Complexity Theory

The Polynomial Hierarchy

Daniel Borchmann, Markus Krötzsch

Computational Logic
2016-01-12
(c)(1)
©(1) 2015 Daniel Borchmann, Markus Krötzsch

The Polynomial Hierarchy \quad| Complexity Theory |
| :---: |
| The Polynomial Hierarchy |\quad 2016-01-12 \#1

Bounding Alternation

For ATMs, alternation itself is a resource. We can distinguish problems by how much alternation they need to be solved.

We first classify computations by counting their quantifier alternations:
Definition 16.1
Let \mathcal{P} be a computation path of an ATM on some input.

- \mathcal{P} is of type Σ_{1} if it consists only of existential configurations (with the exception of the final configuration)
- \mathcal{P} is of type Π_{1} if it consists only of universal configurations
- \mathcal{P} is of type Σ_{i+1} if it starts with a sequence of existential configurations, followed by a path of type Π_{i}
- \mathcal{P} is of type Π_{i+1} if it starts with a sequence of universal configurations, followed by a path of type Σ_{i}

The Polynomial Hierarchy

Alternation-Bounded Complexity

We are interested in the power of ATMs that are both time/space-bounded and alternation-bounded:

Definition 16.4
Let $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function. $\Sigma_{i} \operatorname{Time}(f(n))$ is the class of all languages that are decided by some $O(f(n))$-time bounded Σ_{i} ATM. The classes $\Pi_{i} \operatorname{TimE}(f(n)), \Sigma_{i} \operatorname{SPACE}(f(n))$ and $\Pi_{i} \operatorname{SPACE}(f(n))$ are defined similarly.

The most popular classes of these problems are the alternation-bounded polynomial time classes:

$$
\Sigma_{i} \mathrm{P}=\bigcup_{d \geq 1} \Sigma_{i} \operatorname{TimE}\left(n^{d}\right) \quad \text { and } \quad \Pi_{i} \mathrm{P}=\bigcup_{d \geq 1} \Pi_{i} \operatorname{TiME}\left(n^{d}\right)
$$

Hardness for these classes is defined by polynomial many-one reductions as usual.

Basic Observations

Theorem 16.5
$\Sigma_{1} \mathrm{P}=\mathrm{NP}$ and $\Pi_{1} \mathrm{P}=\mathrm{CoNP}$.
Proof.
Immediate from the definitions.
Theorem 16.6
$\operatorname{co} \sum_{i} \mathrm{P}=\Pi_{i} \mathrm{P}$ and $\mathrm{co} \Pi_{i} \mathrm{P}=\Sigma_{i} \mathrm{P}$.
Proof.
We observed previously that ATMs can be complemented by simply exchanging their universal and existential states. This does not affect the amount of time or space needed.
©(O) 2015 Daniel Borchmann, Markus Krötzsch

The Polynomial Hierarchy | Complexity Theory |
| :---: |
| The Polynomial Hierarchy |\quad 2016-01-12 \#5

Example

```
MinFormula
    Input: A propositional formula }\varphi\mathrm{ .
Problem: Is }\varphi\mathrm{ the shortest formula that is satis-
    fied by the same assignments as }\varphi\mathrm{ ?
```

One can show that MinFormula is $\Pi_{2} \mathrm{P}$-complete. Inclusion is easy:

```
MinFormula(formula \varphi) :
    universally choose \psi := formula shorter than }
    exist. guess I := assignment for variables in \varphi
    if }\mp@subsup{\varphi}{}{I}=\mp@subsup{\psi}{}{I}\mathrm{ :
        return FALSE
    else :
            return TRUE
```

©(®) 2015 Daniel Borchmann, Markus Krötzsch
The Polynomial Hierarchy
Complexity Theory
2016-01-12 The Polynomial Hierarchy

The Polynomial Hierarchy

Like for NP and coNP, we do not know if $\Sigma_{i} \mathrm{P}$ equals $\Pi_{i} \mathrm{P}$ or not. What we do know, however, is this:

Theorem 16.7

- $\Sigma_{i} \mathrm{P} \subseteq \Sigma_{i+1} \mathrm{P}$ and $\Sigma_{i} \mathrm{P} \subseteq \Pi_{i+1} \mathrm{P}$
- $\Pi_{i} \mathrm{P} \subseteq \Pi_{i+1} \mathrm{P}$ and $\Pi_{i} \mathrm{P} \subseteq \Sigma_{i+1} \mathrm{P}$

Proof.
Immediate from the definitions.

