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Abstract. Galois connections between concept lattices can be represented as bi-
nary relations on the context level, known as dual bonds. The latter also appear as
the elements of the tensor product of concept lattices, but it is known that not all
dual bonds between two lattices can be represented in this way. In this work, we
define regular Galois connections as those that are represented by a dual bond in
a tensor product, and characterize them in terms of lattice theory. Regular Galois
connections turn out to be much more common than irregular ones, and we iden-
tify many cases in which no irregular ones can be found at all. To this end, we
demonstrate that irregularity of Galois connections on sublattices can be lifted to
superlattices, and observe close relationships to various notions of distributivity.
This is achieved by combining methods from algebraic order theory and FCA
with recent results on dual bonds. Disjunctions in formal contexts play a promi-
nent role in the proofs and add a logical flavor to our considerations. Hence it
is not surprising that our studies allow us to derive corollaries on the contextual
representation of deductive systems.

1 Introduction

From a mathematical perspective, Formal Concept Analysis (FCA) [1] is usually con-
sidered as a formalism for syntactically representing complete lattices by means of
formal contexts. A closer look reveals that this representation hinges upon the fact that
the well-known (context) derivation operations of FCA constitute Galois connections®
between certain power set lattices. Thus formal contexts can equally well be described
as convenient representations of such Galois connections.

With this in mind, it should not come as a surprise that Galois connections between
concept lattices have also been studied extensively. On the level of formal contexts, such
Galois connections can be described through suitable types of binary relations, called
dual bonds in the literature, which turn out to be a very versatile tool for further studies.
Dual bonds arguably constitute a fundamental notion for the study of interrelations and
mappings between concept lattices. Indeed, many well-known morphisms of FCA, such
as infomorphisms and scale measures, have recently been recognized as special types
of dual bonds [2]. We review some of the relevant results on dual bonds in Sect. 3.
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3 In this work, we study Galois connections only in their classical antitone formulation, as is
done in [1].



Now dual bonds themselves allow for a nice representation in terms of FCA: each
extent of the direct product of two contexts is a dual bond between them. The concept
lattice of the direct product is known as the tensor product of FCA. However, this
representation of dual bonds is usually not complete: the majority of dual bonds, herein
called regular dual bonds, appears in the direct product, but there can also be irregular
ones for which this is not the case.

Interestingly, this situation is also reflected by the corresponding Galois connections
and we can distinguish regular and irregular Galois connections on purely lattice theo-
retical grounds. This allows us to give a lattice theoretical characterization of the tensor
product in Sect. 4. Due to this relation to the tensor product, there are always plenty
of regular Galois connections while irregular ones can be very rare. A major goal of
this work is to further explore this situation, thus shedding new light on the structure of
Galois connections between concept lattices and on the lattice theoretical relevance of
the tensor product. In particular, we identify various cases for which only regular Galois
connections exist, such that the tensor product yields a complete representation of the
according function space.

In Sect. 5, we observe close relationships to the notion of complete distributivity,
which will be a recurrent theme in this work. Disjunctions in formal contexts play a
prominent role in Sect. 6 and add a logical flavor to our considerations. Hence it is
not surprising that our studies allow us to derive corollaries on the contextual represen-
tation of deductive systems. Moreover, in Sect. 7, we demonstrate that irregularity of
Galois connections on sublattices can be lifted to superlattices, which allows us to es-
tablish further relationships with distributivity. Finally, Sect. 8 summarizes our results
and points to various open questions that need to be addressed in future research.

2 Preliminaries and notation

Our notation basically follows [1], with a few exceptions to enhance readability for our
purposes. Especially, we avoid the use of the symbol ’ to denote the operations that are
induced by a context. We shortly review the main terminology using our notation, but
we assume that the reader is familiar with the notation and terminology from [1]. Our
treatment also requires some familiarity with general notions from order theory [3].

A (formal) context K is a triple (G, M, I) where G is a set of objects, M is a set of
attributes, and I C G X M is an incidence relation. Given O C G and A C M, we define:

O'={meM|gImforallge 0}, I(O):={meM|gImforsomege 0},
Al ={ge G| gImforallme A}, I''(A) = {geG|glmforsomeme A}

By Ext(K) and Int(K) we denote the lattices of extents and intents of K, respectively,
ordered by subset inclusion.

The complement of a context K is defined as K® = (G, M, X) with X := (GXM)\I. We
remark that Ext(K°®) in general has no simple relationship to Ext(K): even if two contexts
represent isomorphic concept lattices, this is not necessarily true for their complements.

Finally, an antitone Galois connection ¢ = ((3, &5) between complete lattices K and
L is a pair of functions (Z K-> L and&f : L — K such that k < 5(1) iff 1 < (Z(k), for all
k € K, [ € L. Each component of a Galois connection uniquely determines the other, so
we will often work with only one of the two functions. For further details, see [1].



3 Dual bonds and the tensor product

To represent Galois connections between concept lattices on the level of the respective
contexts, one uses certain relations called dual bonds. In this section, we recount some
results that are essential to our subsequent investigations. Details and further references
can be found in [2].

