COMPLEXITY THEORY

Lecture 14: P vs. NP: Ladner's Theorem

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 6th Dec 2017

Review: Hierarchies and Gaps

Hierarchy theorems tell us that more time/space leads to more power:

Gap theorems tell us that, for non-constructible functions as time/space bounds, arbitrary (constructible or not) boosts in resources may not lead to more power

Review

Any natural problems in the hierarchy?

To show that complexity classes are different

- We have defined concrete diagonalisation languages that can show the difference (i.e., our argument was constructive),
- but these diagonalisation languages are rather artificial (i.e., not natural).

Are there, e.g., any natural ExpTime problems that are not in P ?
Yes, many:
Theorem 14.1: If \mathbf{L} is ExpTime-hard, then $L \notin P$.

Proof: We have shown that there is a language $\mathbf{D} \in \operatorname{Exp}$ Time $\backslash P$. If \mathbf{L} is ExpTime-hard, then there is a polynomial many-one reduction $\mathbf{D} \leq_{p} \mathbf{L}$. Therefore, if \mathbf{L} were in P , then so would \mathbf{D} - contradiction.

Similar results hold for other classes we separated: A problem that is hard for the larger class cannot be included in the smaller.
Markus Krötzsch, 6th Dec 2017

P vs. NP revisited

We have seen that a great variety of difficult problems in NP turn out to be NP-complete. A natural question to ask is whether this apparent dichotomy is a law of nature:

> Hypothesis: Every problem in NP is either in P or NP-complete.

In 1975, Richard E. Ladner showed that this is wrong, unless $P=N P$
(in the latter case, uninterstingly, P would turn out to be exactly the set of NP-complete problems)

Theorem 14.2 (Ladner, 1975): If $P \neq N P$, then there are problems in NP that are neither in P nor NP-complete.

Such problems are called NP-intermediate.

Proving the Theorem

Theorem 14.2 (Ladner, 1975): If $P \neq N P$, then there are problems in NP that are neither in P nor NP-complete.

Proof idea: We will directly define an NP-intermediate language by defining an NTM \mathcal{K} that recognises it.

We want to construct $\mathbf{L}(\mathcal{K})$ to be:
(1) different from all problems in P
(2) different from all problems that SAT can be reduced to

Observation: This is similar to two concurrent diagonalisation arguments
Moreover, the sets we diagonalise against are effectively enumerable:

- There is an effective enumeration $\mathcal{M}_{0}, \mathcal{M}_{1}, \mathcal{M}_{2}, \ldots$ of all polynomially time-bounded DTMs, each together with a suitable bounding function For example, enumerate all pairs of TMs and polynomials, and make the enumeration consist of the TMs obtained by artificially restricting the run of a TM with a suitable countdown.
- There is an effective enumeration $\mathcal{R}_{0}, \mathcal{R}_{1}, \mathcal{R}_{2}, \ldots$ of all polynomial many-one reductions, each together with a suitable bounding function This is similar to enumerating polytime TMs; we can restrict to one input alphabet that we also use for SAT
Markus Krötzsch, 6th Dec 2017

The problem with diagonalisation

How can we do two diagonalisations at once? - Simply interleave the enumerations:

- On each even number $2 i$, show that the i th polytime $\operatorname{TM} \mathcal{M}_{i}$ is not equivalent to \mathcal{K} : there is w such that $\mathcal{M}_{i}(w) \neq \mathcal{K}(w)$
- For each odd number $2 i+1$, show that the i th reduction \mathcal{R}_{i} does not reduce \mathcal{K} to Sat:
there is w such that $\mathcal{K}\left(\mathcal{R}_{i}(w)\right) \neq \operatorname{SAT}(w)$

Nevertheless, there is a problem: How can we flip the output of Sat?

- \mathcal{K} is required to run in NP
- Computing the actual result of S_{At} is NP-hard
- To show $\mathcal{K}\left(\mathcal{R}_{i}(w)\right) \neq \operatorname{Sat}(w)$, one might have to show $w \notin \mathbf{S a t}$, which is presumably not in NP
\leadsto the required computation seems too hard!