Thus, the classes $\sum_{i} \mathrm{P}$ and $\Pi_{i} \mathrm{P}$ form a kind of hierarchy: the Polynomial (Time) Hierarchy. Its entirety is denoted PH:

$$
\mathrm{PH}:=\bigcup_{i \geq 1} \Sigma_{i} \mathrm{P}=\bigcup_{i \geq 1} \Pi_{i} \mathrm{P}
$$

Problems in the Polynomial Hierarchy

The "typical" problems in the Polynomial Hierarchy are restricted forms of True QBF:

```
True \Sigma }\mp@subsup{}{k}{}\mathrm{ QBF
    Input: A quantified Boolean formula of the
        form }\varphi=\exists\mp@subsup{X}{1}{}.\forall\mp@subsup{X}{2}{}.\cdots\mp@subsup{\emptyset}{k}{}\cdot\psi
Problem: Is }\varphi\mathrm{ true?
```

True Π_{k} QBF is defined analogously, using $\varphi=\forall X_{1} \cdot \exists X_{2} \cdot \cdots \varrho_{k} \cdot \psi$.
Theorem 16.8
For every k, True Σ_{k} QBF is $\Sigma_{k} \mathrm{P}$-complete and True Π_{k} QBF is $\Pi_{k} \mathrm{P}$-complete.

Note: It is not known if there is any PH-complete problem.

Alternative Views on the Polynomial Hierarchy

©(0) 2015 Daniel Borchmann, Markus Krötzsch

The Polynomial Hierarchy \quad| Complexity Theory |
| :---: |
| Alternative Views on the Polynomial Hierarchy | 2016-01-12 \#9

Certificates

For NP, we gave an alternative definition based on polynomial-time verifiers that use a given polynomial certificate (witness) to check acceptance. Can we extend this idea to alternation-bounded ATMs?

Notation: Given an input word w and a polynomial p, we write $\exists^{p} c$ as abbreviation for "there is a word c of length $|c| \leq p(|w|)$." Similarly for $\forall^{p} c$.

We can rephrase our earlier characterisation of polynomial-time verifiers:
$\mathcal{L} \in$ NP iff there is a polynomial p and language $\mathcal{V} \in \mathrm{P}$ such that

$$
\mathcal{L}=\left\{w \mid \exists^{p} c \text { such that }(w \# c) \in \mathcal{V}\right\}
$$

©(®) 2015 Daniel Borchmann, Markus Krötzsch
Complexity Theory Alternative Views on the Polynomial Hierarchy

Certificates for bounded ATMs

Theorem 16.9
$\mathcal{L} \in \Sigma_{k} \mathrm{P}$ iff there is a polynomial p and language $\mathcal{V} \in \mathrm{P}$ such that

$$
\mathcal{L}=\left\{w \mid \exists^{p} c_{1} \cdot \forall^{p} c_{2} \ldots \emptyset_{k}^{p} c_{k} \text { such that }\left(w \# c_{1} \# c_{2} \# \ldots \# c_{k}\right) \in \mathcal{V}\right\}
$$

where $\bigcirc_{k}=\exists$ if k is odd, and $\bigcirc_{k}=\forall$ if k is even.
An analoguous result holds for $\mathcal{L} \in \Pi_{k} \mathrm{P}$.
Proof sketch.
\Rightarrow : Similar as for NP. Use c_{i} to encode the non-deterministic choices of the ATM. With all choices given, the acceptance on the specified path can be checked in polynomial time.
\Leftarrow : Use an ATM to implement the certificate-based definition of \mathcal{L}, by using universal and existential choices to guess the certificate before running a polynomial time verifier.

