Exercise 4.1. Show that P is closed under star.

Exercise 4.2. Show that the word-problem of nondeterministic polynomial-time Turing machines is NP-complete.

Exercise 4.3. Consider the problem CLIQUE:

Input: An undirected graph G and some $k \in \mathbb{N}$

Question: Does there exist a clique in G of size at least k?

Suppose CLIQUE can be solved in time $T(n)$ for some $T : \mathbb{N} \rightarrow \mathbb{N}$ with $T(n) \geq n$ for all $n \in \mathbb{N}$. Show that then the optimization problem

Input: An undirected graph G

Compute: A clique in G of maximal size

can be computed in time $O(n \cdot T(n))$.

(You can assume that T is monotone.)

Exercise 4.4. Show that the following problem is NP-complete:

Input: A propositional formula ϕ in CNF

Question: Does ϕ have at least 2 different satisfying assignments?

Exercise 4.5. Let $G = (V, E)$ be an undirected graph. A set $X \subseteq V$ is called a vertex cover if for each $\{u, v\} \in E$ we have $X \cap \{u, v\} \neq \emptyset$. The problem VERTEX COVER is

Input: A graph G and some $k \in \mathbb{N}$

Question: Does there exist a vertex cover in G of size at most k?

Show that VERTEX COVER is NP-complete.

Hint: Try to find a reduction from INDEPENDENT SET.

Exercise 4.6. 1. Show that if any coNP-complete problem is in NP, then $\mathsf{NP} = \mathsf{coNP}$.

2. Show that if a language L is NP-complete, then \overline{L} is coNP-complete.

* Exercise 4.7. Let $A \subseteq 1^*$. Show that if A is NP-complete, then $\mathsf{P} = \mathsf{NP}$.

Proceed as follows: Consider a polynomial-time reduction f from SAT to A. For a formula ϕ, let ϕ_{0100} be the reduced formula where variables x_1, x_2, x_3, x_4 in ϕ are set to the values 0, 1, 0, 0, respectively. (The particular choice of 4 variables as well as of 0100 is arbitrary here) What happens when one applies f to all of these exponentially many reduced formulas?