EXERCISE 6

Science of Computational Logic

Steffen Hölldobler, Tobias Philipp

International Masters Programme in Computational Logic - winter semester 2015/2016

28.01.2015

Problem 6.1

Show that first-order logic is monotonic.

Problem 6.2

Show that reasoning with CWA is non-monotonic.

Problem 6.3

Consider the language $\mathcal{L}(\mathcal{R},\mathcal{F},\mathcal{V})$, with $\mathcal{R} = \{p/0,q/0\}$. Given the set of formulas $S = \{p \leftarrow \neg q, q \leftarrow \neg p\}$

Compute $C_{CWA}(S)$.

Problem 6.4

Prove that the closed world assumption eliminated non-least Herbrand models:

If F is a formula and I is a non-least Herbrand model I of F, then $I \not\models C_{CWA(F)}$.

Problem 6.5

Proof the following proposition: Let \mathcal{F} be a satisfiable set of Skolem formulas. Then it holds: $\mathcal{C}_{CWA}(\mathcal{F})$ is satisfiable $\Leftrightarrow \mathcal{F}$ admits a least Herbrand model.

Problem 6.6

Reconsider the theorem from the lectures proved in the preceding problem.

- 1. Show that the condition that \mathcal{F} a set of formulas in Skolem normal form is necessary for \Rightarrow -direction.
- 2. Show for the \leftarrow -direction that without the condition that \mathcal{F} a set of formulas in Skolem normal form the existence of a least Herbrand model of \mathcal{F} does not entail the existence of a Herbrand model of $\mathcal{C}_{CWA}(\mathcal{F})$.