Definition 1. A dual bond between formal contexts K := (G, M,I) and L := (H,N, J)
is a relation R C G X H for which the following hold:

— for every element g € G, gR (which is equal to R(g)) is an extent of L and
— for every element h € H, h® (which is equal to R™'(h)) is an extent of K.

This definition is motivated by the following result.

Theorem 1 ([1, Theorem 53]). Consider a dual bond R between contexts K and L as
above. The mappings

br  Ext(K) » ExtL): X —» X®  and ¢ : Ext(L) — Ext(K): ¥ — YR

form an antitone Galois connection between the concept lattices of K and L.
3 . . rdbe .
Given such a Galois connection (¢, ¢), the relation

Ry ={em 1 hedeh={@engedn)
is a dual bond, and these constructions constitute a bijection between the dual bonds
between K and L, and the Galois connections between Ext(K) and Ext(L).

The previous result allows us to switch between different context representations
of dual bonds in a canonical way. Indeed, consider contexts K, K’, L, and L’ such that
Ext(K) = Ext(K’) and Ext(L) = Ext(L’). Then any dual bond R between K and L
bijectively corresponds to a dual bond R’ between K’ and L’ that represents the same
Galois connection. We describe this situation by saying that R and R’ are equal up to
isomorphism (of concept lattices) or just equivalent.

Since extents are closed under intersections, the same is true for the set of all dual
bonds between two contexts. Thus the dual bonds (and hence the respective Galois
connections) form a closure system, and one might ask for a way to cast this into a
formal context which has dual bonds as concepts. An immediate candidate for this
purpose is the direct product. Given contexts K := (G, M,I) and L := (H, N, J), the
direct product of K and L is the context KX L := (G X H, M X N, V), where V is defined
by setting (g,h) V (m,n) iff g I mor h J n.

The tensor product of two complete lattices is defined as the concept lattice of the
direct product of their canonical contexts. As shown in [1, Theorem 26], the tensor
product does not depend on using canonical contexts: taking the direct product of any
other contexts that represent the factor lattices yields an isomorphic result.

Proposition 1 ([4]). The extents of a direct product K X L are dual bonds between the
contexts K and L.

However, it is known that the converse of this result is false, i.e. there are dual bonds
which are not extents of the direct product. This motivates the following definition.
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Fig. 1. The lattices M3 and Ns with their standard contexts.

Definition 2. A dual bond R between K and L is regular if it is an extent of K X L.

Example 1. For some prototypical examples of irregular dual bonds, consider the for-
mal contexts in Fig. 1. Observe that for any complete lattice L, the identity function is
a Galois connection between L and its dual order L°P. For M3, this identity is repre-
sented by the dual bond {(g1, m1), (g2, m2), (g3, m3)} (between the standard context and
its dual). For Njs it is given as {(g1,m2), (g1,m1), (g2, mM2), (g3, m3)}. Some easy compu-
tations show that both of these dual bonds are irregular.

The next section is concerned with showing that regularity of dual bonds is equiv-
alent to suitable properties of the induced Galois connection. For regularity of dual
bonds, the following characterization will be very helpful.

Theorem 2 ([2, Theorem 3]). Consider contexts (G, M,I) and (H,N, J), and a dual
bond R € G x H. Then R is regular iff R(g) = (e Rim*)’’ forall g € G.

4 Regularity of Galois connections

The previous section suggests to extend the notion of regularity from dual bonds to their
respective Galois connections.

Definition 3. A Galois connection ¢ = ((3, (13) between lattices K and L is regular if its
associated dual bond Ry between the canonical contexts of K and L is regular.

We know that the lattice structure of the regular Galois connections coincides with
the tensor product of the respective lattices, and that the latter does not depend on using
canonical contexts in the definition. Whatever contexts are chosen for representing the
given complete lattices, the structure of their regular dual bonds is always the same.
This, however, does not say that they always represent the same set of Galois con-
nections. In order to obtain this, one needs to show that the isomorphisms used in [1,
Theorem 26] for showing the context independence of the tensor product preserve the
represented Galois connections. However, using our prior insights on the connections
between dual bonds, Galois connections, and the direct product, we can produce an
alternative proof which is more suggestive in the current setting.



Lemma 1. Consider a dual bond R between K and L, and a subset A of the set of
attributes of K. We find that A¥" = Negar R(g)’.

Proof. We have AF" = (N,,c4 RV (m) and, by [2, Lemma 3], this is equal to (),,cs R(m*)”.
Since -/ transforms unions into intersections, the latter equals (),,e4 (Meem R(g)’. In
other words, the expression is the intersection of the intents R(g)’ for all g such that
g ¥ m for some m € A. But this is just (ggeas R(g)’ as required. |

The application of -V to a binary relation always yields a dual bond between the dual
contexts, and thus a Galois connection between the dual concept lattices. Let us state
the respective construction as a lattice theoretical operation on Galois connections.

