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Bounding Alternation

For ATMs, alternation itself is a resource. We can distinguish problems by
how much alternation they need to be solved.

We first classify computations by counting their quantifier alternations:

Definition 16.1
Let P be a computation path of an ATM on some input.

P is of type Σ1 if it consists only of existential configurations (with the
exception of the final configuration)

P is of type Π1 if it consists only of universal configurations

P is of type Σi+1 if it starts with a sequence of existential
configurations, followed by a path of type Πi

P is of type Πi+1 if it starts with a sequence of universal
configurations, followed by a path of type Σi
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Alternation-Bounded ATMs

We apply alternation bounds to every computation path:

Definition 16.2
A Σi Alternating Turing Machine is an ATM for which every computation
path on every input is of type Σj for some j ≤ i.
A Πi Alternating Turing Machine is an ATM for which every computation
path on every input is of type Πj for some j ≤ i.

Note that it’s always ok to use fewer alternations (“j ≤ i”) but computation
has to start with the right kind of quantifier (∃ for Σi and ∀ for Πi).

Example 16.3

A Σ1 ATM is simply an NTM.
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Alternation-Bounded Complexity

We are interested in the power of ATMs that are both time/space-bounded
and alternation-bounded:

Definition 16.4

Let f : N→ R+ be a function. ΣiTime(f(n)) is the class of all languages
that are decided by some O(f(n))-time bounded Σi ATM. The classes
ΠiTime(f(n)), ΣiSpace(f(n)) and ΠiSpace(f(n)) are defined similarly.

The most popular classes of these problems are the alternation-bounded
polynomial time classes:

ΣiP =
⋃

d≥1

ΣiTime(nd) and ΠiP =
⋃

d≥1

ΠiTime(nd)

Hardness for these classes is defined by polynomial many-one reductions
as usual.
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Basic Observations

Theorem 16.5
Σ1P = NP and Π1P = coNP.

Proof.
Immediate from the definitions. �

Theorem 16.6
coΣiP = ΠiP and coΠiP = ΣiP.

Proof.
We observed previously that ATMs can be complemented by simply
exchanging their universal and existential states. This does not affect the
amount of time or space needed. �
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Example

MinFormula

Input: A propositional formula ϕ.

Problem: Is ϕ the shortest formula that is satis-
fied by the same assignments as ϕ?

One can show that MinFormula is Π2P-complete. Inclusion is easy:

01 MinFormula(formula ϕ) :
02 universally choose ψ := formula shorter than ϕ

03 exist. guess I := assignment for variables in ϕ

04 if ϕI = ψI :
05 return FALSE
06 else :
07 return TRUE
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The Polynomial Hierarchy

Like for NP and coNP, we do not know if ΣiP equals ΠiP or not.
What we do know, however, is this:

Theorem 16.7
ΣiP ⊆ Σi+1P and ΣiP ⊆ Πi+1P

ΠiP ⊆ Πi+1P and ΠiP ⊆ Σi+1P

Proof.
Immediate from the definitions. �

Thus, the classes ΣiP and ΠiP form a kind of hierarchy:
the Polynomial (Time) Hierarchy. Its entirety is denoted PH:

PH :=
⋃

i≥1

ΣiP =
⋃

i≥1

ΠiP
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Problems in the Polynomial Hierarchy

The “typical” problems in the Polynomial Hierarchy are restricted forms of
True QBF:

True Σk QBF

Input: A quantified Boolean formula of the
form ϕ = ∃X1.∀X2. · · · Qk .ψ.

Problem: Is ϕ true?

True Πk QBF is defined analogously, using ϕ = ∀X1.∃X2. · · · Qk .ψ.

Theorem 16.8
For every k , True Σk QBF is ΣkP-complete and True Πk QBF is
ΠkP-complete.

Note: It is not known if there is any PH-complete problem.
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Certificates

For NP, we gave an alternative definition based on polynomial-time
verifiers that use a given polynomial certificate (witness) to check
acceptance. Can we extend this idea to alternation-bounded ATMs?

