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Abstract. Ontology-based data access (OBDA) generalizes query an-
swering in databases towards deduction since (i) the fact base is not
assumed to contain complete knowledge (i.e., there is no closed world
assumption), and (ii) the interpretation of the predicates occurring in
the queries is constrained by axioms of an ontology. OBDA has been
investigated in detail for the case where the ontology is expressed by
an appropriate Description Logic (DL) and the queries are conjunctive
queries. Motivated by situation awareness applications, we investigate an
extension of OBDA to the temporal case. As query language we consider
an extension of the well-known propositional temporal logic LTL where
conjunctive queries can occur in place of propositional variables, and
as ontology language we use the prototypical expressive DL ALC. For
the resulting instance of temporalized OBDA, we investigate both data
complexity and combined complexity of the query entailment problem.

1 Introduction

Situation awareness tools [2,12] try to help the user to detect certain situations
within a running system. Here “system” is seen in a broad sense: it may be a
computer system, air traffic observed by radar, or a patient in an intensive care
unit. From an abstract point of view, the system is observed by certain “sensors”
(e.g., heart-rate and blood pressure monitors for a patient), and the results of
sensing are stored in a fact base. Based on the information available in the
fact base, the situation awareness tool is supposed to detect certain predefined
situations (e.g., heart-rate very high and blood pressure low), which require a
reaction (e.g., fetch a doctor or give medication).

In a simple setting, one could realize such a tool by using standard database
techniques: the information obtained from the sensors is stored in a relational
database, and the situations to be recognized are specified by queries in an
appropriate query language (e.g., conjunctive queries [1]). However, in general
we cannot assume that the sensors provide us with a complete description of
the current state of the system, and thus the closed world assumption (CWA)
employed by database systems (where facts not occurring in the database are
assumed to be false) is not appropriate (since there may be facts for which it
is not known whether they are true or false). In addition, though one usually
does not have a complete specification of the working of the system (e.g., a
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complete biological model of a human patient), one has some knowledge about
how the system works. This knowledge can be used to formulate constraints on
the interpretation of the predicates used in the queries, which may cause more
answers to be found.

Ontology-based data access [11,17] addresses these requirements. The fact
base is viewed to be a Description Logic ABox (which is not interpreted with the
CWA), and an ontology, also formulated in an appropriate DL, constrains the
interpretations of unary and binary predicates, called concepts and roles in the
DL community. As an example, assume that the ABox A contains the following
assertions about the patient Bob:

systolic_pressure(BOB,P1), High_pressure(P1),
history(BOB, H1), Hypertension(H1), Male(BOB)

which say that Bob has high blood pressure (obtained from sensor data), and is
male and has a history of hypertension (obtained from the patient records). In
addition, we have an ontology that says that patients with high blood pressure
have hypertension and that patients that currently have hypertension and also
have a history of hypertension are at risk for a heart attack:

∃systolic_pressure.High_pressure v ∃finding.Hypertension
∃finding.Hypertension u ∃history.Hypertension v ∃risk.Myocardial_infarction

The situation we want to recognize for a given patient x is whether this patient is
a male person that is at risk for a heart attack. This situation can be described by
the conjunctive query ∃y.risk(x, y) ∧Myocardial_infarction(y) ∧Male(x). Given
the information in the ABox and the axioms in the ontology, we can derive
that Bob satisfies this query, i.e., he is a certain answer of the query. Obviously,
without the ontology this answer could not be derived.

The complexity of OBDA, i.e., the complexity of checking whether a given
tuple of individuals is a certain answer of a conjunctive query in an ABox w.r.t.
an ontology, has been investigated in detail for cases where the ontology is
expressed in an appropriate DL and the query is a conjunctive query. One can
either consider the combined complexity, which is measured in the size of the
whole input (consisting of the query, the ontology, and the ABox), or the data
complexity, which is measured in the size of the ABox only (i.e., the query and the
ontology are assumed to be of constant size). The underlying assumption is that
query and ontology are usually relatively small, whereas the size of the data may
be huge. In the database setting (where there is no ontology and CWA is used),
answering conjunctive queries is NP-complete w.r.t. combined complexity and in
AC0 w.r.t. data complexity [8,1]. For expressive DLs, the complexity of checking
certain answers is considerably higher. For instance, for the well-known DL ALC,
OBDA is ExpTime-complete w.r.t. combined complexity and co-NP-complete
w.r.t. data complexity [7,13,6]. For this reason, more light-weight DLs have been
developed, for which the data complexity of OBDA is still in AC0 and for which
computing certain answers can be reduced to answering conjunctive queries in
the database setting [5].



Unfortunately, OBDA as described until now is not sufficient to achieve
situation awareness. The reason is that the situations we want to recognize may
depend on states of the system at different time points. For example, assume that
we want to find male patients that have a history of hypertension, i.e., patients
that are male and at some previous time point had hypertension.1 In order
to express this kind of temporal queries, we propose to extend the well-known
propositional temporal logic LTL [16] by allowing the use of conjunctive queries
in place of propositional variables. For example, male patients with a history of
hypertension can then be described by the query

Male(x) ∧#−3−(∃y.finding(x, y) ∧Hypertension(y)),

where #− stands for “previous” and 3− stands for “sometime in the past.”
The query language obtained this way extends the temporal description logic
ALC-LTL introduced and investigated in [4]. In ALC-LTL, only concept and
role assertions (i.e., very restricted conjunctive queries without variables and
existential quantification) can be used in place of propositional variables. As
in [4], we also consider rigid concepts and roles, i.e., concepts and roles whose
interpretation does not change over time. For example, we may want to assume
that the concept Male is rigid, and thus a patient that is male now also has been
male in the past and will stay male in the future.

