Complexity Theory

The Polynomial Hierarchy

Daniel Borchmann, Markus Krötzsch

Computational Logic

2016-01-12

 \odot

The Polynomial Hierarchy

⊚● 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2016-01-12 #1	© € 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2016-01-12 #2
The Polynomi	al Hierarchy The Polynomial Hierarchy		The Polynom	nial Hierarchy The Polynomial Hierarchy	
Bounding Alternation			Alternation-Bounded A	TMs	

For ATMs, alternation itself is a resource. We can distinguish problems by how much alternation they need to be solved.

We first classify computations by counting their quantifier alternations:

Definition 16.1

Let \mathcal{P} be a computation path of an ATM on some input.

- P is of type Σ₁ if it consists only of existential configurations (with the exception of the final configuration)
- \mathcal{P} is of type Π_1 if it consists only of universal configurations
- P is of type Σ_{i+1} if it starts with a sequence of existential configurations, followed by a path of type Π_i
- *P* is of type Π_{i+1} if it starts with a sequence of universal configurations, followed by a path of type Σ_i

We apply alternation bounds to every computation path:

Definition 16.2

A \sum_i Alternating Turing Machine is an ATM for which every computation path on every input is of type \sum_j for some $j \le i$. A \prod_i Alternating Turing Machine is an ATM for which every computation path on every input is of type \prod_i for some $j \le i$.

Note that it's always ok to use fewer alternations (" $j \le i$ ") but computation has to start with the right kind of quantifier (\exists for Σ_i and \forall for Π_i).

Example 16.3

A Σ_1 ATM is simply an NTM.

#4

The Polynomial Hierarchy The Polynomial Hierarchy

Alternation-Bounded Complexity

We are interested in the power of ATMs that are both time/space-bounded and alternation-bounded:

Definition 16.4

Let $f: \mathbb{N} \to \mathbb{R}^+$ be a function. $\sum_i \text{TIME}(f(n))$ is the class of all languages that are decided by some O(f(n))-time bounded Σ_i ATM. The classes $\Pi_i \text{TIME}(f(n)), \Sigma_i \text{SPACE}(f(n))$ and $\Pi_i \text{SPACE}(f(n))$ are defined similarly.

The most popular classes of these problems are the alternation-bounded polynomial time classes:

$$\Sigma_i \mathbf{P} = \bigcup_{d \ge 1} \Sigma_i \mathrm{TIME}(n^d)$$
 and $\Pi_i \mathbf{P} = \bigcup_{d \ge 1} \Pi_i \mathrm{TIME}(n^d)$

Hardness for these classes is defined by polynomial many-one reductions as usual.

Basic Observations

Theorem 16.5

 $\Sigma_1 P = NP$ and $\Pi_1 P = CONP$.

Proof.

Immediate from the definitions.

Theorem 16.6

 $\mathrm{Co}\Sigma_i\mathrm{P}=\Pi_i\mathrm{P}$ and $\mathrm{Co}\Pi_i\mathrm{P}=\Sigma_i\mathrm{P}$.

Proof.

We observed previously that ATMs can be complemented by simply exchanging their universal and existential states. This does not affect the amount of time or space needed.

@ 🗊 @ 2015 Daniel Borchmann, Markus Krötzsch 😔 🖲 🧿 2015 Daniel Borchmann, Markus Krötzsch **Complexity Theory** 2016-01-12 Complexity Theory 2016-01-12 #5 The Polynomial Hierarchy The Polynomial Hierarchy The Polynomial Hierarchy The Polynomial Hierarchy Example The Polynomial Hierarchy Like for NP and CONP, we do not know if $\Sigma_i P$ equals $\Pi_i P$ or not. What we do know, however, is this: **MINFORMULA** Theorem 16.7 *Input:* A propositional formula φ . • $\Sigma_i P \subseteq \Sigma_{i+1} P$ and $\Sigma_i P \subseteq \prod_{i+1} P$ *Problem:* Is φ the shortest formula that is satis-• $\Pi_i \mathbf{P} \subseteq \Pi_{i+1} \mathbf{P}$ and $\Pi_i \mathbf{P} \subseteq \Sigma_{i+1} \mathbf{P}$

fied by the same assignments as φ ?

One can show that MINFORMULA is $\Pi_2 P$ -complete. Inclusion is easy:

```
01 MINFORMULA(formula \varphi) :
```

- universally choose ψ := formula shorter than φ 02
- exist. guess I := assignment for variables in φ 03
- if $\varphi^I = \psi^I$: 04
- 05 return FALSE
- 06 else :
- 07 return TRUE

Complexity Theory

Proof.

Immediate from the definitions.