Notation: Given an input word w and a polynomial p, we write ∃pc as
abbreviation for “there is a word c of length |c | ≤ p(|w |).” Similarly for ∀pc.

We can rephrase our earlier characterisation of polynomial-time verifiers:

L ∈ NP iff there is a polynomial p and languageV ∈ P such that

L = {w | ∃pc such that (w#c) ∈ V}
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Certificates for bounded ATMs

Theorem 16.9

L ∈ ΣkP iff there is a polynomial p and languageV ∈ P such that

L = {w | ∃pc1.∀pc2 . . . Qpk ck such that (w#c1#c2# . . .#ck ) ∈ V}

where Qk = ∃ if k is odd, and Qk = ∀ if k is even.

An analoguous result holds for L ∈ ΠkP.

Proof sketch.
⇒: Similar as for NP. Use ci to encode the non-deterministic choices of
the ATM. With all choices given, the acceptance on the specified path can
be checked in polynomial time.
⇐: Use an ATM to implement the certificate-based definition of L, by
using universal and existential choices to guess the certificate before
running a polynomial time verifier. �
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Oracles (Revision)

Recall how we defined oracle TMs:

Definition 16.10
Let O be a language. An Oracle Turing Machine with oracle O is a TM with
a special oracle tape and three special states q?, qyes, qno. Whenever the
state q? is reached, the TM changes to state qyes if the word on the oracle
tape is in O and to qno otherwise; and the oracle tape is cleared.

Let C be a complexity class:

For a language O, we write CO for the class of all problems that can
be solved by a C-TM with oracle O.

For a complexity class O, we write CO for the class of all problems
that can be solved by a C-TM with an oracle from class O.
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The Polynomial Hierarchy – Alternative Definition

We recursively define the following complexity classes:

Definition 16.11

ΣP
0 := P and ΣP

k+1 := NPΣP
k

ΠP
0 := P and ΠP

k+1 := coNPΠP
k

Remark:
Complementing an oracle (language/class) does not change expressivity:
we can just swap states qyes and qno. Therefore ΣP

k+1 = NPΠP
k and

ΠP
k+1 := coNPΣP

k . Hence, we can also see that ΣP
k = coΠP

k .

Question:
How do these relate to our earlier definitions of the PH classes?
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Oracle TMs vs. ATMs

It turns out that this new definition leads to a familiar class of problems:1

Theorem 16.12

For k ≥ 1, we have ΣP
k = ΣkP and ΠP

k = ΠkP.

Proof.

We prove the case ΣP
k = ΣkP (the other follows by complementation).

The proof is by induction on k .

Base case: k = 1.
The claim follows since ΣP

1 = NPP = NP and Σ1P = NP (as noted
before).

1Because of this result, both of our notations are used interchangeably in the literature,
independently of the definition used.
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Oracle TMs vs. ATMs (2)

Induction step: assume the claim holds for k . We show ΣP
k+1 = Σk+1P.

“⊇” Assume L ∈ Σk+1P.

By Theorem 16.9, for some languageV ∈ P and polynomial p:
L = {w | ∃pc1.∀pc2 . . . Qpk ck such that (w#c1#c2# . . .#ck ) ∈ V}
By Theorem 16.9, the following defines a language in ΠkP:
L′ := {(w#c1) | ∀pc2 . . . Qpk ck such that (w#c1#c2# . . .#ck ) ∈ V}.
The following algorithm in NPL

′
decides L:

on input w, non-deterministically guess c1; then check (w#c1) ∈ L′
using the L′ oracle

By induction, L′ ∈ ΠP
k . Hence, the algorithm runs in

NPΠP
k = NPΣP

k = ΣP
k+1
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Oracle TMs vs. ATMs (3)

Induction step: assume the claim holds for k . We show ΣP
k+1 = Σk+1P.