Our overall setting for recognizing situations will thus be the following. In
addition to a global ontology T (which describes properties of the system that
hold at every time point, using the DL ALC), we have a sequence of ABoxes
A0,A1, . . .An, which (incompletely) describe the states of the system at the
previous time points 0, 1, . . . , n−1 and the current time point n. The situation to
be recognized is expressed by a temporal conjunctive query, as introduced above,
which is evaluated w.r.t. the current time point n. We will investigate both the
combined and the data complexity of this temporal extension of OBDA in three
different settings: (i) both concepts and roles may be rigid; (ii) only concepts
may be rigid; and (iii) neither concepts nor roles are allowed to be rigid. For the
combined complexity, the obtained complexity results are identical to the ones
for ALC-LTL, though the upper bounds are considerably harder to show. For the
data complexity, the results for the settings (ii) and (iii) coincides with the one
for atemporal OBDA (co-NP-complete). For the setting (i), we can show that
the data complexity is in ExpTime (in contrast to 2-ExpTime-completeness for
the combined complexity), but we do not have a matching lower bound.

The details of the proofs can be found in the accompanying technical report [3].

2 Preliminaries

While in principle our temporal query language can be parameterized with any
DL, in this paper we focus on ALC [20] as a prototypical expressive DL.
1 Whereas in the previous example we have assumed that a history of hypertension
was explicitly noted in the patient records, we now want to derive this information
from previously stored information about blood pressure, etc.



Definition 2.1 (syntax of ALC). Let NC, NR, and NI, respectively, be non-
empty, pairwise disjoint sets of concept names, role names, and individual names.
The set of concept descriptions (or concepts) is the smallest set such that all
concept names A ∈ NC are concepts, and if C,D are concepts and r ∈ NR, then
¬C (negation), C uD (conjunction), and ∃r.C (existential restriction) are also
concepts.

A general concept inclusion (GCI) is of the form C v D, where C,D are
concepts, and an assertion is of the form C(a) or r(a, b), where C is a concept,
r ∈ NR, and a, b ∈ NI. We call both GCIs and assertions axioms. A TBox (or
ontology) is a finite set of GCIs and an ABox is a finite set of assertions.

The semantics of ALC is defined in a model-theoretic way.

Definition 2.2 (semantics of ALC). An interpretation is a pair I = (∆I , ·I),
where ∆I is a non-empty set (called domain), and ·I is a function that assigns to
every A ∈ NC a set AI ⊆ ∆I , to every r ∈ NR a binary relation rI ⊆ ∆I ×∆I ,
and to every a ∈ NI an element aI ∈ ∆I .

This function is extended to concept descriptions as follows: (¬C)I := ∆I\CI ;
(C uD)I := CI ∩DI ; and (∃r.C)I := {d ∈ ∆I | ∃e ∈ ∆I : (d, e) ∈ rI ∧ e ∈ CI}.
The interpretation I is a model of the GCI C v D if CI ⊆ DI , of the assertion
C(a) if aI ∈ CI , and of r(a, b) if (aI , bI) ∈ rI . We write I |= α if I is a model
of the axiom α, I |= T if I is a model of all GCIs in the TBox T , and I |= A if
I is a model of all assertions in the ABox A.

We assume that all interpretations I satisfy the unique name assumption (UNA),
i.e., for all a, b ∈ NI with a 6= b we have aI 6= bI . We now introduce a temporal
query language that generalizes a subset of first-order queries called conjunctive
queries [1,8] and the temporal DL ALC-LTL [4]. In the following, we assume
(as in [4]) that a subset of the concept and role names is designated as being
rigid. The intuition is that the interpretation of the rigid names is not allowed to
change over time. Let NRC denote the rigid concept names, and NRR the rigid
role names with NRC ⊆ NC and NRR ⊆ NR. We sometimes call the names in
NC \NRC and NR \NRR flexible. As usual, all individual names are implicitly
assumed to be rigid.

Definition 2.3. A temporal knowledge base (TKB) K = 〈(Ai)0≤i≤n, T 〉 consists
of a finite sequence of ABoxes Ai and a global TBox T .

Let I = (Ii)i≥0 be an infinite sequence of interpretations Ii = (∆, ·Ii) over a
fixed non-empty domain ∆ ( constant domain assumption). Then I is a model of
K (written I |= K) if (i) Ii |= Ai for all i, 0 ≤ i ≤ n, (ii) Ii |= T for all i ≥ 0,
and (iii) I respects rigid names, i.e., xIi = xIj for all x ∈ NI ∪NRC ∪NRR and
all i, j ≥ 0.

We denote by Ind(K) the set of all individual names occurring in the TKB K. As
query language, we use a temporal extension of conjunctive queries.

