a$
- Predicates are interpreted according to the table contents
- But what is the domain of the interpretation?

Domain Dependence

We have defined FO queries over interpretations
\leadsto How exactly do we get from databases to interpretations?

- Constants are just interpreted as themselves: $a^{I}=a$
- Predicates are interpreted according to the table contents
- But what is the domain of the interpretation?

Example 2.5: What should the following queries return?
(1) $\neg \operatorname{Lines}(x$, "bus")[x]
(2) $\left(\right.$ Connect $\left(x_{1}, " 42 ", ~ " 85 "\right) \vee \operatorname{Connect("57",~} x_{2}$, " $\left.\left.85 "\right)\right)\left[x_{1}, x_{2}\right]$
(3) $\forall y . p(x, y)[x]$

Domain Dependence

We have defined FO queries over interpretations
\leadsto How exactly do we get from databases to interpretations?

- Constants are just interpreted as themselves: $a^{I}=a$
- Predicates are interpreted according to the table contents
- But what is the domain of the interpretation?

Example 2.5: What should the following queries return?
(1) $\neg \operatorname{Lines}(x$, "bus")[x]
(2) $\left(\right.$ Connect $\left(x_{1}, " 42 ", ~ " 85 "\right) \vee \operatorname{Connect("57",~} x_{2}$, " $\left.\left.85 "\right)\right)\left[x_{1}, x_{2}\right]$
(3) $\forall y . p(x, y)[x]$
\leadsto Answers depend on the interpretation domain, not just on the database contents

Natural Domain

First possible solution: the natural domain

Natural domain semantics (ND):

- fix the interpretation domain to dom (infinite)
- query answers might be infinite (not a valid result table)
\leadsto query result undefined for such databases

Natural Domain: Examples

Query answers under natural domain semantics:
(1) $\neg \operatorname{Lines}(x$, "bus" $)[x]$

Natural Domain: Examples

Query answers under natural domain semantics:
(1) $\neg \operatorname{Lines}(x$, "bus") $[x]$

Undefined on all databases
(2) (Connect ($x_{1}, " 42 "$, "85") $\vee \operatorname{Connect("57",~} x_{2}$, " $\left.\left.85 "\right)\right)\left[x_{1}, x_{2}\right]$

Natural Domain: Examples

Query answers under natural domain semantics:
(1) $\neg \operatorname{Lines}(x$, "bus") $[x]$

Undefined on all databases
(2) (Connect ($x_{1}, " 42 "$, "85") \vee Connect(" 57 ", x_{2}, " $\left.\left.85 "\right)\right)\left[x_{1}, x_{2}\right]$

Undefined on databases with matching x_{1} or x_{2} in Connect, otherwise empty
(3) $\forall y . p(x, y)[x]$

Natural Domain: Examples

Query answers under natural domain semantics:
(1) $\neg \operatorname{Lines}(x$, "bus") $[x]$

Undefined on all databases
(2) (Connect ($x_{1}, " 42 "$, "85") \vee Connect(" 57 ", x_{2}, " $\left.\left.85 "\right)\right)\left[x_{1}, x_{2}\right]$

Undefined on databases with matching x_{1} or x_{2} in Connect, otherwise empty
(3) $\forall y . p(x, y)[x]$

Empty on all databases

Active Domain

Alternative: restrict to constants that are really used
\leadsto active domain

- for a database instance I, adom(\mathcal{I}) is the set of constants used in relations of I
- for a query q, adom (q) is the set of constants in q
- $\operatorname{adom}(I, q)=\operatorname{adom}(I) \cup \operatorname{adom}(q)$

Active domain semantics (AD):
consider database instance as interpretation over adom(\mathcal{I}, q)

Active Domain: Examples

Query answers under active domain semantics:
(1) $\neg \operatorname{Lines}(x$, "bus") $[x]$

Active Domain: Examples

Query answers under active domain semantics:
(1) $\neg \operatorname{Lines}(x$, "bus") $[x]$