“⊆” Assume L ∈ ΣP
k+1.

There is an ΣP
k+1-TMM that accepts L, using an oracle O ∈ ΣP

k .

By induction, O ∈ ΣkP and thus Ō ∈ ΠkP for its complement

For an Σk+1P algorithm, first guess (and verify) an accepting path of
M including results of all oracle queries.

Then universally branch to verify all guessed oracle queries:
For queries w ∈ O with guessed answer “no”, use ΠkP check for
w ∈ Ō
For queries w ∈ O with guessed answer “yes”, use Πk−1P check
for (w#c1) ∈ O′, where O′ is constructed as in the ⊇-case, and
c1 is guessed in the first ∃-phase

�
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More Classes in PH

We defined ΣP
k and ΠP

k by relativising NP and coNP with oracles.

What happens if we start from P instead?

Definition 16.13

∆P
0 := P and ∆P

k+1 := PΣP
k .

Some immediate observations:

∆P
1 = PP = P

∆P
2 = PNP = PcoNP

∆P
k ⊆ ΣP

k (since P ⊆ NP) and ∆P
k ⊆ ΠP

k (since P ⊆ coNP)

ΣP
k ⊆ ∆P

k+1 and ΠP
k ⊆ ∆P

k+1
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Problems for ∆P
k ?

∆P
k seems to be less common in practice, but there are some known

complete problems for PNP = ∆P
2 :

Uniquely Optimal TSP [Papadimitriou, JACM 1984]

Input: Undirected graph G with edge weights (distances).

Problem: Is there exactly one shortest travelling salesman tour on G?

Divisible TSP [Krentel, JCSS 1988]

Input: Undirected graph G with edge weights; number k .

Problem: Is the shortest travelling salesman tour on G divisible by k?

Odd Final SAT [Krentel, JCSS 1988]

Input: Propositional formula ϕ with n variables.

Problem: Is Xn true in the lexicographically last assignment satisfying ϕ?
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Is the Polynomial Hierarchy Real?

∆P
0 = ΣP

0 = ΠP
0 = ∆P

1 = P

ΣP
1 = NP ΠP

1 = coNP

∆P
2 = PNP

ΣP
2 = NPNP ΠP

2 = coNPNP

∆P
k

ΣP
k ΠP

k

PH

Questions:

Are all of these classes really distinct?
Nobody knows

Are any of these classes really distinct?
Nobody knows

Are any of these classes distinct from P?
Nobody knows

Are any of these classes distinct from PSpace?
Nobody knows

What do we know then?
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What We Know (Excerpt)

Theorem 16.14

If there is any k such that ΣP
k = ΣP

k+1 then ΣP
j = ΠP

j = ΣP
k for all j > k ,

and therefore PH = ΣP
k .

In this case, we say that the polynomial hierarchy collapses at level k .

Proof.
Left as exercise (not too hard to get from definitions). �

Corollary 16.15

If PH , P then NP , P.

Intuitively speaking: “The polynomial hierarchy is built upon the
assumption that NP has some additional power over P. If this is not the
case, the whole hierarchy collapses.”

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-12 #21

The Polynomial Hierarchy Alternative Views on the Polynomial Hierarchy

What We Know (Excerpt)

Theorem 16.16
PH ⊆ PSpace.

Proof.
Left as exercise (induction over PH levels, using that
PSpacePSpace = PSpace). �

Theorem 16.17

If PH = PSpace then there is some k with PH = ΣP
k .

Proof.

If PH = PSpace then TrueQBF ∈ PH. Hence TrueQBF ∈ ΣP
k for some k .

Since TrueQBF is PSpace-hard, this implies ΣP
k = PSpace. �
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What We Believe (Excerpt)

“Most experts” think that

The polynomial hierarchy does not collapse completely
(same as P , NP)

The polynomial hierarchy does not collapse on any level
(in particular PH , PSpace and there is no PH-complete problem)

But there can always be surprises . . .
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