Definition 2.4. Let NV be a set of variables. A conjunctive query (CQ) is of
the form φ = ∃y1, . . . , ym.ψ, where y1, . . . , ym ∈ NV and ψ is a finite conjunction



of atoms of the form A(z) for A ∈ NC and z ∈ NV ∪ NI (concept atom); or
r(z1, z2) for r ∈ NR and z1, z2 ∈ NV ∪NI (role atom). The empty conjunction
is denoted by true. Temporal conjunctive queries (TCQs) are built from CQs
using the constructors ¬φ1 (negation), φ1 ∧ φ2 (conjunction), #φ1 (next), #−φ1
(previous), φ1Uφ2 (until), and φ1Sφ2 (since).

We denote the set of individuals occurring in a TCQ φ by Ind(φ), the set of
variables occurring in φ by Var(φ), and the set of free variables occurring in
φ by FVar(φ). We call a TCQ φ with FVar(φ) = ∅ a Boolean TCQ. As usual,
we use the following abbreviations: φ1 ∨ φ2 (disjunction) for ¬(¬φ1 ∧ ¬φ2), 3φ
(eventually) for trueUφ, 2φ (always) for ¬3¬φ, and analogously for the past:
3−φ for trueSφ, and 2−φ for ¬3−¬φ. A union of CQs is a disjunction of CQs.

For our purposes, it is sufficient to define the semantics of CQs and TCQs only
for Boolean queries. As usual, it is given using the notion of homomorphisms [8].

Definition 2.5. Let I = (∆, ·I) be an interpretation and ψ be a Boolean CQ. A
mapping π : Var(ψ) ∪ Ind(ψ)→ ∆ is a homomorphism of ψ into I if

– π(a) = aI for all a ∈ Ind(ψ);
– π(z) ∈ AI for all concept atoms A(z) in ψ; and
– (π(z1), π(z2)) ∈ rI for all role atoms r(z1, z2) in ψ.

We say that I is a model of ψ (written I |= ψ) if there is such a homomorphism.
Let now φ be a Boolean TCQ. For an infinite sequence of interpretations I =
(Ii)i≥0 and i ≥ 0, we define I, i |= φ by induction on the structure of φ:

I, i |= ∃y1, . . . , ym.ψ iff Ii |= ∃y1, . . . , ym.ψ
I, i |= ¬φ1 iff I, i 6|= φ1
I, i |= φ1 ∧ φ2 iff I, i |= φ1 and I, i |= φ2
I, i |= #φ1 iff I, i+ 1 |= φ1
I, i |= #−φ1 iff i > 0 and I, i− 1 |= φ1
I, i |= φ1Uφ2 iff there is some k ≥ i such that I, k |= φ2

and I, j |= φ1 for all j, i ≤ j < k
I, i |= φ1Sφ2 iff there is some k, 0 ≤ k ≤ i such that I, k |= φ2

and I, j |= φ1 for all j, k < j ≤ i

Given a TKB K = 〈(Ai)0≤i≤n, T 〉, we say that I is a model of φ w.r.t. K if
I |= K and I, n |= φ. We call φ satisfiable w.r.t. K if it has a model w.r.t. K.

It should be noted that Boolean TCQs generalize ALC-LTL formulae as intro-
duced in [4]. More precisely, every TCQ that contains only assertions instead of
general CQs and contains no past operators (#− or S) is an ALC-LTL formula.
ALC-LTL formulae may additionally contain local GCIs C v D. Such a GCI
can, however, be expressed by the TCQ ¬∃x.A(x) if we add the (global) GCIs
A v Cu¬D, Cu¬D v A to the TBox. Thus, TCQs together with a global TBox
can express all ALC-LTL formulae. TCQs are more expressive than ALC-LTL
formulae since CQs like ∃y.r(y, y), which says that there is a loop in the model



without naming the individual which has the loop, can clearly not be expressed
in ALC.

Before defining the main inference problem for TCQs to be investigated in this
paper, we introduce some notation that will be used later on. The propositional
abstraction φ̂ of a TCQ φ is built by replacing each CQ occurring in φ by a
propositional variable such that there is a 1–1 relationship between the CQs
α1, . . . , αm occurring in φ and the propositional variables p1, . . . , pm occurring
in φ̂. The formula φ̂ obtained this way is a propositional LTL-formula [16]. Recall
that the semantics of propositional LTL is defined using the notion of an LTL-
structure, which is an infinite sequence J = (wi)i≥0 of worlds wi ⊆ {p1, . . . , pm}.
The propositional variable pj is satisfied by J at time point i ≥ 0 (written
J, i |= pj) iff pj ∈ wi. The satisfaction of a complex propositional LTL-formula
by an LTL-structure is defined as in Definition 2.5.

A CQ-literal is a Boolean CQ ψ or a negated Boolean CQ ¬ψ. We will often
deal with conjunctions φ of CQ-literals. Since such a formula φ contains no
temporal operators, the satisfaction of φ by an infinite sequence of interpretations
I = (Ii)i≥0 at time point i only depends on the interpretation Ii. For simplicity,
we then often write Ii |= φ instead of I, i |= φ. By the same argument, we use
this notation also for unions of CQs. In this context, it is sufficient to deal with
classical knowledge bases K = 〈A, T 〉, i.e., temporal knowledge bases with only
one ABox, and we similarly write I0 |= K instead of I, 0 |= K.