Oracles (Revision)

Recall how we defined oracle TMs:

Definition 16.10

Let O be a language. An Oracle Turing Machine with oracle O is a TM with a special oracle tape and three special states $q_{?}, q_{y e s}, q_{n 0}$. Whenever the state $q_{\text {? }}$ is reached, the TM changes to state $q_{y e s}$ if the word on the oracle tape is in O and to $q_{n o}$ otherwise; and the oracle tape is cleared.

Let C be a complexity class:

- For a language O, we write C^{O} for the class of all problems that can be solved by a C-TM with oracle O.
- For a complexity class O , we write C^{O} for the class of all problems that can be solved by a C-TM with an oracle from class O.

We recursively define the following complexity classes:
Definition 16.11

- $\Sigma_{0}^{\mathrm{P}}:=\mathrm{P}$ and $\Sigma_{k+1}^{\mathrm{P}}:=\mathrm{NP}^{\Sigma_{k}^{\mathrm{P}}}$
- $\Pi_{0}^{\mathrm{P}}:=\mathrm{P}$ and $\Pi_{k+1}^{\mathrm{P}}:=\operatorname{coNP} \Pi_{k}^{\mathrm{P}}$

Remark:

Complementing an oracle (language/class) does not change expressivity: we can just swap states $q_{y e s}$ and $q_{n o}$. Therefore $\Sigma_{k+1}^{P}=N P \Pi_{k}^{P}$ and $\Pi_{k+1}^{P}:=\operatorname{coNP}{ }^{\sum_{k}^{P}}$. Hence, we can also see that $\sum_{k}^{P}=\operatorname{Co} \Pi_{k}^{P}$.

Question:
How do these relate to our earlier definitions of the PH classes?

©(©) 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2016-01-12
The Polynomial Hierarchy	\#13	
Alternative Views on the Polynomial Hierarchy		

Oracle TMs vs. ATMs

It turns out that this new definition leads to a familiar class of problems: ${ }^{1}$
Theorem 16.12
For $k \geq 1$, we have $\Sigma_{k}^{P}=\Sigma_{k} P$ and $\Pi_{k}^{P}=\Pi_{k} P$.
Proof.
We prove the case $\sum_{k}^{P}=\Sigma_{k} \mathrm{P}$ (the other follows by complementation). The proof is by induction on k.
Base case: $k=1$.
The claim follows since $\Sigma_{1}^{P}=N P^{P}=N P$ and $\Sigma_{1} \mathrm{P}=\mathrm{NP}$ (as noted before).

[^0]Oracle TMs vs. ATMs (3)
Induction step: assume the claim holds for k. We show $\Sigma_{k+1}^{\mathrm{P}}=\Sigma_{k+1} \mathrm{P}$.
" \subseteq " Assume $\mathcal{L} \in \Sigma_{k+1}^{\mathrm{P}}$.

- There is an $\Sigma_{k+1}^{\mathrm{P}}-\mathrm{TM} \mathcal{M}$ that accepts \mathcal{L}, using an oracle $O \in \Sigma_{k}^{\mathrm{P}}$.
- By induction, $O \in \Sigma_{k} \mathrm{P}$ and thus $\bar{O} \in \Pi_{k} \mathrm{P}$ for its complement
- For an $\Sigma_{k+1} \mathrm{P}$ algorithm, first guess (and verify) an accepting path of \mathcal{M} including results of all oracle queries.
- Then universally branch to verify all guessed oracle queries:
- For queries $w \in O$ with guessed answer "no", use $\Pi_{k} \mathrm{P}$ check for $w \in \bar{O}$
- For queries $w \in O$ with guessed answer "yes", use $\Pi_{k-1} \mathrm{P}$ check for $\left(w \# c_{1}\right) \in O^{\prime}$, where O^{\prime} is constructed as in the \supseteq-case, and c_{1} is guessed in the first \exists-phase

More Classes in PH

We defined Σ_{k}^{P} and Π_{k}^{P} by relativising NP and coNP with oracles.
What happens if we start from P instead?