Markus Krötzsch, 6th Dec 2017
Complexity Theory
slide 9 of 18

Illustration of \mathcal{K} 's behaviour

We can sketch the behaviour of \mathcal{K} as follows:

Solution: Lazy diagonalisation

Idea: Do not attempt to show too much on small inputs, but wait patiently until inputs are large enough to show the required differences

Main ingredients:

- A very slow growing but polynomially computable function f
- A problem in NP that is NP-hard: Sat
- A problem in NP that is not NP-hard: \emptyset

We will define a TM \mathcal{K} that does the following on input w :
(1) Compute the value $f(|w|)$
(2) If $f(|w|)$ is even: return whether $w \in \mathbf{S A T}_{\mathbf{A T}}$
(3) If $f(|w|)$ is odd: return whether $w \in \emptyset$, i.e., reject

Intuition: the NP-intermediate language $\mathbf{L}(\mathcal{K})$ is $\mathbf{S a t}_{\text {at }}$ with "holes punched out of it " (namely for all inputs where f is odd)

Markus Krötzsch, 6th Dec 2017
Complexity Theory
slide 10 of 18

What is f ?

Reminder: $\mathcal{K}(w)$ is $\operatorname{SAt}(w)$ if $f(|w|)$ is even, and false if $f(|w|)$ is odd.
The key to the proof is the definition of f - this is where the diagonalisation happens.
Intuition: Keep the current value of f until progress has been made in diagonalisation

- Keep an even value $f(|w|)=2 i$ until you can show in polynomial time (in $|w|$) that there is v such that $\mathcal{M}_{i}(v) \neq \mathcal{K}(v)$
- Keep an odd value $f(|w|)=2 i+1$ until you can show in polynomial time (in $|w|$) that there is v such that $\mathcal{K}\left(\mathcal{R}_{i}(v)\right) \neq \mathbf{S A T}(v)$

If we can do this in NP, it will be enough already:

- If \mathcal{K} were equivalent to any \mathcal{M}_{i}, then f would eventually become an even constant, and \mathcal{K} would solve Sat on all but finitely many instances
$\leadsto \mathcal{K}$ would be NP-hard, and equivalent to a polytime $\mathrm{TM} \leadsto \mathrm{P}=\mathrm{NP}$
- If \mathcal{K} would allow Sat to be reduced to it by some reduction \mathcal{R}_{i}, then f would eventually become an odd constant, and $\mathbf{L}(\mathcal{K})$ would be a finite language $\leadsto \mathcal{K}$ would be in P , and $\mathrm{Sat}_{\text {at }}$ would reduce to it $\leadsto \mathrm{P}=\mathrm{NP}$
In each case, this contradicts our assumption that $P \neq N P$
Markus Krötzsch, 6th Dec 2017
Complexity Theory

What is f ?

We consider some fixed deterministic $\operatorname{TM} \mathcal{S}$ with $\mathbf{L}(\mathcal{S})=$ Sat, and an enumeration v_{0}, v_{1}, \ldots of all words ordered by length, and lexicographic for words of equal length.

Reminder: $\mathcal{K}(w)$ is $\mathcal{S}(w)$ if $f(|w|)$ is even, and false if $f(|w|)$ is odd.
Definition: The value of f on input w with $|w|=n$ is defined recursively
(1) Perform the computations of $f(0), f(1), f(2), \ldots$ in order until n computing steps have been performed in total. Store the largest value $f(\ell)=k$ that could be computed in this time (set $k=0$ if no value was computed).
(2) Determine if $f(n)$ should remain k or increase to $k+1$:
(2.a) If $k=2 i$ is even: Iterate over all words v, simulate $\mathcal{M}_{i}(v), \mathcal{S}(v)$, and (recursively) compute $f(|v|)$. Terminate this effort after n steps. If a word is found such that $\mathcal{K}(v) \neq \mathcal{M}_{i}(v)$, then return $k+1$; else return k
(2.b) If $k=2 i+1$ is odd: Iterate over all words v, simulate $\mathcal{R}_{i}(v)$ (this produces a word), $\mathcal{S}(v), \mathcal{S}\left(\mathcal{R}_{i}(v)\right)$, and (recursively) compute $f\left(\left|\mathcal{R}_{i}(v)\right|\right)$. Terminate this effort after n steps. If a word is found such that $\mathcal{K}\left(\mathcal{R}_{i}(v)\right) \neq \mathcal{S}(v)$, then return $k+1$; else return k.