3 The Entailment Problem

We are now ready to introduce the central reasoning problems of this paper, i.e.,
the problem of finding so-called certain answers to TCQs and the corresponding
decision problems.

Definition 3.1. Let φ be a TCQ and K = 〈(Ai)0≤i≤n, T 〉 a temporal knowledge
base. The mapping a : FVar(φ)→ Ind(K) is a certain answer to φ w.r.t. K if for
every I |= K, we have I, n |= a(φ), where a(φ) denotes the Boolean TCQ that is
obtained from φ by replacing the free variables according to a. The corresponding
decision problem is the recognition problem, i.e., given a, φ, and K, to check
whether a is a certain answer to φ w.r.t. K. The (query) entailment problem is to
decide for a Boolean TCQ φ and a temporal knowledge base K = 〈(Ai)0≤i≤n, T 〉
whether every model I of K satisfies I, n |= φ (written K |= φ).

Note that, for a TCQ φ, a temporal knowledge base K, and i ≥ 0, one can compute
all certain answers by enumerating all mappings a : FVar(φ)→ Ind(K) and then
solving the recognition problem for each a. Since there are |Ind(K)||FVar(φ)| such
mappings, in order to compute the set of certain answers, we have to solve the
recognition problem exponentially often.

As described in the introduction, in a situation awareness tool we want to
solve the recognition problem for temporal knowledge bases K = 〈(Ai)0≤i≤n, T 〉
and TCQs. The intuition is that the ABoxes Ai describe our observations about
the system’s states at time points i = 0, . . . , n, where n is the current time point,



and the TCQ describes the situation we want to recognize at time point n for a
given instantiation of the free variables in the query (e.g., a certain patient).

Obviously, the entailment problem is a special case of the recognition problem,
where a is the empty mapping. Conversely, the recognition problem for a, φ,
and K is the same as the entailment problem for a(φ) and K. Thus, these two
problems have the same complexity.

Therefore, it is sufficient to analyze the complexity of the entailment problem.
We consider two kinds of complexity measures: combined complexity and data
complexity. For the combined complexity, all parts of the input, i.e., the TCQ φ and
the temporal knowledge base K, are taken into account. For the data complexity,
the TCQ φ and the TBox T are assumed to be constant, and the complexity
is measured only w.r.t. the data, i.e., the sequence of ABoxes. As usual when
investigating the data complexity of OBDA [5], we assume that the ABoxes
occurring in a temporal knowledge base and the query contain only concept and
role names that also occur in the global TBox.

It turns out that it is actually easier to analyze the complexity of the comple-
ment of this problem, i.e., non-entailment K 6|= φ. This problem has the same
complexity as the satisfiability problem. In fact, K 6|= φ iff ¬φ has a model w.r.t. K,
and conversely φ has a model w.r.t. K iff K 6|= ¬φ.

We first analyze the (atemporal) special case of the satisfiability problem
where φ is a conjunction of CQ-literals. The following result will turn out to be
useful also for analyzing the general case.

Theorem 3.2. Let K = 〈A, T 〉 be a knowledge base and φ be a conjunction of
CQ-literals. Then deciding whether φ has a model w.r.t. K is ExpTime-complete
w.r.t. combined complexity and NP-complete w.r.t. data complexity.

Proof (Sketch). The lower bounds easily follow from the known lower bounds
for concept satisfiability in ALC w.r.t. TBoxes [19] and for the data complexity
of query answering of Boolean CQs in ALC [6]. To check whether there is an
interpretation I with I |= K and I |= φ, we reduce this problem to a query non-
entailment problem of known complexity. First, we instantiate the non-negated
CQs in φ by omitting the existential quantifiers and replacing the variables by
fresh individual names. The set A′ of the resulting atoms can thus be viewed as
an additional ABox that restricts the interpretation I. The above problem is
thus equivalent to finding an interpretation I with I |= 〈A ∪ A′, T 〉 and I 6|= ρ,
where ρ is the union of Boolean CQs that results from negating the conjunction
of all negated CQs in φ. This is the same as asking whether the knowledge base
〈A ∪ A′, T 〉 does not entail the union of conjunctive queries ρ. The complexity
of this kind of entailment problems is known: it is ExpTime-complete w.r.t.
combined complexity [7,13] and co-NP-complete w.r.t. data complexity [15]. ut

We now describe an approach to solving the satisfiability problem (and thus the
non-entailment problem) in general. The basic idea is to reduce the problem to
two separate satisfiability problems, similar to what was done for ALC-LTL in
Lemma 4.3 of [4]. Let K = 〈(Ai)0≤i≤n, T 〉 be a TKB and φ be a Boolean TCQ,
for which we want to decide whether φ has a model w.r.t. K. Recall that the



propositional abstraction φ̂ of φ contains the propositional variables p1, . . . , pm
in place of the CQs α1, . . . , αm occurring in φ. We assume in the following that
αi was replaced by pi for all i, 1 ≤ i ≤ m. We now consider a set S ⊆ 2{p1,...,pm},
which intuitively specifies the worlds that are allowed to occur in an LTL-structure
satisfying φ̂. To express this restriction, we define the propositional LTL-formula

