
COMPLEXITY THEORY

Lecture 14: P vs. NP: Ladner’s Theorem

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 6th Dec 2017

Review

Markus Krötzsch, 6th Dec 2017 Complexity Theory slide 2 of 18

Review: Hierarchies and Gaps

Hierarchy theorems tell us that more time/space leads to more power:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace ⊆ ExpTime ⊆ NExpTime ⊆ ExpSpace

,

,

,

,

Gap theorems tell us that, for non-constructible functions as time/space bounds,
arbitrary (constructible or not) boosts in resources may not lead to more power

Markus Krötzsch, 6th Dec 2017 Complexity Theory slide 3 of 18

Any natural problems in the hierarchy?

To show that complexity classes are different

• We have defined concrete diagonalisation languages that can show the difference
(i.e., our argument was constructive),

• but these diagonalisation languages are rather artificial (i.e., not natural).

Are there, e.g., any natural ExpTime problems that are not in P?

Yes, many:

Theorem 14.1: If L is ExpTime-hard, then L < P.

Proof: We have shown that there is a language D ∈ ExpTime \ P. If L is ExpTime-hard,
then there is a polynomial many-one reduction D ≤p L. Therefore, if L were in P, then so
would D – contradiction. �

Similar results hold for other classes we separated: A problem that is hard for the larger
class cannot be included in the smaller.
Markus Krötzsch, 6th Dec 2017 Complexity Theory slide 4 of 18

Ladner’s Theorem

Markus Krötzsch, 6th Dec 2017 Complexity Theory slide 5 of 18

P vs. NP revisited

We have seen that a great variety of difficult problems in NP turn out to be NP-complete.

A natural question to ask is whether this apparent dichotomy is a law of nature:

Hypothesis: Every problem in NP is either in P or NP-complete.

In 1975, Richard E. Ladner showed that this is wrong, unless P = NP
(in the latter case, uninterstingly, P would turn out to be exactly the set of NP-complete problems)

Theorem 14.2 (Ladner, 1975): If P , NP, then there are problems in NP that are
neither in P nor NP-complete.

Such problems are called NP-intermediate.

Markus Krötzsch, 6th Dec 2017 Complexity Theory slide 6 of 18

Illustration

Theorem 14.2 (Ladner, 1975): If P , NP, then there are problems in NP that are
neither in P nor NP-complete.

In other words, given the following illustrations of the possible relationships between P
and NP:

Ladner tells us that the middle cannot be correct.

Markus Krötzsch, 6th Dec 2017 Complexity Theory slide 7 of 18

Proving the Theorem

Theorem 14.2 (Ladner, 1975): If P , NP, then there are problems in NP that are
neither in P nor NP-complete.

Proof idea: We will directly define an NP-intermediate language by defining an NTM K
that recognises it.

We want to construct L(K) to be:
(1) different from all problems in P
(2) different from all problems that SAT can be reduced to
Observation: This is similar to two concurrent diagonalisation arguments

Moreover, the sets we diagonalise against are effectively enumerable:
• There is an effective enumerationM0,M1,M2, . . . of all polynomially

time-bounded DTMs, each together with a suitable bounding function
For example, enumerate all pairs of TMs and polynomials, and make the enumeration consist of the TMs obtained by artificially restricting
the run of a TM with a suitable countdown.

• There is an effective enumeration R0,R1,R2, . . . of all polynomial many-one
reductions, each together with a suitable bounding function
This is similar to enumerating polytime TMs; we can restrict to one input alphabet that we also use for SAT

Markus Krötzsch, 6th Dec 2017 Complexity Theory slide 8 of 18

The problem with diagonalisation

How can we do two diagonalisations at once? — Simply interleave the enumerations:

• On each even number 2i, show that the ith polytime TMMi is not equivalent to K :
there is w such thatMi(w) , K(w)

• For each odd number 2i + 1, show that the ith reduction Ri does not reduce K to
Sat:
there is w such that K(Ri(w)) , Sat(w)

Nevertheless, there is a problem: How can we flip the output of Sat?

• K is required to run in NP

• Computing the actual result of Sat is NP-hard

• To show K(Ri(w)) , Sat(w), one might have to show w < Sat, which is presumably
not in NP

{ the required computation seems too hard!

Markus Krötzsch, 6th Dec 2017 Complexity Theory slide 9 of 18

Solution: Lazy diagonalisation

Idea: Do not attempt to show too much on small inputs, but wait patiently until inputs are
large enough to show the required differences

Main ingredients:

• A very slow growing but polynomially computable function f

• A problem in NP that is NP-hard: Sat

• A problem in NP that is not NP-hard: ∅

We will define a TM K that does the following on input w:

(1) Compute the value f (|w|)
(2) If f (|w|) is even: return whether w ∈ Sat

(3) If f (|w|) is odd: return whether w ∈ ∅, i.e., reject

Intuition: the NP-intermediate language L(K) is Sat with “holes punched out of it”
(namely for all inputs where f is odd)

Markus Krötzsch, 6th Dec 2017 Complexity Theory slide 10 of 18

Illustration of K ’s behaviour

We can sketch the behaviour of K as follows:

|w|

f (|w|)

0

1

2

3

4

K : SAT reject SAT reject

Markus Krötzsch, 6th Dec 2017 Complexity Theory slide 11 of 18

What is f ?
Reminder: K(w) is Sat(w) if f (|w|) is even, and false if f (|w|) is odd.

The key to the proof is the definition of f – this is where the diagonalisation happens.