Definition 4. Consider a Galois connection ¢ = ((Z, 5) between complete lattices K
and L. A pair of mappings ¢ = (q?v, $V) is defined as follows:

BV KPS LP ks \/HK\LK)  and  $Y:L® - K%P: s \/ G(L\ D),

where %P denotes order duals, and \/ and | refer to K and L, not to K°° and L°P.

Lemma 2. Consider a dual bond R between K and L, and let ¢ = ($, &5) : Ext(K) —
Ext(L) be the according Galois connection as in Theorem 1.

Then ¢V = (&’V,&V) is a Galois connection from Ext(K)°P to Ext(L)°°. Up to the
isomorphism between the dual lattices of extents and the lattices of intents, it is the
Galois connection associated with R .

Proof. Let ¢ = (g[_/), J) denote the Galois connection associated with RY. Given any
intent A of K, we compute

S J

Ay =A% = (VR = () den’ =(\/ deh)

ggAl gl ZAl gl ZAl
where we used Lemma 1 for the second equality, and where \/ refers to the supremum
of extents in Ext(L). Now it is easy to see that \/{q?(g”) | gl ¢ Al} = \/{(5(0) | O =
0!, O ¢ A!}. Indeed, whenever O = O/, O ¢ A! we find some g € O with g ¢ A’. But
then ¢(0) C ¢(g!") which allows for the desired conclusion. With this we conclude that
o > J > J
9(A) = (VIg0) |0 =011, 0 g AY) = (V $EXIEK) \ LAD)) .
Now it is easy to see that zZ is just the composition of #" with the two lattice isomor-

phisms -/ : Int(K) = Ext(K)° and -/ : Ext(IL)°P = Int(L). Since the property of being a
Galois connection is invariant under isomorphism this establishes the claim. O

The previous result was stated for Galois connections between concept lattices only,
which simplified the notation that was needed in the proof. Yet it is easy to see that the
result extends to arbitrary Galois connections, since the claimed properties are invariant
under isomorphism.

Also observe that the proof of Lemma 2 does not require the fact that ¢ is a Galois
connection. This should not come as a surprise, since the operator -V on binary relations
always produces an intent of the direct product, even if the input is not a dual bond.

Now we can easily derive the independence of regularity of Galois connections from
the choice of canonical contexts for the representation via dual bonds.



Proposition 2. Consider a dual bond R and a Galois connection ¢ that is, up to iso-
morphism of complete lattices, equal to the Galois connection induced by R. Then R is
regular iff ¢ is regular. Moreover, for any Galois connection W, Y is regular.

Proof. R is regular iff R = R"V. By Lemma 2, ¢"" is thus equivalent to the Galois
connection induced by R and thus to ¢. By similar reasoning, given that S is the canon-
ical dual bond for ¢, the Galois connection induced by SV is equivalent to ¢. But this
implies that S = SV such that ¢ is regular. The other direction is shown similarly.
This shows that regularity of Galois connections can be established by considering
any (possibly non-canonical) representation by dual bonds. Hence, let R be any dual
bond for . Then, by Lemma 2, ¢V is represented (up to isomorphism) by RV (as a dual
bond between the dual contexts). Regularity of ¢" follows from regularity of R". O

The above theorem asserts that regularity of dual bonds reflects a property not only
of a particular dual bond, but of a whole class of dual bonds that represent the same
Galois connection. This invariance under change of syntactic representation allows us
to choose arbitrary contexts for studying regularity of Galois connections. As a corol-
lary, we obtain that the structure of (binary) tensor products is independent of context
representations as well. We find that the study of regularity of Galois connections or
dual bonds is synonymous with the study of the structure of the tensor product.

In the remainder of this section, we provide some basic characterizations of regular
Galois connections. Since the dual adjoints of a Galois connection uniquely determine
each other, we state the following result only for one part of a Galois connection.

Theorem 3. Given a mapping ¢ : K — L between complete lattices K and L, the
following are equivalent:

(i) ¢ is part of a regular Galois connection between K and L,
(ii) ¢ = ¢,
(”l) Forall k € K: ¢(k) = /\mzk \/m}ﬁg ¢(g)

Proof. We first show that (i) is equivalent to (ii). By Proposition 2, every mapping of the
form ¢"V is a part of a regular Galois connection. For the other direction, by Lemma 2,
we find that ¢"V is equivalent to a part of the Galois connection associated with RVY
where R is any dual bond for ¢. The claim follows since RVY = R for regular Galois
connections ¢.

Equivalence of (i) and (iii) is immediate by noting that ¢"" (k) = Azt \Vmge #(9),
where the second application of V refers to the dual order, so that the order-related
expressions have to be dualized. O

Note that this result establishes a purely lattice theoretical description of the tensor
product of FCA, based on the closure operator (in the general order-theoretic sense) -¥
on Galois connections. An alternative characterization has been derived in [5], where a
lattice-theoretical description of the original closure operator -¥ on subsets of Lx K was
given. The latter formulation is substantially more complex and hinges upon certain
sets of filters, called T-carpets. The advantage of this approach is that it generalizes to
n-ary direct products, while our description is specific to the binary case.