φ̂S := φ̂ ∧2−2

 ∨
X∈S

 ∧
p∈X

p ∧
∧
p/∈X

¬p

 .2

If φ has a model w.r.t. K, i.e., there is a sequence of interpretations I = (Ii)i≥0
that respects rigid names, is a model of K, and satisfies I, n |= φ, then there
exist a set S ⊆ 2{p1,...,pm} and a propositional LTL-structure that satisfies φ̂S at
time point n. In fact, for each interpretation Ii of I, we set Xi := {pj | 1 ≤ j ≤
m and Ii satisfies αj}, and then take S := {Xi | i ≥ 0}. We say that S is induced
by I. The fact that I satisfies φ at time point n implies that its propositional
abstraction satisfies φ̂S at time point n, where the propositional abstraction
Î = (wi)i≥0 of I is defined by wi := Xi for all i ≥ 0. However, guessing a set
S and then testing whether the induced LTL-formula φ̂S is satisfiable at time
point n is not sufficient for checking whether φ has a model w.r.t. K. We must
also check whether the guessed set S can indeed be induced by some sequence
of interpretations that is a model of K. The following definition introduces a
condition that needs to be satisfied for this to hold.

Definition 3.3. Given a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} and a mapping
ι : {0, . . . , n} → {1, . . . , k}, we say that S is r-consistent w.r.t. ι and K if there
exist interpretations J1, . . . ,Jk, I0, . . . , In such that

– the interpretations share the same domain and respect rigid names;3
– the interpretations are models of T ;
– for i, 0 ≤ i ≤ k, Ji is a model of χi :=

∧
pj∈Xi

αj ∧
∧
pj /∈Xi

¬αj; and
– for i, 0 ≤ i ≤ n, Ii is a model of Ai and χι(i).

The intuition underlying this definition is the following. The existence of the
interpretation Ji (1 ≤ i ≤ k) ensures that the conjunction χi of the CQ-
literals specified by Xi is consistent. In fact, a set S containing a set Xi for
which this does not hold cannot be induced by a sequence of interpretations.
The interpretations Ii (0 ≤ i ≤ n) are supposed to constitute the first n + 1
interpretations in such a sequence. In addition to inducing a set Xι(i) ∈ S and
thus satisfying the corresponding conjunction χι(i), the interpretation Ii must
thus also satisfy the ABox Ai. The first and the second condition ensure that a
sequence of interpretations built from J1, . . . ,Jk, I0, . . . , In respects rigid names
and satisfies the global TBox T . Note that we can use Theorem 3.2 to check
whether interpretations satisfying the last three conditions of Definition 3.3 exist.
2 Note that a formula 2−2ψ is satisfied iff ψ holds at all time points.
3 This is defined analogously to the case of sequences of interpretations (Definition 2.3).



As we will see below, the difficulty lies in ensuring that they also satisfy the first
condition.

Satisfaction of the temporal structure of φ by a sequence of interpretations
built this way is ensured by testing φ̂S for satisfiability, which can basically be
done using algorithms for testing satisfiability in propositional LTL [23].

Lemma 3.4. The TCQ φ has a model w.r.t. the TKB K iff there is a set
S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} and a mapping ι : {0, . . . , n} → {1, . . . , k} such
that

1. S is r-consistent w.r.t. ι and K, and
2. there is an LTL-structure J = (wi)i≥0 such that J, n |= φ̂S and wi = Xι(i)

for all i, 0 ≤ i ≤ n.

The proof of this lemma is similar to, but more involved than the proof of a
similar characterization for satisfiability in ALC-LTL [4].

As shown later, the overall complexity of the satisfiability problem depends
on which symbols are allowed to be rigid. To achieve these complexity results,
we obtain the set S and the function ι either by enumeration, guessing, or
direct construction, depending on the case under consideration. Given S and
ι, it remains to check the two conditions of the lemma. To check the second
condition, we construct a Büchi automaton similar to the standard construction
for satisfiability of LTL-formulae [23]. Emptiness of this automaton is equivalent
to satisfiability of φ̂S . The details can be found in [3].

The main difference to the standard construction is the additional condition
wi = Xι(i) for i, 0 ≤ i ≤ n. We check this by attaching a counter taking values
from {0, . . . , n+ 1} to the states of the automaton. Transitions where the counter
is i < n+1 check if the current world corresponds toXι(i) and increase the counter
by 1. At i = n, we ensure that φ̂S is satisfied. Similar to what is done in [4], we
do not construct the automaton directly for φ̂S , which would yield an automaton
of double-exponential size in the size of φ, but rather for φ̂. The additional
restrictions of φ̂S are enforced by restricting this automaton to states that satisfy
a world from S. The size of the constructed automaton only depends linearly on
the number n of input ABoxes, which is important for the results about data
complexity, and exponentially on the size of φ. Furthermore, emptiness of Büchi
automata can be checked in polynomial time in the size of the automaton [23].

Lemma 3.5. Given a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} and a mapping
ι : {0, . . . , n} → {1, . . . , k}, the problem of deciding the existence of an LTL-
structure J = (wi)i≥0 such that J, n |= φ̂S and wi = Xι(i) for all i, 0 ≤ i ≤ n, is
in ExpTime w.r.t. combined complexity and in P w.r.t. data complexity.

For the r-consistency test, we need to use different constructions depending on
which symbols are allowed to be rigid. Using these constructions, we obtain
the complexity results for the entailment problem shown in Table 1. Note that
rigid concept names can be simulated by rigid role names [4], which is why
there are only three cases to consider. The lower bounds can be obtained by



Table 1. The complexity of the entailment problem for TCQs.