Thus, the classes $\Sigma_i P$ and $\Pi_i P$ form a kind of hierarchy:

the Polynomial (Time) Hierarchy. Its entirety is denoted PH:

 $\mathbf{PH} := \bigcup_{i=1}^{n} \Sigma_i \mathbf{P} = \bigcup_{i=1}^{n} \Pi_i \mathbf{P}$

Problems in the Polynomial Hierarchy

The "typical" problems in the Polynomial Hierarchy are restricted forms of TRUE QBF:

TRUE $\sum_{k} \mathbf{QBF}$

Input: A quantified Boolean formula of the form $\varphi = \exists X_1. \forall X_2. \cdots \mathsf{Q}_k. \psi$.

Problem: Is φ true?

True $\Pi_k QBF$ is defined analogously, using $\varphi = \forall X_1. \exists X_2. \cdots Q_k. \psi$.

Theorem 16.8

For every k, True $\Sigma_k QBF$ is $\Sigma_k P$ -complete and True $\Pi_k QBF$ is $\Pi_k \mathbf{P}$ -complete.

Note: It is not known if there is any PH-complete problem.

```
Alternative Views on the Polynomial Hierarchy
```

©⊕@ 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2016-01-12	#9	©⊕@ 2015 Daniel Borchmann, Markus Krötzsch		Complexity Theory	2016-01-12	#10
The Polynomial Hierarchy Alternative Views on the Polynomial Hierarchy			The Polynomial Hierarchy Alternative Views on the Polynomial Hierarchy					
Certificates			Certificates for bounded ATMs					
For NP, we gave an alternativ	a definition based on polynom	ial time		Theorem 16.9				

For NP, we gave an alternative definition based on polynomial-time verifiers that use a given polynomial certificate (witness) to check acceptance. Can we extend this idea to alternation-bounded ATMs?

Notation: Given an input word w and a polynomial p, we write $\exists^{p} c$ as abbreviation for "there is a word c of length $|c| \le p(|w|)$." Similarly for $\forall^{p}c$.

We can rephrase our earlier characterisation of polynomial-time verifiers:

 $\mathcal{L} \in \mathbb{NP}$ iff there is a polynomial p and language $\mathcal{V} \in \mathbb{P}$ such that

$$\mathcal{L} = \{ w \mid \exists^{p} c \text{ such that } (w \# c) \in \mathcal{V} \}$$

 $\mathcal{L} \in \Sigma_k P$ iff there is a polynomial p and language $\mathcal{V} \in P$ such that

 $\mathcal{L} = \{ w \mid \exists^{p} c_{1}.\forall^{p} c_{2} \dots \mathcal{Q}_{k}^{p} c_{k} \text{ such that } (w \# c_{1} \# c_{2} \# \dots \# c_{k}) \in \mathcal{V} \}$

where $Q_k = \exists$ if k is odd, and $Q_k = \forall$ if k is even. An analoguous result holds for $\mathcal{L} \in \Pi_k P$.

Proof sketch.

 \Rightarrow : Similar as for NP. Use *c_i* to encode the non-deterministic choices of the ATM. With all choices given, the acceptance on the specified path can be checked in polynomial time.

 \Leftarrow : Use an ATM to implement the certificate-based definition of \mathcal{L} , by using universal and existential choices to guess the certificate before running a polynomial time verifier.

Oracles (Revision)

Recall how we defined oracle TMs:

Definition 16.10

Let *O* be a language. An Oracle Turing Machine with oracle *O* is a TM with a special oracle tape and three special states $q_{?}, q_{yes}, q_{no}$. Whenever the state $q_{?}$ is reached, the TM changes to state q_{yes} if the word on the oracle tape is in *O* and to q_{no} otherwise; and the oracle tape is cleared.

Alternative Views on the Polynomial Hierarch

The Polynomial Hierarchy

Let C be a complexity class:

- For a language O, we write C^O for the class of all problems that can be solved by a C-TM with oracle O.
- For a complexity class O, we write C^O for the class of all problems that can be solved by a C-TM with an oracle from class O.

Alternative Views on the Polynomial Hierarchy

The Polynomial Hierarchy – Alternative Definition

We recursively define the following complexity classes:

Definition 16.11

• $\Sigma_0^{\mathrm{P}} := \mathrm{P}$ and $\Sigma_{k+1}^{\mathrm{P}} := \mathrm{NP}^{\Sigma_k^{\mathrm{P}}}$ • $\Pi_0^{\mathrm{P}} := \mathrm{P}$ and $\Pi_{k+1}^{\mathrm{P}} := \mathrm{CONP}^{\Pi_k^{\mathrm{P}}}$

Remark:

Complementing an oracle (language/class) does not change expressivity: we can just swap states q_{yes} and q_{no} . Therefore $\Sigma_{k+1}^{P} = NP^{\Pi_{k}^{P}}$ and $\Pi_{k+1}^{P} := \text{coNP}^{\Sigma_{k}^{P}}$. Hence, we can also see that $\Sigma_{k}^{P} = \text{co}\Pi_{k}^{P}$.