Intuition: Keep the current value of f until progress has been made in diagonalisation
• Keep an even value f (|w|) = 2i until you can show in polynomial time (in |w|) that

there is v such thatMi(v) , K(v)
• Keep an odd value f (|w|) = 2i + 1 until you can show in polynomial time (in |w|) that

there is v such that K(Ri(v)) , Sat(v)

If we can do this in NP, it will be enough already:
• If K were equivalent to anyMi, then f would eventually become an even constant,

and K would solve Sat on all but finitely many instances
{ K would be NP-hard, and equivalent to a polytime TM{ P = NP

• If K would allow Sat to be reduced to it by some reduction Ri, then f would
eventually become an odd constant, and L(K) would be a finite language
{ K would be in P, and Sat would reduce to it{ P = NP

In each case, this contradicts our assumption that P , NP
Markus Krötzsch, 6th Dec 2017 Complexity Theory slide 12 of 18

What is f ?

We consider some fixed deterministic TM S with L(S) = Sat, and an enumeration
v0, v1, . . . of all words ordered by length, and lexicographic for words of equal length.

Reminder: K(w) is S(w) if f (|w|) is even, and false if f (|w|) is odd.

Definition: The value of f on input w with |w| = n is defined recursively

(1) Perform the computations of f (0), f (1), f (2), . . . in order until n computing steps have
been performed in total. Store the largest value f (`) = k that could be computed in
this time (set k = 0 if no value was computed).

(2) Determine if f (n) should remain k or increase to k + 1:
(2.a) If k = 2i is even: Iterate over all words v, simulateMi(v), S(v), and

(recursively) compute f (|v|). Terminate this effort after n steps. If a word is
found such that K(v) ,Mi(v), then return k + 1; else return k

(2.b) If k = 2i + 1 is odd: Iterate over all words v, simulate Ri(v) (this produces a
word), S(v), S(Ri(v)), and (recursively) compute f (|Ri(v)|). Terminate this effort
after n steps. If a word is found such that K(Ri(v)) , S(v), then return k + 1;
else return k.

Markus Krötzsch, 6th Dec 2017 Complexity Theory slide 13 of 18

Is f well-defined?

Our definition of f computes values for f recursively. Is this ok?

• Yes, the computation that needs to be done for each f (n) is fully defined

• All the simulated TMs are known or computable

• Since computation is time-limited to the input value n, there is no danger of endless
recursion

• For example, f (0) = 0: nothing will be achieved in 0 steps

Indeed, f grows very slowly!

• A large input n might be needed to find the next counterexample word v needed in
diagonalisation

• Even if such v was found in n steps (making progress from n to n + 1), it will be only
much later that f (n) can be computed in step (1) and f will even start to look for a
way of getting to n + 2.

• In fact, already the requirement to recompute all previous values of f before
considering an increase ensures that f ∈ O(log log n).

Markus Krötzsch, 6th Dec 2017 Complexity Theory slide 14 of 18

Concluding the Proof

Theorem 14.2 (Ladner, 1975): If P , NP, then there are problems in NP that are
neither in P nor NP-complete.

Proof: Let K be defined as before.

K runs in nodeterministic polynomial time:

• The computation of f is in polynomial deterministic time (since it is artificially
bounded to a short time)

• The computation of Sat for the cases where f (|w|) is even is possible in NP

L(K) is not in P: As argued before: if it were in P, it would be equivalent to some
polytime TMMi, and f would eventually be constant at 2i, making K equivalent to Sat
(up to finite variations), which contradicts P , NP.

L(K) is not in NP-hard: As argued before: if it were NP-hard, there would be a
polynomial many-one reduction Ri from Sat, and f would eventually be constant at
2i + 1, making K equivalent to ∅ (up to finite variations), which contradicts P , NP. �
Markus Krötzsch, 6th Dec 2017 Complexity Theory slide 15 of 18

Discussion: Proof of Ladner’s Theorem
Note 1: It is interesting to meditate on the following facts:

• We have defined a rather “busy” computation of f that checks that diagonalisation
(over two different sets) must happen

• This definition of computation is essential to prove the result

• Nevertheless, diagonalisation remained “internal”: from the outside, K is just a TM
that sometimes solves Sat (for a long range of inputs), and at other times just
rejects every input (again for very long ranges of inputs)

Note 2: The constructed language is very artificial

• It is very “non-uniform” in terms of how hard it is, alternating between long
stretches of NP-hardness and long stretches of triviality

Note 3: Are there any natural problems that are known to be NP-intermediate?

• No: finding one would prove P , NP

• Candidate problems (link) include, e.g., Graph Isomorphism and Factoring
Beware: the latter is not about deciding if a number is prime, but about checking something specific about its factors, e.g., whether the
largest factor contains at least one 7 when written in decimal

Markus Krötzsch, 6th Dec 2017 Complexity Theory slide 16 of 18

15min for Teaching Evaluation

Markus Krötzsch, 6th Dec 2017 Complexity Theory slide 17 of 18

Summary and Outlook

Ladner’s theorem tells us that, in the inuitive case that P , NP, there must be
(counterintuitively?) many problems in NP that are neither polynomially solvable nor
NP-complete

The proof is based on a technique of lazy diagonalisation

What’s next?

• Generalising Ladner’s Theorem

• Computing with oracles (reprise)

• The limits of diagonalisation, proved by diagonalisation

Markus Krötzsch, 6th Dec 2017 Complexity Theory slide 18 of 18