Let $q^{\prime}=\operatorname{Lines}\left(x\right.$, "bus") $[x]$. The answer is adom $(\mathcal{I}, q) \backslash M\left[q^{\prime}\right](\mathcal{I})$

Active Domain: Examples

Query answers under active domain semantics:
(1) $\neg \operatorname{Lines}(x$, "bus") $[x]$

Let $q^{\prime}=\operatorname{Lines}\left(x\right.$, "bus") $[x]$. The answer is adom $(I, q) \backslash M\left[q^{\prime}\right](\mathcal{I})$
(2) $(\underbrace{\text { Connect }\left(x_{1}, \text { "42", "85") }\right)}_{\varphi_{1}\left[x_{1}\right]} \underbrace{\left.\text { Connect("57", } x_{2}, \text { "85") }\right)}_{\varphi_{2}\left[x_{2}\right]})\left[x_{1}, x_{2}\right]$

Active Domain: Examples

Query answers under active domain semantics:
(1) $\neg \operatorname{Lines}(x$, "bus") $[x]$

Let $q^{\prime}=\operatorname{Lines}\left(x\right.$, "bus") $[x]$. The answer is adom $(\mathcal{I}, q) \backslash M\left[q^{\prime}\right](\mathcal{I})$
(2) $(\underbrace{\operatorname{Connect}\left(x_{1}, " 42 ", " 85 "\right)}_{\varphi_{1}\left[x_{1}\right]} \vee \underbrace{\operatorname{Connect}\left(" 57 ", x_{2}, " 85 "\right)}_{\varphi_{2}\left[x_{2}\right]})\left[x_{1}, x_{2}\right]$

The answer is $M\left[\varphi_{1}\right](I) \times \operatorname{adom}(I, q) \cup \operatorname{adom}(I, q) \times M\left[\varphi_{2}\right](I)$

Active Domain: Examples

Query answers under active domain semantics:
(1) $\neg \operatorname{Lines}(x$, "bus") $[x]$

Let $q^{\prime}=\operatorname{Lines}\left(x\right.$, "bus") $[x]$. The answer is adom $(\mathcal{I}, q) \backslash M\left[q^{\prime}\right](\mathcal{I})$
(2) $(\underbrace{\operatorname{Connect}\left(x_{1}, " 42 ", " 85 "\right)}_{\varphi_{1}\left[x_{1}\right]} \vee \underbrace{\operatorname{Connect}\left(" 57 ", x_{2}, " 85 "\right)}_{\varphi_{2}\left[x_{2}\right]})\left[x_{1}, x_{2}\right]$

The answer is $M\left[\varphi_{1}\right](I) \times \operatorname{adom}(I, q) \cup \operatorname{adom}(I, q) \times M\left[\varphi_{2}\right](I)$
(3) $\forall y . p(x, y)[x] \leadsto$ see board

Domain Independence

Observation: some queries do not depend on the domain

- $\operatorname{Stops}(x, y$, "true") $[x, y]$
- $(x \approx a)[x]$
- $p(x) \wedge \neg q(x)[x]$
- $r(x) \wedge \forall y .(q(x, y) \rightarrow p(x, y))[x] \quad$ (exercise: why?)

In contrast, all example queries on the previous few slides are not domain independent

Domain independent semantics (DI):
consider only domain independent queries
use any domain adom $(I, q) \subseteq \Delta^{I} \subseteq$ dom for interpretation

How to Compare Query Languages

We have seen three ways of defining FO query semantics
\leadsto how to compare them?

How to Compare Query Languages

We have seen three ways of defining FO query semantics
\leadsto how to compare them?

Definition 2.6: The set of query mappings that can be described in a query language L is denoted $\mathbf{Q M}(\mathrm{L})$.

- L_{1} is subsumed by L_{2}, written $L_{1} \sqsubseteq L_{2}$, if $\mathbf{Q M}\left(L_{1}\right) \subseteq \mathbf{Q M}\left(L_{2}\right)$
- L_{1} is equivalent to L_{2}, written $L_{1} \equiv L_{2}$, if $\mathbf{Q M}\left(L_{1}\right)=\mathbf{Q M}\left(L_{2}\right)$

We will also compare query languages under named perspective with query languages under unnamed perspective.
This is possible since there is an easy one-to-one correspondence between query mappings of either kind (see exercise).