Question:

"⊇" Assume $\mathcal{L} \in \Sigma_{k+1}$ P.

using the \mathcal{L}' oracle

 $NP^{\Pi_k^{P}} = NP^{\Sigma_k^{P}} = \Sigma_{k+1}^{P}$

How do these relate to our earlier definitions of the PH classes?

Induction step: assume the claim holds for k. We show $\sum_{k=1}^{P} = \sum_{k=1}^{P} \sum_{k=1}^$

▶ By Theorem 16.9, for some language $\mathcal{V} \in \mathbf{P}$ and polynomial p: $\mathcal{L} = \{w \mid \exists^p c_1.\forall^p c_2... \mathcal{Q}_k^p c_k \text{ such that } (w \# c_1 \# c_2 \# ... \# c_k) \in \mathcal{V}\}$

 $\mathcal{L}' := \{ (w \# c_1) \mid \forall^p c_2 \dots Q^p_{\nu} c_k \text{ such that } (w \# c_1 \# c_2 \# \dots \# c_k) \in \mathcal{V} \}.$

on input w, non-deterministically guess c_1 ; then check $(w \# c_1) \in \mathcal{L}'$

• By Theorem 16.9, the following defines a language in $\Pi_k P$:

• The following algorithm in $NP^{\mathcal{L}'}$ decides \mathcal{L} :

▶ By induction, $\mathcal{L}' \in \Pi_k^{\mathrm{P}}$. Hence, the algorithm runs in

It turns out that this new definition leads to a familiar class of problems:¹

Theorem 16.12

For $k \ge 1$, we have $\Sigma_k^{\mathrm{P}} = \Sigma_k \mathrm{P}$ and $\Pi_k^{\mathrm{P}} = \Pi_k \mathrm{P}$.

Proof.

We prove the case $\Sigma_k^{\rm P} = \Sigma_k {\rm P}$ (the other follows by complementation). The proof is by induction on *k*.

Base case: k = 1.

The claim follows since $\Sigma_1^{\rm P}={\rm NP}\,{\rm P}$ and $\Sigma_1{\rm P}={\rm NP}$ (as noted before).

© 🖲 🕲 2015 Daniel Borchmann, Markus Krötzsch

Complexity Theory

¹Because of this result, both of our notations are used interchangeably in the literature, independently of the definition used.

2016-01-12

Complexity Theory

#20

Oracle TMs vs. ATMs (3)

Induction step: assume the claim holds for *k*. We show $\Sigma_{k+1}^{P} = \Sigma_{k+1}P$.

"⊆" Assume
$$\mathcal{L} \in \Sigma_{k+1}^{\mathrm{P}}$$
.

© 100 2015 Daniel Borchmann, Markus Krötzsch

- There is an $\Sigma_{k+1}^{\mathrm{P}}$ -TM \mathcal{M} that accepts \mathcal{L} , using an oracle $O \in \Sigma_k^{\mathrm{P}}$.
- ▶ By induction, $O \in \Sigma_k P$ and thus $\overline{O} \in \Pi_k P$ for its complement
- For an Σ_{k+1}P algorithm, first guess (and verify) an accepting path of *M* including results of all oracle queries.
- Then universally branch to verify all guessed oracle queries:
 - ► For queries $w \in O$ with guessed answer "no", use $\Pi_k P$ check for $w \in \overline{O}$
 - For queries w ∈ O with guessed answer "yes", use Π_{k-1}P check for (w#c₁) ∈ O', where O' is constructed as in the ⊇-case, and c₁ is guessed in the first ∃-phase

Complexity Theory

We defined $\Sigma_k^{\rm P}$ and $\Pi_k^{\rm P}$ by relativising ${\rm NP}$ and ${\rm coNP}$ with oracles. What happens if we start from P instead?