Data complexity Combined complexity

NRC = NRR = ∅ co-NP-complete ExpTime-complete

NRC 6= ∅, NRR = ∅ co-NP-complete co-NExpTime-complete

NRR 6= ∅ co-NP-hard/in ExpTime 2-ExpTime-complete

simple reductions from the atemporal entailment problem [6] and the satisfiability
problem of ALC-LTL [4]. In the following sections, we only present the ideas for
the upper bounds in the most interesting case (no rigid role names, but rigid
concept names). For the other two cases, the proofs are quite similar to the ones
for ALC-LTL [4]. For rigid concepts, the proofs still follow the lines of the proofs
in [4], but need considerably more effort to deal with CQs instead of assertions
(see [3] for more details).

4 Data Complexity for the Case of Rigid Concepts

To obtain an upper bound for the data complexity of the non-entailment problem
in the case where NRC 6= ∅ and NRR = ∅, we consider the conditions of Lemma 3.4
in more detail. First, note that, since S ⊆ 2{p1,...,pm} is of constant size w.r.t. the
input ABoxes and ι : {0, . . . , n} → {1, . . . , k} is of size linear in n (the number
of ABoxes), guessing S and ι can be done in NP. Additionally, according to
Lemma 3.5, LTL-satisfiability can be tested in P.

We now show that the r-consistency of S w.r.t. ι and K can be checked in NP,
which yields the desired data complexity of co-NP for the entailment problem.
We use a renaming technique similar to the one employed in [4]. For every i,
1 ≤ i ≤ k, and every flexible concept name A (every role name r) occurring in
φ or in T , we introduce a copy A(i) (r(i)), which is a fresh concept (role) name.
We call A(i) (r(i)) the i-th copy of A (r). The CQ α(i) (the GCI β(i)) is obtained
from a CQ α (a GCI β) by replacing every occurrence of a flexible name by its
i-th copy. Similarly, for 1 ≤ ` ≤ k, the conjunction χ(i)

` is obtained from χ` (see
Definition 3.3) by replacing each CQ αj by α(i)

j .
The basic idea is to decide the existence of models of the conjunctions of

CQ-literals γi ∧ χS w.r.t. the TBox TS , where

γi :=
∧
α∈Ai

α(ι(i)), χS :=
∧

1≤i≤k
χ

(i)
i , TS := {β(i) | β ∈ T and 1 ≤ i ≤ k}.

One can see from the proof of Theorem 3.2 that this problem can be decided in
NP in the size of the input ABoxes. The main reason is that the negated CQs do
not depend on the input ABoxes. In fact, negated CQs only occur in χS , which
only depends on the query φ. Thus, the union of CQs ρ constructed in the proof
of Theorem 3.2 does not depend on the input ABoxes and the same is true for
the TBox TS .



However, for r-consistency we have to make sure that rigid consequences of
the form A(a) for a rigid concept name A and an individual name a are shared
between these conjunctions of CQ-literals. Let RCon(T ) denote the rigid concept
names occurring in T . Similar to what was done in Lemma 6.3 of [4], we now
guess a set D ⊆ 2RCon(T ) and a mapping τ : Ind(φ) ∪ Ind(K) → D. The idea is
that D fixes the combinations of rigid concept names that occur in the models
of γi ∧ χS and τ assigns to each individual name one such combination. Note
that D only depends on T and τ is of size linear in the size of the input ABoxes,
which is why we can guess D and τ in NP w.r.t. data complexity. We now define

χτ :=
∧

a∈Ind(φ)∪Ind(K)

 ∧
A∈τ(a)

A(a) ∧
∧

A∈RCon(T )\τ(a)

A′(a)

 ,

where A′ is a rigid concept name that is equivalent to ¬A in T .4 Note that χτ is
of polynomial size w.r.t. the size of the input ABoxes.

We need one more notation to formulate the main lemma of this section. We
say that an interpretation I respects D if

D = {Y ⊆ RCon(T ) | there is a d ∈ ∆I such that d ∈ (CY )I},

where CY :=
d
A∈Y A u

d
A∈RCon(T )\Y ¬A.

Lemma 4.1. If NRC 6= ∅ and NRR = ∅, then S is r-consistent w.r.t. ι and K
iff there exist D ⊆ 2RCon(T ) and τ : Ind(φ) ∪ Ind(K) → D such that each of the
conjunctions γi ∧ χS ∧ χτ , 0 ≤ i ≤ n, has a model w.r.t. TS that respects D.

Proof (Sketch). For the “if” direction, assume that Ii are the required models
for γi ∧ χS ∧ χτ . Similar to the proof of Lemma 6.3 in [4], we can assume w.l.o.g.
that their domains ∆i are countably infinite and for each Y ∈ D there are
countably infinitely many elements d ∈ (CY )Ii . This is a consequence of the
Löwenheim-Skolem theorem and the fact that the countably infinite disjoint
union of Ii with itself is again a model of γi ∧ χS ∧ χτ . The latter follows from
the observation that for any CQ there is a homomorphism into Ii iff there is a
homomorphism into the disjoint union of Ii with itself.