Equivalence of Relational Query Languages

Theorem 2.7: The following query languages are equivalent:

- Relational algebra RA
- FO queries under active domain semantics AD
- Domain independent FO queries DI

This holds under named and under unnamed perspective.

To prove it, we will show:

$$
\mathrm{RA}_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }} \sqsubseteq \mathrm{AD}_{\text {unnamed }} \sqsubseteq \mathrm{RA}_{\text {named }}
$$

$\mathrm{RA}_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$

For a given RA query $q\left[a_{1}, \ldots, a_{n}\right]$,
we recursively construct a DI query $\varphi_{q}\left[x_{a_{1}}, \ldots, x_{a_{n}}\right]$ as follows:
We assume without loss of generality that all attribute lists in RA expressions respect the global order of attributes.

- if $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$

$\mathrm{RA}_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$

For a given RA query $q\left[a_{1}, \ldots, a_{n}\right]$,
we recursively construct a DI query $\varphi_{q}\left[x_{a_{1}}, \ldots, x_{a_{n}}\right]$ as follows:
We assume without loss of generality that all attribute lists in RA expressions respect the global order of attributes.

- if $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$
- if $n=1$ and $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$

$\mathrm{RA}_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$

For a given RA query $q\left[a_{1}, \ldots, a_{n}\right]$,
we recursively construct a DI query $\varphi_{q}\left[x_{a_{1}}, \ldots, x_{a_{n}}\right]$ as follows:
We assume without loss of generality that all attribute lists in RA expressions respect the global order of attributes.

- if $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$
- if $n=1$ and $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$
- if $q=\sigma_{a_{i}=c}\left(q^{\prime}\right)$

$\mathrm{RA}_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$

For a given RA query $q\left[a_{1}, \ldots, a_{n}\right]$,
we recursively construct a DI query $\varphi_{q}\left[x_{a_{1}}, \ldots, x_{a_{n}}\right]$ as follows:
We assume without loss of generality that all attribute lists in RA expressions respect the global order of attributes.

- if $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$
- if $n=1$ and $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$
- if $q=\sigma_{a_{i}=c}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx c\right)$
- if $q=\sigma_{a_{i}=a_{j}}\left(q^{\prime}\right)$

$\mathrm{RA}_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$

For a given RA query $q\left[a_{1}, \ldots, a_{n}\right]$,
we recursively construct a DI query $\varphi_{q}\left[x_{a_{1}}, \ldots, x_{a_{n}}\right]$ as follows:
We assume without loss of generality that all attribute lists in RA expressions respect the global order of attributes.

- if $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$
- if $n=1$ and $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$
- if $q=\sigma_{a_{i}=c}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx c\right)$
- if $q=\sigma_{a_{i}=a_{j}}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx x_{a_{j}}\right)$
- if $q=\delta_{b_{1}, \ldots, b_{n} \rightarrow a_{1}, \ldots, a_{n}} q^{\prime}$

$\mathrm{RA}_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$

For a given RA query $q\left[a_{1}, \ldots, a_{n}\right]$,
we recursively construct a DI query $\varphi_{q}\left[x_{a_{1}}, \ldots, x_{a_{n}}\right]$ as follows:
We assume without loss of generality that all attribute lists in RA expressions respect the global order of attributes.

