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Agenda

1 Introduction
2 Uninformed Search versus Informed Search (Best First Search, A*

Search, Heuristics)
3 Local Search, Stochastic Hill Climbing, Simulated Annealing
4 Tabu Search
5 Answer-set Programming (ASP)
6 Constraint Satisfaction Problems (CSP)
7 Evolutionary Algorithms/ Genetic Algorithms
8 Structural Decomposition Techniques (Tree/Hypertree Decompositions)
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Motivation

• The structure of a large number of problems is more faithfully described
by a hypergraph than by a graph

• Several NP complete problems become tractable if restricted to instances
with acyclic hypergraphs

• An appropriate notion of hypergraph width should fulfil both of the
following conditions

1 Relevant hypergraph-based problems should be solvable in
polynomial time for instances of bounded width

2 For each constant k, one should be able to check in polynomial
time whether a hypergraph is of width k, and, in the positive case, it
should be possible to produce an associated decomposition of
width k of the given hypergraph

• The hypertree decomposition is the most general method leading to large
tractable classes of important problems such as constraint satisfaction
problems or conjunctive queries
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Generalized Hypertree Decomposition

A generalized hypertree decomposition (GHD) of H is a tree decomposition of H
with the following extension.

• GHD associates additionally to each node of the decomposition tree the
set of hyperedges of H.

• The set of vertices associated to each node of the tree must be covered
by the set of hyperedges associated to that node.

• The width of a generalized hypertree decomposition is the maximum
number of hyperedges associated to a same node of the decomposition.

TU Dresden, 14th January 2020 PSSAI slide 4 of 40



TU Dresden, 14th January 2020 PSSAI slide 5 of 40



Hypertree

Definition
A hypertree for a hypergraph H = (V(H), H(H)) is a triple 〈T,χ,λ〉, where
T = (N, E) is a rooted tree, and χ and λ are labeling functions which associate
to each vertex p ∈ N two sets

• χ(p) ⊆ V(H) and
• λ(p) ⊆ H(H).

If T′ = (N′, E′) is a subtree of T, we define χ(T′) =
⋃

v∈N′ χ(v). We denote the
set of vertices N of T by vertices(T), and the root of T by root(T). Moreover, for
any p ∈ N, Tp denotes the subtree of T rooted at p.
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Hypertree Decomposition

Definition ([Gottlob et al.(2002)])
Let H = (V(H), H(H)) be a hypergraph. A hypertree decomposition of H is a
hypertree 〈T,χ,λ〉 for H which satisfies all the following conditions:

1 for each hyperedge h ∈ H(H), there exists p ∈ vertices(T) such that
vertices(h) ⊆ χp;

2 for each vertex y ∈ V(H), the set {p ∈ vertices(T) | y ∈ χp} induces a
(connected) subtree of T;

3 for each vertex p ∈ vertices(T),χp ⊆ vertices(λp);
4 for each vertex p ∈ vertices(T), vertices(λp) ∩ χ(Tp) ⊆ χp.

The width of the hypertree decomposition 〈T,χ,λ〉 is maxp∈vertices(T)|λp|. The
hypertree width, hw(H), of H is the minimum width over all its hypertree
decompositions.

Note: inclusion in Condition 4 is an equality, as Condition 3 implies the reverse
inclusion!
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Generalized Hypertree Decomposition

Generalized hypertree decomposition does not include condition 4) of hypertree
decomposition.
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Generalized Hypertree Decomposition
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Hypertree Decomposition
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Hypertree Decomposition
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Hypertree Decomposition
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Hypertree Decomposition
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Hypertree Decomposition

TU Dresden, 14th January 2020 PSSAI slide 14 of 40



Hypertree Decomposition
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Hypertree Decomposition
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Hypertree Width and CSPs

• The smaller the width of the obtained hypertree decompostion, the faster
the corresponding CSP instance can be solved

• A CSP instance can be solved based on its hypertree decomposition as
follows:

– for each node t of the hypertree, all constraints in λ(t) are “joined”
into a new constraint over the variables in χ(t)

– for bounded width, i.e., for bounded cardinality of λ(t), this yields a
polynomial time reduction to an equivalent acyclic CSP instance
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Algorithms for Generalized Hypertree
Decomposition

• Methods based on tree decomposition
– Generalized hypertree decomposition can be generated by

algorithms for tree decomposition + Set Covering
• Hypertree decomposition based on hypergraph partitioning
• Exact methods
• Literature and benchmark instances for hypertree decomposition:

http://www.dbai.tuwien.ac.at/proj/hypertree/
http://wwwinfo.deis.unical.it/~frank/Hypertrees/
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Constructing Generalized Hypertree
Decomposition from Tree Decomposition

Recall, a hypertree decompostion can be devided into two parts
1 definition of a tree decomposition (T,χ)
2 introduction of λ such that χ(t) ⊆

⋃
λ(t) for every node t.

χ-labels contain vertices of the hypergraph and λ-labels contain hyperedges,
i.e., sets of vertices, of the hypergraph (covering vertices in χ(t) by hyperedges
in λ(t)).
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Constructing Generalized Hypertree
Decomposition from Tree Decomposition
ctd.
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Constructing Generalized Hypertree
Decomposition from Tree Decomposition
ctd.
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Generalized Hypertree Decomposition
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Hypertree Decomposition Based on
Hypergraph Partitioning

A method for generation of generalized hypertree decompositions based on
recursive partitioning of the hypergraph [Dermaku et al.(2008)].

Hypergraph Partitioning
Given a hypergraph H(V, H) with weighted vertices and hyperedges.

• Find a partition of set V in two (or k) disjoint subsets such that the number
of vertices in each set Vi is bounded, and the function defined over
hyperedges is optimized.

• Most commonly used objective is to minimize the sum of the weights of
hyperedges connecting two or more subsets.
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Hypergraph Partitioning

Hypergraph partitioning with constraint about the number of vertices in each
partition is NP-Complete problem!
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Generation of Hypertree Decomposition by
Hypergraph Partitioning

• Does recursive partitioning of hypergraph lead to "good" hypertree
decomposition?

• Every cut in hypergraph partitioning can be considered as a node in a
hypertree decomposition (called separator)

• Add a special hyperedge to each subgraph containing the vertices in the
intersection between the subgraphs to enforce joint appearence in the
χ-label of a later generated node

• Connectedness condition for variables should be ensured!
• How to evaluate a cut whose separator contains such hyperedges?

– associate weights to hyperedges
– weight 1 for all ordinary hyperedges
– (W+) weight of special hyperedge: number of ordinary hyperedges

needed to cover the vertice of the special hyperedge
– other weighting schemes associate different weights to special

hyperedges (always weight 1 or weight 2)
– cut evaluates as the sum of weights of all hyperedges in the

separator
• Nodes of hypertree are connected at the end of partitioning
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From Partitioning to Hypertree
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From Partitioning to Hypertree
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From Partitioning to Hypertree
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From Partitioning to Hypertree
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From Partitioning to Hypertree
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From Partitioning to Hypertree
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From Partitioning to Hypertree
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From Partitioning to Hypertree
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From Partitioning to Hypertree
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From Partitioning to Hypertree
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Summary

• Hypertree decomposition is a method leading to a large class of tractable
problems such as CSP

• Computation of generalized hypertree decomposition based
– on tree decompostion + Set Covering
– hypergraph patitioning
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