Definition 16.13
$\Delta_{0}^{\mathrm{P}}:=\mathrm{P}$ and $\Delta_{k+1}^{\mathrm{P}}:=\mathrm{P}^{\sum_{k}^{\mathrm{P}}}$.
Some immediate observations:

- $\Delta_{1}^{\mathrm{P}}=\mathrm{P}^{\mathrm{P}}=\mathrm{P}$
- $\Delta_{2}^{\mathrm{P}}=\mathrm{P}^{\mathrm{NP}}=\mathrm{P}^{\mathrm{CONP}}$
- $\Delta_{k}^{\mathrm{P}} \subseteq \Sigma_{k}^{\mathrm{P}}$ (since $\mathrm{P} \subseteq \mathrm{NP}$) and $\Delta_{k}^{\mathrm{P}} \subseteq \Pi_{k}^{\mathrm{P}}$ (since $\mathrm{P} \subseteq \mathrm{coNP}$)
- $\Sigma_{k}^{\mathrm{P}} \subseteq \Delta_{k+1}^{\mathrm{P}}$ and $\Pi_{k}^{\mathrm{P}} \subseteq \Delta_{k+1}^{\mathrm{P}}$
\qquad

Complexity Theory
2016-01-12 \#18

Problems for Δ_{k}^{P} ?

Δ_{k}^{P} seems to be less common in practice, but there are some known complete problems for $\mathrm{P}^{\mathrm{NP}}=\Delta_{2}^{\mathrm{P}}$:

Uniquely Optimal TSP [Papadimitriou, JACM 1984]
Input: \quad Undirected graph G with edge weights (distances).
Problem: Is there exactly one shortest travelling salesman tour on G ?

Divisible TSP [Krentel, JCSS 1988]

Input: Undirected graph G with edge weights; number k.
Problem: Is the shortest travelling salesman tour on G divisible by k ?

Odd Final SAT [Krentel, JCSS 1988]

Input: Propositional formula φ with n variables.
Problem: Is X_{n} true in the lexicographically last assignment satisfying φ ?

Is the Polynomial Hierarchy Real?

Are any of these classes really distinct? Nobody knows

Are any of these classes distinct from P?
Nobody knows
Are any of these classes distinct from PSPACE? Nobody knows

What do we know then?

What We Know (Excerpt)

What We Know (Excerpt)

Theorem 16.14
If there is any k such that $\Sigma_{k}^{P}=\Sigma_{k+1}^{P}$ then $\Sigma_{j}^{P}=\Pi_{j}^{P}=\Sigma_{k}^{P}$ for all $j>k$, and therefore $\mathrm{PH}=\Sigma_{k}^{\mathrm{P}}$.
In this case, we say that the polynomial hierarchy collapses at level k.
Proof.
Left as exercise (not too hard to get from definitions).

Corollary 16.15
If $\mathrm{PH} \neq \mathrm{P}$ then $\mathrm{NP} \neq \mathrm{P}$.
Intuitively speaking: "The polynomial hierarchy is built upon the assumption that NP has some additional power over P. If this is not the case, the whole hierarchy collapses."

Theorem 16.16
PH \subseteq PSPACE.
Proof.
Left as exercise (induction over PH levels, using that
PSpace ${ }^{\text {PSpace }}=$ PSpace $)$.
Theorem 16.17
If $\mathrm{PH}=\mathrm{PSPACE}$ then there is some k with $\mathrm{PH}=\Sigma_{k}^{\mathrm{P}}$.
Proof.
If $\mathrm{PH}=\mathrm{PSpace}$ then TrueQBF $\in \mathrm{PH}$. Hence TrueQBF $\in \Sigma_{k}^{P}$ for some k. Since TrueQBF is PSpace-hard, this implies $\Sigma_{k}^{P}=$ PSpace.
"Most experts" think that

- The polynomial hierarchy does not collapse completely (same as $\mathrm{P} \neq \mathrm{NP}$)
- The polynomial hierarchy does not collapse on any level (in particular $\mathrm{PH} \neq \mathrm{PSPACE}$ and there is no PH -complete problem)
But there can always be surprises ...

[^0]: ${ }^{1}$ Because of this result, both of our notations are used interchangeably in the literature, independently of the definition used.