5 Regularity for completely distributive lattices

Though the above characterization of regularity is precise, its rather technical condi-
tions are not fully satisfactory for understanding the notion. Especially, it does not sig-
nificantly enhance our understanding of the sets of regular and irregular Galois connec-
tions as a whole. Next, we are going to explore several situations for which all Galois
connections must be regular. In these cases, the representation of Galois connections
through the direct product is exhaustive, and the tensor product is fully described as the
function space of all Galois connections between two lattices.

Considering condition (iii) of Theorem 3, it should not come as a surprise that dis-
tributivity has an effect on regularity. The following characterization will be useful for
formalizing this intuition.

Proposition 3. A complete lattice K is completely distributive iff, for each pair of ele-
ments g, m € K, if m # g, then there are elements m’, g’ € K such that:

-m tgandm¥ g,
- K=7g"uUlm.

Proof. For the proof, we use a result on completely distributive concept lattices. Clearly,
K is completely distributive iff the concept lattice of its canonical context K = (K, K, <)
is completely distributive. Now, according to [1, Theorem 40], the concept lattice of K
is completely distributive iff for every pair m # g there are elements m’, g’ such that
m # g m#% g,and g € k= for all k € K \ m’<. In the canonical context, the last
condition is equivalent to saying that g’ < k for all k £ m’. Thus K = Tg’ U |[m’, as
required. |

Note that the above also implies that m < m’ and g > g’. Now we can apply this
result to establish the following sufficient condition for regularity of all Galois connec-
tions.

Theorem 4. Consider complete lattices K and L. If either K or L is completely dis-
tributive, then all Galois connections from K to L are regular. Especially, this is the
case if K or L are distributive and finite.

Proof. Consider a Galois connection ¢ := (q_b), #) : K — L. Assume that L is completely
distributive. For a contradiction, assume that ¢ is not regular. By Theorem 3, there is an
element k € K such that $(k) # Nmzk Vinge $(g). For notational convenience, we define
n = $(k) and i1 == Ak Vinge J(g). It is easy to see that n < h, so we conclude that
n < h and thus n # h. This inequality satisfies the conditions of Proposition 3 and we
obtain elements #’, n’ € Lsuchthatn’ 2 h,n ? h',and L = Th' U |[n’.

Now suppose that ¢(h’) > k. By anti-monotonicity of @, this implies @(¢(h)) <
é(k) = n. Since b’ < $($(h’)) (see, e.g., [1]), this entails 2" < n, which contradicts the
above assumptions on 4’. Thus $(h’) % k, and we conclude that h < \/ S)Ee $(g).

Now for any g € K, if ¢(g) > /' then ¢(¢(g)) < ¢(i') and thus g < ¢(k’). Thus,
whenever $(h’) % g, we find that $(g) Z I’. By our assumptions on 4’ and »’, this shows
that $(g) < n’, and consequently \/ FU2e $(g) <n.



The conclusions of the previous two paragraphs imply that & < n’, which yields the
desired contradiction. The claim for the case where K is completely distributive follows
by symmetry. The rest of the statements is immediate since a finite lattice is distributive
iff it is completely distributive. O

The above proof might seem surprisingly indirect, given that our first motivation for
investigating distributivity possibly stems from the interleaved infimum and supremum
operations of Theorem 3 (iii). Could a more direct proof just apply distributivity to
exchange the position of these operations, thus enabling us to exploit the interplay of
Galois connections and infima for further conclusions? The answer is a resounding
“no”: indeed, the infima and suprema from Theorem 3 distribute over each other in any
finite lattice* but many finite lattices admit irregular dual bonds. Hence, just applying
distributivity directly cannot suffice for a proof.

In the finite case, Theorem 4 shows that distributivity of lattices ensures that only
regular Galois connections exist. In Sect. 7 we will see that distributivity is necessary
as well.

6 Disjunctions in contexts

Further sufficient characterizations for regularity of dual bonds have been investigated
in [2]. In this section, we combine these ideas with logical considerations along the
lines of [7]. The results we obtain are specifically relevant for representations of logical
and topological systems within FCA. The following properties of dual bonds constitute
our starting point.

Definition 5. Consider contexts K = (G,M,I) and L := (H,N,J). A relation R C
G X H is (extensionally) closed if it preserves extents of K, i.e. if for every extent O
of K the image R(O) is an extent of L. R is (extensionally) continuous if its inverse is
extensionally closed.

In [2] continuity was used to establish relations to continuous functions between
contexts, known as scale measures. Here, we are mostly interested in the following
result, that is a corollary from [2, Theorem 4].

Proposition 4. A dual bond R between K and L is regular, whenever it is closed as a
relation from K® to L. By symmetry, the same conclusion follows if R is continuous as a
relation from K to LL°.

Now continuity and closedness, while yielding sufficient conditions for a dual bond
to be regular, are not particularly convenient as characterizations either. This is partially
due to the fact that these properties, in contrast to regularity, are not independent from
the contexts used in the presentation of a dual bond. Though this problem will generally
persist throughout our subsequent considerations, the next lemma shows the way to a
more convenient characterization.