- if $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$
- if $n=1$ and $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$
- if $q=\sigma_{a_{i}=c}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx c\right)$
- if $q=\sigma_{a_{i}=a_{j}}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx x_{a_{j}}\right)$
- if $q=\delta_{b_{1}, \ldots, b_{n} \rightarrow a_{1}, \ldots, a_{n}} q^{\prime}$, then
$\varphi_{q}=\exists y_{b_{1}}, \ldots, y_{b_{n}} \cdot\left(x_{a_{1}} \approx y_{b_{1}}\right) \wedge \ldots \wedge\left(x_{a_{n}} \approx y_{b_{n}}\right) \wedge \varphi_{q^{\prime}}\left[y_{B_{1}}, \ldots, y_{B_{n}}\right]$
(Here we assume that the a_{1}, \ldots, a_{n} in $\delta_{b_{1}, \ldots, b_{n} \rightarrow a_{1}, \ldots, a_{n}}$ are written in the order of attributes, while b_{1}, \ldots, b_{n} might be in another order. We use $\left\{B_{1}, \ldots, B_{n}\right\}=\left\{b_{1}, \ldots, b_{n}\right\}$ to denote the ordered version of the b_{i} attributes. $\varphi_{q^{\prime}}\left[y_{B_{1}}, \ldots, y_{B_{n}}\right]$ is like $\varphi_{q^{\prime}}$ but using variables $y_{B_{i}}$.)

$R A_{\text {named }} \sqsubseteq D l_{\text {unnamed }}$ (cont'd)

Remaining cases:

- if $q=\pi_{a_{1}, \ldots, a_{n}}\left(q^{\prime}\right)$ for a subquery $q^{\prime}\left[b_{1}, \ldots, b_{m}\right]$ with $\left\{b_{1}, \ldots, b_{m}\right\}=\left\{a_{1}, \ldots, a_{n}\right\} \cup\left\{c_{1}, \ldots, c_{k}\right\}$

$R A_{\text {named }} \sqsubseteq D l_{\text {unnamed }}$ (cont'd)

Remaining cases:

- if $q=\pi_{a_{1}, \ldots, a_{n}}\left(q^{\prime}\right)$ for a subquery $q^{\prime}\left[b_{1}, \ldots, b_{m}\right]$ with $\left\{b_{1}, \ldots, b_{m}\right\}=\left\{a_{1}, \ldots, a_{n}\right\} \cup\left\{c_{1}, \ldots, c_{k}\right\}$, then $\varphi_{q}=\exists x_{c_{1}}, \ldots, x_{c_{k}} \cdot \varphi_{q^{\prime}}$
- if $q=q_{1} \bowtie q_{2}$

$\mathrm{RA}_{\text {named }} \sqsubseteq \mathrm{DI}_{\text {unnamed }}$ (cont'd)

Remaining cases:

- if $q=\pi_{a_{1}, \ldots, a_{n}}\left(q^{\prime}\right)$ for a subquery $q^{\prime}\left[b_{1}, \ldots, b_{m}\right]$ with
$\left\{b_{1}, \ldots, b_{m}\right\}=\left\{a_{1}, \ldots, a_{n}\right\} \cup\left\{c_{1}, \ldots, c_{k}\right\}$,
then $\varphi_{q}=\exists x_{c_{1}}, \ldots, x_{c_{k}} \cdot \varphi_{q^{\prime}}$
- if $q=q_{1} \bowtie q_{2}$ then $\varphi_{q}=\varphi_{q_{1}} \wedge \varphi_{q_{2}}$
- if $q=q_{1} \cup q_{2}$

$\mathrm{RA}_{\text {named }} \sqsubseteq \mathrm{DI}_{\text {unnamed }}$ (cont'd)

Remaining cases:

- if $q=\pi_{a_{1}, \ldots, a_{n}}\left(q^{\prime}\right)$ for a subquery $q^{\prime}\left[b_{1}, \ldots, b_{m}\right]$ with
$\left\{b_{1}, \ldots, b_{m}\right\}=\left\{a_{1}, \ldots, a_{n}\right\} \cup\left\{c_{1}, \ldots, c_{k}\right\}$,
then $\varphi_{q}=\exists x_{c_{1}}, \ldots, x_{c_{k}} \cdot \varphi_{q^{\prime}}$
- if $q=q_{1} \bowtie q_{2}$ then $\varphi_{q}=\varphi_{q_{1}} \wedge \varphi_{q_{2}}$
- if $q=q_{1} \cup q_{2}$ then $\varphi_{q}=\varphi_{q_{1}} \vee \varphi_{q_{2}}$
- if $q=q_{1}-q_{2}$