Consequently, we can partition the domains ∆i into the countably infinite
sets ∆i(Y ) := {d ∈ ∆i | d ∈ (CY )Ii} for Y ∈ D. It is now easy to see that
the domains ∆i are essentially the same up to isomorphisms between ∆i and
∆j for 0 ≤ i, j ≤ n that relate the elements of ∆i(Y ) to those of ∆j(Y ), and
respect the individual names, i.e., map each aIi to aIj . We can now construct the
models required by Definition 3.3 from the models Ii by appropriately relating
the flexible names and their copies. For example, interpreting the rigid concept
names as in Ii and the flexible names as their ι(i)-th copies in Ii yields a model
4 We can assume w.l.o.g. that for each rigid concept name in T , there is a rigid
concept name equivalent to its negation in T . We can introduce them if needed while
multiplying the size of the TBox by at most 2. We cannot include ¬A(a) in χτ since
this could result in polynomially many negated CQs in the size of the ABoxes.



of χι(i) w.r.t. 〈Ai, T 〉, and similarly for the models of χj and T for 1 ≤ j ≤ k.
These models share the same domain and respect rigid names. Note that the
interpretation of the names in NRC \ RCon(T ) and NI \ (Ind(φ) ∪ Ind(K)) is
irrelevant and can be fixed arbitrarily.

For the “only if” direction, it is easy to see that one can combine the inter-
pretations Ii, J1, . . . , Jk from Definition 3.3 to a model I ′i of γi ∧ χS w.r.t. TS
by interpreting the j-th copy of a flexible name as the original name in Jj . For
a ∈ Ind(φ)∪ Ind(K), we define τ(a) := Y ⊆ RCon(T ) iff a ∈ (CY )I0 . Furthermore,
we let D contain all those sets Y ⊆ RCon(T ) such that there is a d ∈ (CY )I′

i

for some 0 ≤ i ≤ n. To obtain models of γi ∧ χS ∧ χτ w.r.t. TS that respect D,
we still need to ensure that all Y ∈ D are represented in each of the models
I ′i. To do this, we construct the disjoint union I ′′i of I ′i with all other I ′j for
0 ≤ j ≤ n. It remains to show that this interpretation is still a model of TS and
the conjunction γi ∧ χS ∧ χτ . This can be seen as follows. For the non-negated
CQs in this conjunction, clearly there is a homomorphism into I ′′i if there is one
into I ′i. For the negated CQs in χS , we need the additional assumption that each
of them is connected in the sense that the variables and individual names are
related by roles (see [18] or [3] for an exact definition). It follows from a result
in [21] that this is without loss of generality (see [3]). Given this assumption,
the non-existence of a homomorphism into any of the components of I ′′i clearly
implies the non-existence of a homomorphism into their disjoint union I ′′i . ut

It remains to show that we can check the existence of a model of γi ∧ χS ∧ χτ
w.r.t. TS that respects D in nondeterministic polynomial time. For this, observe
that the restriction imposed by D can equivalently be expressed as

χD := (¬∃x.AD(x)) ∧
∧
Y ∈D
∃x.AY (x),

where AY and AD are fresh concept names that are restricted by adding the GCIs
AY v CY , CY v AY for each Y ∈ D, and AD v

d
Y ∈D ¬AY ,

d
Y ∈D ¬AY v AD

to TS . We call the resulting TBox T ′S . Since χD and T ′S do not depend on the
input ABoxes, by Theorem 3.2 we can check the consistency of γi ∧χS ∧χτ ∧χD
w.r.t. T ′S in NP w.r.t. data complexity.

Theorem 4.2. If NRC 6= ∅ and NRR = ∅, then the entailment problem is in
co-NP w.r.t. data complexity.

5 Combined Complexity for the Case of Rigid Concepts

Unfortunately, the approach used in the previous section does not yield a combined
complexity of co-NExpTime. The reason is that the conjunctions χS and χD are
of exponential size in the size of φ, and thus Theorem 3.2 only yields an upper
bound of 2-ExpTime. In this section, we describe a different approach with a
combined complexity of co-NExpTime.

As a first step, we rewrite the Boolean TCQ φ into a Boolean TCQ ψ of linear
size in the size of φ and K such that answering φ at time point n is equivalent



to answering ψ at time point 0 w.r.t. a trivial sequence of ABoxes. This is done
by compiling the ABoxes into the query and postponing the query φ using the
#-operator (see [3] for details). We can thus focus on deciding whether a Boolean
TCQ φ has a model w.r.t. a TKB K = 〈∅, T 〉 that has only one empty ABox in
the sequence. Note that this compilation approach does not allow us to obtain a
low data complexity for the entailment problem since after encoding the ABoxes
into φ the size of χS is exponential in the size of the ABoxes.

We now again analyze how to check the two conditions in Lemma 3.4. First,
observe that guessing S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} can be done in non-
deterministic exponential time in the size of φ. Furthermore, by Lemma 3.5,
the LTL-satisfiability test required by the second condition can be realized in
ExpTime. It remains to determine the complexity of testing r-consistency of S
w.r.t. K = 〈∅, T 〉. Similarly to the approach used in the previous section and to the
proof of Lemma 6.3 in [4], we start by guessing a set D ⊆ 2RCon(T ) and a mapping
τ : Ind(φ)→ D. Since D is of size exponential in T and τ is of size polynomial
in the size of φ and T , guessing D and τ can also be done in NExpTime. By
Lemma 4.1, it suffices to test whether χS ∧χτ has a model w.r.t. TS that respects
D. Instead of applying Theorem 3.2 directly to this problem, which would yield
a complexity of 2-ExpTime, we split the problem into separate sub-problems for
each component χi of χS . The correctness of this approach is stated in the next
lemma. For the special case of ALC-LTL, this was shown in Lemma 6.3 in [4].
The proof for the general case is similar to the proof of Lemma 4.1 above.