4 This is so because it holds for any continuous lattice since the sets {g’ | m # g’} are directed.
See [6].



Lemma 3. Consider a dual bond R between contexts K := (G, M, I) andL = (H, N, J),
and an extent O € Ext(K®). The following are equivalent:

(i) R(O) is an extent of L.

(ii) For every h € R(0)"’, there is a set X C O such that h € R(X)"’ and there is g € O
with X C g,

Proof. Clearly, if R(O) is an extent, then for every h € R(0)’’, there is an element ge0
such that i € R(g). Since g € g™, this shows that (i) implies (ii).

For the converse, let g be as in (ii). As observed in [2, Lemma 1], we find g € x//
for all x € X. Given x € X, R™!(y) is an extent of K for all y € R(x), such that we find
g € R7!(y) for all y € R(x), i.e. R(x) C R(g). This yields R(X) C R(g) which implies
h € R(g) since the latter is an intent of L. a

Intuitively, the previous lemma states that the closure of the image of a set O can
be reduced to the closures of the images of single elements g, which are asserted by
the definition of dual bonds. As shown in the proof, if the closure is given, then the
existence of a sufficient amount of such elements g is certain and the subsets X of (ii)
can be chosen as singleton sets. On the other hand, a sufficient condition for showing
closure is obtained by requiring the existence of suitable g for arbitrary sets X. The
disjunctions of X turn out to be just what is needed.

Definition 6. Consider a context K = (G, M,I) and a set X C G. An object g € G is
the disjunction of X, if, for any m € M, we have that

g I miffthere is some x € X such that x I m.

Disjunctions in contexts introduce a logical flavor and have previously been studied
in relation with the representation of deductive systems in FCA, e.g. in [8] or [7].

It is easy to see that X has a disjunction iff X** is an object extent g"*. A little re-
flection shows that the existence of disjunctions still strongly depends on the particular
context used to represent some complete lattice. Intuitively, this is due to the fact that
the concept lattice of K€ is not fully determined by the concept lattice of K, but depends
on the particular representation of K.

Our strategy for deducing regularity of Galois connections from the above observa-
tions is as follows: given a Galois connection between complete lattices K and L, we try
to find a corresponding dual bond R between contexts, such that the context for K has
a “sufficient” amount of disjunctions to show closedness of R. Lemma 3 implies that
the existence of arbitrary disjunctions certainly is sufficient in this sense; but weaker
assumptions turn out to be sufficient in some cases. The existence of such a closed dual
bond R then implies regularity of the Galois connection, even though both closedness
and disjunctions may not be given for other representations of the same Galois connec-
tion. We discover that typical situations where many disjunctions exist again are closely
related to distributivity.

Hence, our task is to seek context representations with a maximal amount of dis-
junctions. Unfortunately, the canonical context turns out to be mostly useless for this
purpose. Indeed, given a complete lattice K, it is easy to see that X C K has a disjunc-
tion in the canonical context iff X has a least element in K. In order to find contexts with
more disjunctions, we state the following lemma.



Lemma 4. Consider a complete lattice K and subsets J, M C K such that M is /-
dense and J is \/-dense in K. Then K is isomorphic to the concept lattice of (J, M, <).
Furthermore, a subset X C J has a disjunction in (J, M, <) iff

(i) NX € Jand
(ii) TAXOM = Uy Tx N M.
The disjunction then is given by the element N\ X.

Proof. The claimed isomorphism of K and the concept lattice is a basic result of FCA,
see [1]. According to the definition, g is a disjunction for X precisely when we find
that for all m € M, g < m iff x < m for some x € X. This in turn is equivalent
to Tg N M = Uyex Tx N M. Obviously this also implies that g < AX. If g < A X
then, by A-density of M, there is some m € M with m > g but m # A X. But then
TgNM C Uyex TxN M and g cannot be the disjunction. This shows that g = A X is the
only possible disjunction for X, and that this is the case iff (i) and (ii) are satisfied. O

This result guides our search for contexts with many disjunctions. Indeed, it is easy
to see that for (i), it is desirable to have as many objects as possible, while (ii) is more
likely to hold for a small set of attributes.

Note that Lemma 4 entails some notational inconveniences, since disjunctions are
usually marked by the symbol \/. Yet we obtain /A since we work on disjunctions of
objects. If one would prefer to do all calculations on attributes (which are often taken
to represent formulae when modelling logical notions in FCA), one would obtain \/ as
expected.

In the finite case, finding a possibly small set of attributes for a given lattice is easy:
the set of A\ -irreducible elements is known to be the least A -dense set. While this is
also true for some infinite complete lattices, it is not required in this case.

Proposition 5. Consider a complete lattice K such that the set of )\-irreducible ele-
ments M(K) is /\-dense in K. For every set X C K, the following are equivalent:

(i) X has a disjunction in the context (K, M(K), <),
(ii) kv AN X = N\ex(k V x), forany k € K.

In particular, the distributivity law kV \ X = A ex(k V x) holds in K iff (K, M(K), <)
has all disjunctions.