$\mathrm{RA}_{\text {named }} \sqsubseteq \mathrm{DI}_{\text {unnamed }}$ (cont'd)

Remaining cases:

- if $q=\pi_{a_{1}, \ldots, a_{n}}\left(q^{\prime}\right)$ for a subquery $q^{\prime}\left[b_{1}, \ldots, b_{m}\right]$ with

$$
\left\{b_{1}, \ldots, b_{m}\right\}=\left\{a_{1}, \ldots, a_{n}\right\} \cup\left\{c_{1}, \ldots, c_{k}\right\},
$$

then $\varphi_{q}=\exists x_{c_{1}}, \ldots, x_{c_{k}} \cdot \varphi_{q^{\prime}}$

- if $q=q_{1} \bowtie q_{2}$ then $\varphi_{q}=\varphi_{q_{1}} \wedge \varphi_{q_{2}}$
- if $q=q_{1} \cup q_{2}$ then $\varphi_{q}=\varphi_{q_{1}} \vee \varphi_{q_{2}}$
- if $q=q_{1}-q_{2}$ then $\varphi_{q}=\varphi_{q_{1}} \wedge \neg \varphi_{q_{2}}$

One can show that $\varphi_{q}\left[x_{a_{1}}, \ldots, x_{a_{n}}\right]$ is domain independent and equivalent to q \sim exercise

$\mathrm{DI}_{\text {unnamed }} \sqsubseteq \mathrm{AD}_{\text {unnamed }}$

This is easy to see

$\mathrm{DI}_{\text {unnamed }} \sqsubseteq \mathrm{AD}_{\text {unnamed }}$

This is easy to see:

- Consider an FO query q that is domain independent
- The semantics of q is the same for any domain adom $\subseteq \Delta^{I} \subseteq$ dom
- In particular, the semantics of q is the same under active domain semantics
- Hence, for every DI query, there is an equivalent AD query

$\mathrm{AD}_{\text {unnamed }} \sqsubseteq \mathrm{RA}_{\text {named }}$

Consider an AD query $q=\varphi\left[x_{1}, \ldots, x_{n}\right]$.
For an arbitrary attribute name a, we can construct an RA expression $E_{a, \text { adom }}$ such that $E_{a, \text { adom }}(\mathcal{I})=\{\{a \mapsto c\} \mid c \in \operatorname{adom}(\mathcal{I}, q)\}$
\sim exercise

$\mathrm{AD}_{\text {unnamed }} \sqsubseteq \mathrm{RA}_{\text {named }}$

Consider an AD query $q=\varphi\left[x_{1}, \ldots, x_{n}\right]$.
For an arbitrary attribute name a, we can construct an RA expression $E_{a, \text { adom }}$ such that $E_{a, \text { adom }}(\mathcal{I})=\{\{a \mapsto c\} \mid c \in \operatorname{adom}(\mathcal{I}, q)\}$
\sim exercise
For every variable x, we use a distinct attribute name a_{x}

- if $\varphi=R\left(t_{1}, \ldots, t_{m}\right)$ with signature $R\left[a_{1}, \ldots, a_{m}\right]$ with variables $x_{1}=t_{v_{1}}, \ldots, x_{n}=t_{v_{n}}$ and constants $c_{1}=t_{w_{1}}, \ldots, c_{k}=t_{w_{k}}$,

$\mathrm{AD}_{\text {unnamed }} \sqsubseteq \mathrm{RA}_{\text {named }}$

Consider an AD query $q=\varphi\left[x_{1}, \ldots, x_{n}\right]$.
For an arbitrary attribute name a, we can construct an RA expression $E_{a, \text { adom }}$ such that $E_{a, \text { adom }}(\mathcal{I})=\{\{a \mapsto c\} \mid c \in \operatorname{adom}(\mathcal{I}, q)\}$
\sim exercise
For every variable x, we use a distinct attribute name a_{x}