Definition 16.13

 $\Delta_0^{\mathrm{P}} := \mathrm{P} \text{ and } \Delta_{k+1}^{\mathrm{P}} := \mathrm{P}^{\Sigma_k^{\mathrm{P}}}.$

© 🖲 🖲 2015 Daniel Borchmann, Markus Krötzsch

More Classes in PH

Some immediate observations:

 $\begin{array}{l} \blacktriangleright \ \Delta_1^{\mathrm{P}} = \mathrm{P}^{\mathrm{P}} = \mathrm{P} \\ \blacktriangleright \ \Delta_2^{\mathrm{P}} = \mathrm{P}^{\mathrm{NP}} = \mathrm{P}^{\mathrm{coNP}} \\ \vdash \ \Delta_k^{\mathrm{P}} \subseteq \Sigma_k^{\mathrm{P}} \text{ (since } \mathrm{P} \subseteq \mathrm{NP} \text{) and } \Delta_k^{\mathrm{P}} \subseteq \Pi_k^{\mathrm{P}} \text{ (since } \mathrm{P} \subseteq \mathrm{coNP} \text{)} \\ \vdash \ \Sigma_k^{\mathrm{P}} \subseteq \Delta_{k+1}^{\mathrm{P}} \text{ and } \Pi_k^{\mathrm{P}} \subseteq \Delta_{k+1}^{\mathrm{P}} \end{array}$

©⊕@ 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2016-01-12	#17	© ⊕ @ 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2016-01-12	#18
The Polynomial Hierarchy	Alternative Views on the Polynomial Hiera	archy		The Polynomial Hierarchy	Alternative Views on the Polynomial Hier	archy	
Problems for Δ_k^{P} ?				Is the Polynomial Hierarchy I	Real?		
Δ^{P}_{k} seems to be less common in prac complete problems for $\mathrm{P}^{\mathrm{NP}} = \Delta^{\mathrm{P}}_{2}$:	tice, but there are some	known		Questions:	PH : · ·		
UNIQUELY OPTIMAL TSP [Papadimitriou, JACM 1984]Input:Undirected graph G with edge weights (distances).Problem:Is there exactly one shortest travelling salesman tour on G?Divisible TSP [Krentel, JCSS 1988]Input:Undirected graph G with edge weights; number k.Problem:Is the shortest travelling salesman tour on G divisible by k?				Are all of these classes really distinct? Nobody knows Are any of these classes really distinct? Δ_k^P			
				Nobody knows Are any of these classes distinct from P? Nobody knows Are any of these classes distinct from P? $\Delta_2^{\rm P} = {\rm NP}^{\rm NP}$ $\Delta_2^{\rm P} = {\rm P}^{\rm NP}$			
ODD FINAL SAT [Krentel, JCSS 1988] Input: Propositional formula φ with Problem: Is X_n true in the lexicograph		tisfying φ ?		Are any of these classes distinct from PS Nobody knows What do we know then?	SPACE? $\Delta_2^{\rm P} = NP$ $\Delta_0^{\rm P} = \Sigma_0^{\rm P} = \Pi_0^{\rm P} =$	$\Pi_1^{\rm P} = {\rm coNH}$	P

2016-01-12

#19

The Polynomial Hierarchy Alternative Views on the Polynomial Hierarch

The Polynomial Hierarchy Alternative Views on the Polynomial Hierarchy

What We Know (Excerpt)

Theorem 16.14

If there is any k such that $\Sigma_k^{\mathrm{P}} = \Sigma_{k+1}^{\mathrm{P}}$ then $\Sigma_j^{\mathrm{P}} = \Pi_j^{\mathrm{P}} = \Sigma_k^{\mathrm{P}}$ for all j > k, and therefore $\mathrm{PH} = \Sigma_k^{\mathrm{P}}$.

In this case, we say that the polynomial hierarchy collapses at level k.

Proof.

Left as exercise (not too hard to get from definitions).

Corollary 16.15

```
If PH \neq P then NP \neq P.
```

Intuitively speaking: "The polynomial hierarchy is built upon the assumption that $\rm NP$ has some additional power over $\rm P.$ If this is not the case, the whole hierarchy collapses."

What We Know (Excerpt)

Theorem 16.16 $PH \subseteq PSPACE$.

Proof.

Left as exercise (induction over PH levels, using that $PSPACE^{PSPACE} = PSPACE$).

Theorem 16.17

If PH = PSPACE then there is some k with $PH = \Sigma_k^P$.

Proof.

If PH = PSPACE then TRUEQBF $\in PH$. Hence TRUEQBF $\in \Sigma_k^P$ for some *k*. Since TRUEQBF is PSPACE-hard, this implies $\Sigma_k^P = PSPACE$.

⊕⊕@ 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2016-01-12	#21	©⊕@ 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2016-01-12	#22
The Polynomial Hierarchy Alternative Views on the Polynomial Hierarchy							
What We Believe (Exc	erpt)						

"Most experts" think that

- The polynomial hierarchy does not collapse completely (same as P ≠ NP)
- The polynomial hierarchy does not collapse on any level (in particular PH ≠ PSPACE and there is no PH-complete problem)

But there can always be surprises ...