Proof. For the forward implication, assume that (i) holds for some set X C K. For a
contradiction, suppose that there is some k € K such that (ii) does not hold for k and X.
Since k V A X < Ayex(k V x) holds in any complete lattice, this says that k V A X <
Axex(kV x). By A-density of M(K), there is some m € M(K) such that kv A X < m but
Axex(kV x) £ m. The former shows that k < m and A X < m. Now by (i) and Lemma 4,
x < m for some x € X, such that (x V k) < m. But then A ,x(k V x) < m, which yields a
contradiction.

For other direction, assume that (ii) holds for some set X C K. For a contradiction,
suppose that (i) is not true for X. By Lemma 4, we find some attribute m € M(K) such
that A X < m but x £ m for all x € X. We conclude that m = m vV A X. By (ii), this
implies m = A cx(m V x). Since m is /\-irreducible, there must be some x € X with
(m Vv x) = m and hence x < m; but this contradicts our assumptions. m|



Note that most parts of the above proof do not make use of the A -irreducibility
of the chosen attribute-set. In particular, the implication from (i) to (ii) holds for arbi-
trary /\-dense sets of attributes. In the rest of the proof, irreducibility is used only in
connection with the set X. Thus we obtain the following corollary.

Corollary 1. Consider a complete lattice K such that the set of A-irreducible elements
MEin(K) is \-dense in K. Then K is distributive iff (K, Mgin(K), <) has all finite disjunc-
tions.

The previous result is useful for the subsequent consideration of logical deductive
systems. Concerning regularity of dual bonds between finite lattices, we will establish
a stronger characterization in Theorem 7 later on. We are now ready to combine the
above results to derive further sufficient conditions for regularity of Galois connections.

Theorem 5. Consider a complete lattice K where M(K) is /\-dense and such that the
distributivity law kv A\ X = A,ex(k V x) holds for arbitrary k € K, X C K. Then all
Galois connections from K to any other complete lattice are regular:

Proof. By Lemma 4, the concept lattice of K := (K, M(K), <) is isomorphic to K and,
by Proposition 5, K has all disjunctions. Now any Galois connection from K to some
complete lattice L corresponds to a dual bond R from K to the canonical context L :=
(L, L, <) of L. Now consider any extent O of K°. Obviously, the conditions of Lemma 3
(ii) are satisfied, where X = O and g is the disjunction of O. Thus R(O) is an extent of
L. Since O was arbitrarily chosen, this shows that R is closed from which we conclude
that R is regular, as required. |

Complete lattices for which finite infima distribute over arbitrary suprema are also
known as locales, and are the subject of study in point-free topology [9]. The reason
is that the lattice of open sets of any topological space forms a locale. Thus the pre-
vious theorem can be considered as a statement about certain lattices of closed sets of
topological spaces. On the other hand, the condition that /\-irreducibles be A-dense is
rather severe in this setting. Especialy, it would be possible that the conjunction of these
assumptions already implies complete distributivity — see Sect. 8 for some discussions.

A statement similar to Theorem 5 can be made when restricting to finite disjunc-
tions.

Theorem 6. Consider a distributive complete lattice K where Mgin(K) is /\-dense.
Then all Galois connections from K to any other complete algebraic lattice are reg-
ular. Especially, this applies to Galois connections from K to finite lattices.

Proof. The proof proceeds as in Theorem 5. However, to apply Lemma 3, we note that
for any [ € R(O)=%, there is a finite set Y C R(O) such that [ € Y==. This follows directly
from algebraicity of L, see e.g. [1]. Thus there is a finite set X € O with Y € R(X) and
its disjunction g allows us to invoke Lemma 3 as desired. |

Again this theorem can be related to topology, but in a way that is quite different
from Theorem 5 and which finally relates disjunctions in contexts to logical disjunc-
tions. The key observation is that /\-density of A-irreducibles is the characteristic prop-
erty for the open set lattices of certain topological spaces, called sober spaces in the



literature [9]. Being locales as all topologies, these spaces are finitely distributive as
well. Thus the conditions on K given in Theorem 6 are satisfied by the open set lattice
of any sober space. These structures are commonly known as spacial locales, and have
been studied extensively in research on point-free topology. We obtain the following
corollary.

Corollary 2. Every Galois connection between a spacial locale and an algebraic lat-
tice is regular. In particular, every Galois connection between algebraic spacial locales
is regular.

To see how these observations are connected to logic, we have a brief look at the pre-
sentation of deductive systems in formal concept analysis. In general, deductive systems
are characterized by a semantic consequence relation = between models and formulae
of some logic. For an example, consider the consequence relation between models of
propositional logic and propositional formulae.

Now such binary relations are naturally represented as formal contexts. This idea
has, with more or less explicit reference to FCA, been investigated within Institution
Theory [10] and the theory of Information Flow [8]. At this point, it is not apparent
how this relates to topology, locales, and algebraicity. This relation can be established
on quite general grounds, but here we just sketch the situation for propositional logic as
an exemplary case.