- if $\varphi=R\left(t_{1}, \ldots, t_{m}\right)$ with signature $R\left[a_{1}, \ldots, a_{m}\right]$ with variables $x_{1}=t_{v_{1}}, \ldots, x_{n}=t_{v_{n}}$ and constants $c_{1}=t_{w_{1}}, \ldots, c_{k}=t_{w_{k}}$, then $E_{\varphi}=\delta_{a_{v_{1}} \ldots a_{v_{n}} \rightarrow a_{x_{1}} \ldots a_{x_{n}}}\left(\sigma_{a_{w_{1}}=c_{1}}\left(\ldots \sigma_{a_{w_{k}}=c_{k}}(R) \ldots\right)\right)$
- if $\varphi=(x \approx c)$

$\mathrm{AD}_{\text {unnamed }} \sqsubseteq \mathrm{RA}_{\text {named }}$

Consider an AD query $q=\varphi\left[x_{1}, \ldots, x_{n}\right]$.
For an arbitrary attribute name a, we can construct an RA expression $E_{a, \text { adom }}$ such that $E_{a, \text { adom }}(\mathcal{I})=\{\{a \mapsto c\} \mid c \in \operatorname{adom}(\mathcal{I}, q)\}$
\sim exercise
For every variable x, we use a distinct attribute name a_{x}

- if $\varphi=R\left(t_{1}, \ldots, t_{m}\right)$ with signature $R\left[a_{1}, \ldots, a_{m}\right]$ with variables $x_{1}=t_{v_{1}}, \ldots, x_{n}=t_{v_{n}}$ and constants $c_{1}=t_{w_{1}}, \ldots, c_{k}=t_{w_{k}}$, then $E_{\varphi}=\delta_{a_{v_{1}} \ldots a_{v_{n}} \rightarrow a_{x_{1}} \ldots a_{x_{n}}}\left(\sigma_{a_{w_{1}}=c_{1}}\left(\ldots \sigma_{a_{w_{k}}=c_{k}}(R) \ldots\right)\right)$
- if $\varphi=(x \approx c)$, then $E_{\varphi}=\left\{\left\{a_{x} \mapsto c\right\}\right\}$
- if $\varphi=(x \approx y)$

$\mathrm{AD}_{\text {unnamed }} \sqsubseteq \mathrm{RA}_{\text {named }}$

Consider an AD query $q=\varphi\left[x_{1}, \ldots, x_{n}\right]$.
For an arbitrary attribute name a, we can construct an RA expression $E_{a, \text { adom }}$ such that $E_{a, \text { adom }}(\mathcal{I})=\{\{a \mapsto c\} \mid c \in \operatorname{adom}(\mathcal{I}, q)\}$
\sim exercise
For every variable x, we use a distinct attribute name a_{x}

- if $\varphi=R\left(t_{1}, \ldots, t_{m}\right)$ with signature $R\left[a_{1}, \ldots, a_{m}\right]$ with variables $x_{1}=t_{v_{1}}, \ldots, x_{n}=t_{v_{n}}$ and constants $c_{1}=t_{w_{1}}, \ldots, c_{k}=t_{w_{k}}$, then $E_{\varphi}=\delta_{a_{v_{1}} \ldots a_{v_{n}} \rightarrow a_{x_{1}} \ldots a_{x_{n}}}\left(\sigma_{a_{w_{1}}=c_{1}}\left(\ldots \sigma_{a_{w_{k}}=c_{k}}(R) \ldots\right)\right)$
- if $\varphi=(x \approx c)$, then $E_{\varphi}=\left\{\left\{a_{x} \mapsto c\right\}\right\}$
- if $\varphi=(x \approx y)$, then $E_{\varphi}=\sigma_{a_{x}=a_{y}}\left(E_{a_{x}, \text { adom }} \bowtie E_{a_{y}, \text { adom }}\right)$
- other forms of equality atoms are similar

$A D_{\text {unnamed }} \sqsubseteq \mathrm{RA}_{\text {named }}($ cont'd $)$

Remaining cases:

- if $\varphi=\neg \psi$

$A D_{\text {unnamed }} \sqsubseteq \mathrm{RA}_{\text {named }}($ cont'd)