Markus Krötzsch, 6th Dec 2017 Complexity Theory slide 13 of 18

Concluding the Proof

Theorem 14.2 (Ladner, 1975): If $P \neq N P$, then there are problems in NP that are neither in P nor NP-complete.

Proof: Let \mathcal{K} be defined as before.

\mathcal{K} runs in nodeterministic polynomial time:

- The computation of f is in polynomial deterministic time (since it is artificially bounded to a short time)
- The computation of $\mathbf{S a t}_{\text {at }}$ for the cases where $f(|w|)$ is even is possible in NP
$\mathbf{L}(\mathcal{K})$ is not in P : As argued before: if it were in P , it would be equivalent to some polytime $\operatorname{TM} \mathcal{M}_{i}$, and f would eventually be constant at $2 i$, making \mathcal{K} equivalent to $\mathrm{Sat}_{\text {at }}$ (up to finite variations), which contradicts $P \neq N P$.
$\mathbf{L}(\mathcal{K})$ is not in NP-hard: As argued before: if it were NP-hard, there would be a polynomial many-one reduction \mathcal{R}_{i} from $\mathbf{S A T}$, and f would eventually be constant at $2 i+1$, making \mathcal{K} equivalent to \emptyset (up to finite variations), which contradicts $\mathrm{P} \neq \mathrm{NP}$. \square Markus Krötzsch, 6th Dec $2017 \quad$ Complexity Theory slide 15 of 18

Is f well-defined?

Our definition of f computes values for f recursively. Is this ok?

- Yes, the computation that needs to be done for each $f(n)$ is fully defined
- All the simulated TMs are known or computable
- Since computation is time-limited to the input value n, there is no danger of endless recursion
- For example, $f(0)=0$: nothing will be achieved in 0 steps

Indeed, f grows very slowly!

- A large input n might be needed to find the next counterexample word v needed in diagonalisation
- Even if such v was found in n steps (making progress from n to $n+1$), it will be only much later that $f(n)$ can be computed in step (1) and f will even start to look for a way of getting to $n+2$.
- In fact, already the requirement to recompute all previous values of f before considering an increase ensures that $f \in O(\log \log n)$.
Markus Krötzsch, 6th Dec 2017 Complexity Theory

Discussion: Proof of Ladner's Theorem

Note 1: It is interesting to meditate on the following facts:

- We have defined a rather "busy" computation of f that checks that diagonalisation (over two different sets) must happen
- This definition of computation is essential to prove the result
- Nevertheless, diagonalisation remained "internal": from the outside, \mathcal{K} is just a TM that sometimes solves Sat (for a long range of inputs), and at other times just rejects every input (again for very long ranges of inputs)

Note 2: The constructed language is very artificial

- It is very "non-uniform" in terms of how hard it is, alternating between long stretches of NP-hardness and long stretches of triviality

Note 3: Are there any natural problems that are known to be NP-intermediate?

- No: finding one would prove $P \neq N P$
- Candidate problems (link) include, e.g., Graph Isomorphism and Factoring Beeware: the latter is not about deciding if if number is prime, but about checking something specific about its factors, e.g., whether the
larggest tactor contans a t least one 7 when witten in decimal
Markus Krötzsch, 6th Dec 2017

Summary and Outlook

15min for Teaching Evaluation

Ladner's theorem tells us that, in the inuitive case that $P \neq N P$, there must be (counterintuitively?) many problems in NP that are neither polynomially solvable nor NP-complete

The proof is based on a technique of lazy diagonalisation

What's next?

- Generalising Ladner's Theorem
- Computing with oracles (reprise)
- The limits of diagonalisation, proved by diagonalisation