Thus consider a language of propositional logic as a set of objects. For attributes,
consider any set of models of some propositional logic theory.”> With semantic con-
sequence as incidence relation, this yields a “logical” context that represents a given
theory. It is easy to see that disjunctions of the logic correspond to object-disjunctions
within this context. On the other hand, disjunctions in the complemented context corre-
spond to conjunctions of the logic. The according concept lattice is the lattice of logical
theories over this background knowledge. In particular, object extents represent knowl-
edge that is given by single formulae, while their order in the concept lattice describes
entailment. As is well-known, the sublattice of object extents is a Boolean algebra in the
propositional case. Furthermore, the lattice of propositional theories is known to be al-
gebraic: every logical consequence can be derived from only a finite set of assumptions
(in other words, propositional statements cannot describe infinite information).

Moreover, the complement of a logical context represents another interesting con-
cept lattice: it is isomorphic to the open set lattice of a topological space, the so-called
Stone space of the aforementioned Boolean algebra.® Basically, this is just an FCA
version of Stone’s famous representation theorem for Boolean algebras (see [3] for an
introduction). It is well-known that open set lattices of Stone spaces are algebraic spa-
cial locales, so that we can immediately conclude from Corollary 2 that every dual
bond between complements of logical contexts in the above sense is regular. However,
another consequence of our observations is more interesting from a logical perspective.

3 This differs from the more common approach where formulae or “properties” are usually taken
as attributes. This deviation ensures compatibility to our object-centered treatment. Also note
that we do in general not consider the set of all propositional models, since the context would
not contain much information in this case.

6 Note that it is not the open set lattice, since the latter is not a closure system. However, the
order-dual lattice of intents is exactly the according lattice of closed sets.



Corollary 3. Consider contexts K and L that represent theories of propositional logic
as described above. Then any dual bond from K° to L is regular. More specifically, it is
closed from K to L and continuous from K° to L°.

Proof. Regularity follows immediately from Corollary 2 and the above remarks. For
closedness, we can apply Lemma 3, using algebraicity of Ext(L) (the lattice of theories)
and the availability of finite conjunctions in the propositional logic of K. Likewise,
for continuity, we combine algebraicity of Ext(K®) (the open set lattice) with finite
propositional disjunctions of L. O

The above formulation exhibits a seemingly strange twist in the dual bond, since
we consider the complement of the context K. However, this formulation fits well into
our logical framework, since such dual bonds can be interpreted as proof theoretical
consequence relations between two logical theories. To see this, note that a a logical
implication p — ¢ can be translated into —p V g. Based on this intuition, it makes per-
fect sense to interpret the dual bond of Corollary 3 as a set of logical implications. The
defining conditions on dual bonds now state that the consequences of any single state-
ment from K are deductively closed in L, and that the sets of premises of a statement
from L are deductively closed in K°. Observe how this justifies regularity of all such
consequence relations: given any binary relation between the logical languages, we can
always derive an adequate consequence relation by computing missing deductive in-
ferences. In logic, this process is usually described by application of certain deductive
rules, while in FCA it corresponds to the concept closure within the direct product.

The reason for emphasizing closedness and continuity in Corollary 3 is that these
properties enable us to compose consequence relations in a very intuitive way. Indeed,
if p implies g, and g implies r, then one is usually tempted to derive that p implies .
Using dual bonds to represent implication, such reasoning is described by taking the
relational product. Continuity and closedness ensure that this construction does again
yield a dual bond as in Corollary 3. Hence we obtain a category of logical theories and
consequence relations, the sets of morphisms of which can be described by the tensor
product of FCA. However, to the authors’ knowledge, the resulting categories have not
yet been investigated with respect to their general properties or their relationship to
other categories from algebra or order theory.

More details on deductive systems, consequence relations, and their contextual rep-
resentation are given in [7]. In [11], consequence relations between separate logical
theories (and languages) have been introduced proof-theoretically for positive logic (the
logic of conjunctions and disjunctions), and the emerging categories were shown to be
of topological and domain theoretical relevance. Much more general cases of Stone
duality and their relation to FCA have been considered in [12].

7 Regularity for sublattices

In this section, we show that the irregularity of a Galois connection between sublat-
tices can be lifted to a Galois connection between their respective superlattices, which
enables us to improve our characterization of the interplay between distributivity and
regularity.



Proposition 6. Consider complete lattices K, L, U, and V such that U C K and V C L
and

(i) for any non-empty set X C U, we have ANy X = Ng X and \/y X = V¢ X,

(ii) for any non-empty set Y C'V, we have Ay Y = N\ Yand \/yY =\/ V.

Then any irregular Galois connection between U and V induces an irregular Galois
connection between K and L.

Proof. Weuse Lg = A K and Tg = V K to denote the least and greatest elements of
K, respectively. Similar notations are used for U and L. Let ¢ := ((3, &3) :U — Vbean
irregular Galois connection. Define a mapping i : K — L by setting

TL ifk=_1g
Yy =L gNuecU|k<u) if Lx <k<Ty
1y ifk££ Ty

Note that we do not have to distinguish between infima in K and in U for the second
case, since the considered set is always non-empty. We claim that i is one part of an
irregular Galois connection from K to L.