Remaining cases:

- if $\varphi=\neg \psi$, then $E_{\varphi}=\left(E_{a_{x_{1}}}\right.$, adom $\bowtie \ldots \bowtie E_{a_{x_{n}}}$, adom $)-E_{\psi}$
- if $\varphi=\varphi_{1} \wedge \varphi_{2}$

$A D_{\text {unnamed }} \sqsubseteq \mathrm{RA}_{\text {named }}($ cont'd $)$

Remaining cases:

- if $\varphi=\neg \psi$, then $E_{\varphi}=\left(E_{a_{x_{1}}}\right.$, adom $\bowtie \ldots \bowtie E_{a_{x_{n}}}$, adom $)-E_{\psi}$
- if $\varphi=\varphi_{1} \wedge \varphi_{2}$, then $E_{\varphi}=E_{\varphi_{1}} \bowtie E_{\varphi_{2}}$
- if $\varphi=\exists y . \psi$ where ψ has free variables y, x_{1}, \ldots, x_{n}

$A D_{\text {unnamed }} \sqsubseteq \mathrm{RA}_{\text {named }}($ cont'd)

Remaining cases:

- if $\varphi=\neg \psi$, then $E_{\varphi}=\left(E_{a_{x_{1}}}\right.$, adom $\bowtie \ldots \bowtie E_{a_{x_{n}}}$, adom $)-E_{\psi}$
- if $\varphi=\varphi_{1} \wedge \varphi_{2}$, then $E_{\varphi}=E_{\varphi_{1}} \bowtie E_{\varphi_{2}}$
- if $\varphi=\exists y . \psi$ where ψ has free variables y, x_{1}, \ldots, x_{n}, then $E_{\varphi}=\pi_{a_{x_{1}}, \ldots, a_{x_{n}}} E_{\psi}$
The cases for \vee and \forall can be constructed from the above \leadsto exercise

$A D_{\text {unnamed }} \sqsubseteq \mathrm{RA}_{\text {named }}($ cont'd $)$

Remaining cases:

- if $\varphi=\neg \psi$, then $E_{\varphi}=\left(E_{a_{x_{1}}}\right.$, adom $\bowtie \ldots \bowtie E_{a_{x_{n}}}$, adom $)-E_{\psi}$
- if $\varphi=\varphi_{1} \wedge \varphi_{2}$, then $E_{\varphi}=E_{\varphi_{1}} \bowtie E_{\varphi_{2}}$
- if $\varphi=\exists y . \psi$ where ψ has free variables y, x_{1}, \ldots, x_{n}, then $E_{\varphi}=\pi_{a_{x_{1}}, \ldots, a_{x_{n}}} E_{\psi}$
The cases for \vee and \forall can be constructed from the above \sim exercise

A note on order: The translation yields an expression $E_{\varphi}\left[a_{x_{1}}, \ldots, a_{x_{n}}\right]$. For this to be equivalent to the query $\varphi\left[x_{1}, \ldots, x_{n}\right]$, we must choose the attribute names such that their global order is $a_{x_{1}}, \ldots, a_{x_{n}}$. This is clearly possible, since the names are arbitrary and we have infinitely many names available.

How to find DI queries?

Domain independent queries are arguably most intuitive, since their result does not depend on special assumptions.
\sim How can we check if a query is in DI?

How to find DI queries?

Domain independent queries are arguably most intuitive, since their result does not depend on special assumptions.
\leadsto How can we check if a query is in DI? Unfortunately, we can't:
Theorem 2.8: Given a FO query q, it is undecidable if $q \in \operatorname{DI}$.
\leadsto find decidable sufficient conditions for a query to be in DI

A Normal Form for Queries

We first define a normal form for FO queries:
Safe-Range Normal Form (SRNF)