Lemma 5.1. If NRC 6= ∅ and NRR = ∅, then S is r-consistent w.r.t. K = 〈∅, T 〉
iff there exist D ⊆ 2RCon(T ) and τ : Ind(φ)→ D such that each of the conjunctions
χ̂i := χi ∧ χτ , 1 ≤ i ≤ k, has a model w.r.t. K that respects D.

Note that the size of each χ̂i is polynomial in the size of φ and T and the number
k of these conjunctions is exponential in the size of φ. Thus, it is enough to show
that the existence of a model of χ̂i w.r.t. K that respects D can be checked in
exponential time in the size of φ and T . Similar to the proof of Theorem 3.2, we
can reduce this problem to a non-entailment problem for a union of Boolean CQs:
there is an interpretation that is a model of χ̂i and T and respects D iff there is
a model of 〈A, T 〉 that respects D and is not a model of ρ (written 〈A, T 〉 6|= ρ
w.r.t. D), where A is an ABox obtained by instantiating the non-negated CQs
of χ̂i with fresh individual names and ρ is a union of CQs constructed from the
negated CQs of χ̂i.

It thus suffices to show that we can decide query non-entailment 〈A, T 〉 6|= ρ
w.r.t. D in time exponential in the size of A, T , and ρ. To this purpose, we
further reduce this problem following an idea from [13]. There, the notion of a
spoiler is introduced. A spoiler is an ALC∩-knowledge base that states properties
that must be satisfied such that a query is not entailed by a knowledge base.5
It is shown that 〈A, T 〉 6|= ρ iff there is a spoiler 〈A′, T ′〉 for 〈A, T 〉 such that
〈A ∪A′, T ∪ T ′〉 is consistent. Additionally, all spoilers can be computed in time
exponential in the size of 〈A, T 〉 and ρ, and each spoiler is of polynomial size.
5 ALC∩ extends ALC by role conjunctions of the form r1∩· · ·∩rn for r1, . . . , rn ∈ NR.



We show in [3] that the above reduction is still correct in the presence of D,
i.e., we have 〈A, T 〉 6|= ρ w.r.t. D iff there is a spoiler 〈A′, T ′〉 for 〈A, T 〉 such
that there is a model of 〈A∪A′, T ∪T ′〉 that respects D. It now remains to show
that the existence of such a model can be checked in exponential time in the size
of 〈A ∪ A′, T ∪ T ′〉, and therefore in exponential time in the size of φ and T .

For classical ALC∩-knowledge bases, the consistency problem (without D)
is ExpTime-complete [22]. The complexity does not increase for checking the
existence of a model of a Boolean ALC∩-knowledge base that respects D.6 We
show this in [3] using a notion of quasimodels similar to the one in [4], but
extended to deal with role conjunctions. The main difference is that we must
introduce additional concept names that function as so-called pebbles, which mark
elements that have specific role predecessors, an idea borrowed from [9,10,14].

Lemma 5.2. Let B be a Boolean ALC∩-knowledge base of size n, A1, . . . , Ak
be concept names occurring in B, and D ⊆ 2{A1,...,Ak}. Then the existence of a
model of B that respects D can be decided in time exponential in n.

Combining the reductions of this section, we get the desired complexity result.

Theorem 5.3. If NRC 6= ∅ and NRR = ∅, then the entailment problem is in
co-NExpTime w.r.t. combined complexity.

6 Conclusions

We have introduced a new temporal query language that extends the temporal
DL ALC-LTL to using conjunctive queries as atoms. Our complexity results on
the entailment problem for such queries w.r.t. temporal knowledge bases are
summarized in Table 1. Without any rigid names, we observed that entailment of
TCQs is as hard as entailment of CQs w.r.t. atemporal ALC-knowledge bases, i.e.,
in this case adding temporal operators to the query language does not increase
the complexity. However, if we allow for rigid concept names (but no rigid role
names), the picture changes. While the data complexity remains the same as
in the atemporal case, the combined complexity of query entailment increases
to co-NExpTime, i.e., the non-entailment problem is as hard as satisfiability
in ALC-LTL. If we further add rigid role names, the combined complexity (of
non-entailment) again increases in accordance with the complexity of satisfiability
in ALC-LTL. For data complexity, it is still unclear whether adding rigid role
names results in an increase. We have shown an upper bound of ExpTime (which
is one exponential better than the combined complexity), but the only lower
bound we have is the trivial one of co-NP.

Further work will include trying to close this gap. Moreover, it would be
interesting to consider temporal queries based on inexpressive DLs such as DL-
Lite [5], and check under what conditions query answering can be realized using
classical (temporal or atemporal) database techniques.
6 Boolean knowledge bases generalize ABoxes and TBoxes by allowing arbitrary Boolean
combinations of axioms instead of only conjunctions.
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