Consider some set X C K. To see that ¢ is a Galois connection, it suffices to show
that Yy(\/ X) = AW (X)) (see [1, Proposition 7]). It \/ X = Lk then X is either empty
or contains only Lg. Both cases are easily seen to satisfy the claim. If \/ X £ Ty, then
there is some x € X such that x £ Ty, i.e. Y(x) = L;. Again the claim is obvious.

It remains to consider the case where Lx < \/ X < Ty. To this end, first note that
MueU|x<uforallx € X} = \V,ex Ale € U | x < u} (*). Indeed, the left hand
side (lhs) is greater-or-equal than the right hand side (rhs). Assuming that it is strictly
greater, the rhs is not among the u on the left, i.e. there is x € X with x £ rhs. Since
x < rhs < lhs, this yields a contradiction.

Furthermore, we can assume without loss of generality that Lx ¢ X, since there
is certainly some greater element in X as well, making Lk redundant in all considered
operations. We compute:

YV X)

FNueU|VX<u)=¢(Vex NMueU|x<u))
= Nex BN € U x < u}) = Aoy Y.

This finishes our proof that y is part of a Galois connection. To see that it is irregular,
we use condition (iii) of Theorem 3. By the assumption that i is irregular, there is
some u € U such that <Z(u) = Nmev, mpu V gev, mze q?(g). Since the left hand side is
always smaller-or-equal to the right hand side, this inequality is in fact strict. We have
to show that (u) # A,uzu Vmge ¥(8)- Since @(u) = Y(u), this follows by showing that

Amev, mpu V geU, mpg $(g) < Amzu Vmge ¥(g)- To obtain the latter, we observe that, for
any m # u, there is some n € U with n % u and ey, g, dg) < V zg ¥(g)- Indeed,
consider m # uand setn := \/{u € U | u < m}. We claim that, for any v € U withn ¥ v,
$(v) < Vimge ¥(g). But this is obvious since <Z(v) = y(v)and n £ v implies m £ v. By
what was said before, this finishes the proof of irregularity of i. O

As a corollary to this result, we find that distributivity is necessary to assert that
only regular Galois connections exist for some complete lattice.



Corollary 4. If a complete lattice K has only regular Galois connections to any other
lattice, then it is distributive.

Proof. For a contradiction, assume that L is not distributive. Then L has either M3 or N5
as a sublattice. We have seen in Example 1 that both of these have an irregular Galois
connection to some other lattice, so Proposition 6 yields the required contradiction. O

Summarizing our results, we obtain a satisfactory characterization of regularity for
doubly-founded complete lattices.”

Theorem 7. Given a doubly-founded complete lattice L, the following are equivalent:

(i) L is distributive,
(ii) L has all disjunctions,

(iii) L has only regular Galois connections to any other complete lattice.

Proof. Recall that since L is doubly-founded, M(L) is A-dense in L, and that distribu-
tivity is equivalent to complete distributivity in this case [1, Theorem 41]. Thus (i) is
equivalent to (ii) by Proposition 5. The implication from (i) to (iii) was stated in Theo-
rem 4. The other direction follows from Corollary 4. O

8 Summary and outlook

In this work, we identified a novel property of Galois connections, dubbed regularity,
which describes whether a Galois connection between two complete lattices is repre-
sented in their FCA tensor product. We characterized this property and identified several
cases for which only regular Galois connections exist. These cases are of particular in-
terest, since they enable us to represent the function space of all Galois connections
by means of the tensor product, thus providing a lattice theoretical motivation for this
construction.

Though we applied rather diverse proof strategies based on ideas from FCA, order
algebra, and logic, many results expose relationships to notions of distributivity. It is
known from Theorem 4 that complete distributivity of a lattice disallows irregular Ga-
lois connections to any other lattice, but a full characterization of this situation was only
established for complete lattices that are doubly-founded (Theorem 7). We conjecture
that a similar result holds for the general case, i.e. that a complete lattice admits only
regular Galois connections to any other lattice iff it is completely distributive. Theo-
rem 5 described other, seemingly weaker, conditions for enforcing regularity, but it is
conceivable that these assumptions entail complete distributivity as well. Confirming or
refuting these conjectures remains the subject of future work.

Apart form this immediate question, the present work shows many other directions
for future research. First and foremost, we have concentrated on characterizations that
refer to only one lattice at a time. This allowed us to identify specific situations where
regularity is ubiquitious, but it also neglects the fact that in general both lattices con-
tribute to regularity. Future investigations should take this into account, for example by

7 Recall that every finite lattice is doubly-founded [1].



studying appropriate sublattices. Proposition 6 provides a theoretical foundation for this
approach.

Considering mainly situations where no irregular Galois connections exist at all, we
evaded the question for the role of irregular elements within the complete lattice of all
Galois connections. Can the irregular elements be described lattice theoretically within
this setting? We think that our results constitute the first steps towards such studies.

Last but not least, a completely different field of further questions was highlighted
in Sect. 6, where we sketched fresh categories of deductive systems that use dual bonds
as their morphisms. The study of these categories and their relevance in the field of
logic/topology/domain theory remains open.
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