- Rename variables apart (distinct quantifiers bind distinct variables, bound variables distinct from free variables)
- Eliminate all universal quantifiers: $\forall y . \psi \mapsto \neg \exists y . \neg \psi$
- Push negations inwards:
$-\neg(\varphi \wedge \psi) \mapsto(\neg \varphi \vee \neg \psi)$
- $\neg(\varphi \vee \psi) \mapsto(\neg \varphi \wedge \neg \psi)$
- $\neg \neg \psi \mapsto \psi$

Safe-Range Queries

Let φ be a formula in SRNF. The set $\operatorname{rr}(\varphi)$ of range-restricted variables of φ is defined recursively:

$$
\begin{aligned}
\operatorname{rr}\left(R\left(t_{1}, \ldots, t_{n}\right)\right) & =\left\{x \mid x \text { a variable among the } t_{1}, \ldots, t_{n}\right\} \\
\operatorname{rr}(x \approx a) & =\{x\} \\
\operatorname{rr}(x \approx y) & =\emptyset \\
\operatorname{rr}\left(\varphi_{1} \wedge \varphi_{2}\right) & =\left\{\begin{array}{l}
\operatorname{rr}\left(\varphi_{1}\right) \cup\{x, y\} \text { if } \varphi_{2}=(x \approx y) \text { and }\{x, y\} \cap \operatorname{rr}\left(\varphi_{1}\right) \neq \emptyset \\
\operatorname{rr}\left(\varphi_{1}\right) \cup \operatorname{rr}\left(\varphi_{2}\right) \text { otherwise }
\end{array}\right. \\
\operatorname{rr}\left(\varphi_{1} \vee \varphi_{2}\right) & =\operatorname{rr}\left(\varphi_{1}\right) \cap \operatorname{rr}\left(\varphi_{2}\right) \\
\operatorname{rr}(\exists y . \psi) & = \begin{cases}\operatorname{rr}(\psi) \backslash\{y\} \\
\text { throw new NotSafeException }() \text { if } y \notin \operatorname{rr}(\psi)\end{cases} \\
\operatorname{rr}(\neg \psi) & =\emptyset \quad \text { if } \operatorname{rr}(\psi) \text { is defined (no exception) }
\end{aligned}
$$

Safe-Range Queries

Definition 2.9: An FO query $q=\varphi\left[x_{1}, \ldots, x_{n}\right]$ is a safe-range query if $\operatorname{rr}(\operatorname{SRNF}(\varphi))=\left\{x_{1}, \ldots, x_{n}\right\}$.

Safe-range queries are domain independent.

Safe-Range Queries

Definition 2.9: An FO query $q=\varphi\left[x_{1}, \ldots, x_{n}\right]$ is a safe-range query if

$$
\operatorname{rr}(\operatorname{SRNF}(\varphi))=\left\{x_{1}, \ldots, x_{n}\right\} .
$$

Safe-range queries are domain independent.
One can show a much stronger result:
Theorem 2.10: The following query languages are equivalent:

- Safe-range queries SR
- Relational algebra RA
- FO queries under active domain semantics $A D$
- Domain independent FO queries DI

Tuple-Relational Calculus

There are more equivalent ways to define a relational query language
Example: Codd's tuple calculus

- Based on named perspective
- Use first-order logic, but variables range over sorted tuples (rows) instead of values
- Use expressions like x : From,To,Line to declare sorts of variables in queries
- Use expressions like x.From to access a specific value of a tuple
- Example: Find all lines that depart from an accessible stop

$$
\begin{gathered}
\{x: \text { Line } \mid \exists y: \text { SID,Stop,Accessible. }(\text { Stops }(y) \wedge y . \text { Accessible } \approx \text { "true" } \\
\wedge \exists z: \text { From,To,Line.(Connect }(z) \wedge z \text {.From } \approx y . \text { SID } \\
\wedge z . \text { Line } \approx x \text {.Line })\}
\end{gathered}
$$

Summary and Outlook

First-order logic gives rise to a relational query language
The problem of domain dependence can be solved in several ways
All common definitions lead to equivalent calculi
\leadsto "relational calculus"

Open questions:

- How hard is it to actually answer such queries? (next lecture)
- How can we study the expressiveness of query languages?
- Are there interesting query languages that are not equivalent to RA?

