Exercise 1: Relational Algebra

Database Theory
2020-04-14
Maximilian Marx, David Carral

Exercise 1

1. Who is the director of "The Imitation Game"?

Exercise 1

1. Who is the director of "The Imitation Game"?

$$
\pi_{\text {Director }}\left(\sigma_{\text {Title }}=\text { "The Imitation Game" }(\text { Films })\right)
$$

Exercise 1

1. Who is the director of "The Imitation Game"?

$$
\pi_{\text {Director }}\left(\sigma_{\text {Title }}=" T h e \text { Imitation Game" }(\text { Films })\right)
$$

2. Which cinemas feature "The Imitation Game"?

Exercise 1

1. Who is the director of "The Imitation Game"?

$$
\pi_{\text {Director }}\left(\sigma_{\text {Title }}=\text { "The Imitation Game" }(\text { Films })\right)
$$

2. Which cinemas feature "The Imitation Game"?

$$
\pi_{\text {Cinema }}\left(\sigma_{\text {Title }}=\text { "The Imitation Game" }(\text { Program })\right)
$$

Exercise 1

Films			Venues		
Title	Director	Actor	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	Schauburg	Königsbrücker Str. 55	8032185
\ldots	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	\ldots	...	\ldots
The Internet's Own Boy	Knappenberger	Lessig	Program		
The Internet's Own Boy	Knappenberger	Berners-Lee			
\ldots	\ldots	\ldots	Cinema	Title	Time
Dogma	Smith	Damon	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	CinemaxX	The Imitation Game	19:30

3. What are the address and phone number of "Schauburg"?

Exercise 1

Films			Venues		
Title	Director	Actor	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	Schauburg	Königsbrücker Str. 55	8032185
\ldots	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	\ldots	...	\ldots
The Internet's Own Boy	Knappenberger	Lessig	Program		
The Internet's Own Boy	Knappenberger	Berners-Lee			
\ldots	\ldots	\ldots	Cinema	Title	Time
Dogma	Smith	Damon	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	CinemaxX	The Imitation Game	19:30

3. What are the address and phone number of "Schauburg"?

$$
\pi_{\text {Address,Phone }}\left(\sigma_{\text {Cinema }}=\text { "Schauburg" }(\text { Venues })\right)
$$

Exercise 1

Films			Venues		
Title	Director	Actor	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	Schauburg	Königsbrücker Str. 55	8032185
\ldots	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	\ldots	...	\ldots
The Internet's Own Boy	Knappenberger	Lessig	Program		
The Internet's Own Boy	Knappenberger	Berners-Lee			
\ldots	\ldots	\ldots	Cinema	Title	Time
Dogma	Smith	Damon	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	CinemaxX	The Imitation Game	19:30

3. What are the address and phone number of "Schauburg"?

$$
\pi_{\text {Address,Phone }}\left(\sigma_{\text {Cinema }}=\text { "Schauburg" }(\text { Venues })\right)
$$

4. Boolean query: Is a film directed by "Smith" playing in Dresden?

Exercise 1

Films			Venues		
Title	Director	Actor	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	Schauburg	Königsbrücker Str. 55	8032185
\ldots	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	\ldots	...	\ldots
The Internet's Own Boy	Knappenberger	Lessig	Program		
The Internet's Own Boy	Knappenberger	Berners-Lee			
\ldots	\ldots	\ldots	Cinema	Title	Time
Dogma	Smith	Damon	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	CinemaxX	The Imitation Game	19:30

3. What are the address and phone number of "Schauburg"?

$$
\pi_{\text {Address,Phone }}\left(\sigma_{\text {Cinema }}=\text { "Schauburg" }(\text { Venues })\right)
$$

4. Boolean query: Is a film directed by "Smith" playing in Dresden?

$$
\pi_{\emptyset}\left(\sigma_{\text {Director="Smith" }}(\text { Films }) \bowtie \text { Program }\right)
$$

Exercise 1

5. List the pairs of persons such that the first directed the second in a film, and vice versa.

Exercise 1

Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone
UFA	St. Petersburger Str. 24	4825825
Schauburg	Königsbrücker Str. 55	8032185
CinemaxX	Hüblerstr. 8	3158910
\ldots	\ldots	\ldots
Program	Cinema	Title
Schauburg	The Imitation Game	$19: 30$
Schauburg	Dogma	$20: 45$
UFA	The Imitation Game	$22: 45$
CinemaxX	The Imitation Game	$19: 30$

5. List the pairs of persons such that the first directed the second in a film, and vice versa.

$$
\pi_{\text {Director }, D}\left(\sigma_{\text {Director }=A}\left(\sigma_{\text {Actor }=D}\left(\delta_{\text {Titte, Director,Actor } \rightarrow T, D, A}(\text { Films }) \bowtie \text { Films }\right)\right)\right)
$$

Exercise 1

5. List the pairs of persons such that the first directed the second in a film, and vice versa.

$$
\pi_{\text {Director }, D}\left(\sigma_{\text {Director }=A}\left(\sigma_{\text {Actor }=D}\left(\delta_{\text {Title, Director,Actor } \rightarrow T, D, A}(\text { Films }) \bowtie \text { Films }\right)\right)\right)
$$

6. List the names of directors who have acted in a film they directed.

Exercise 1

5. List the pairs of persons such that the first directed the second in a film, and vice versa.

$$
\pi_{\text {Director }, D}\left(\sigma_{\text {Director }=A}\left(\sigma_{\text {Actor }=D}\left(\delta_{\text {Title,Director,Actor } \rightarrow T, D, A}(\text { Films }) \bowtie \text { Films }\right)\right)\right)
$$

6. List the names of directors who have acted in a film they directed.

$$
\pi_{\text {Director }}\left(\sigma_{\text {Actor }}=\text { Director }(\text { Films })\right)
$$

Exercise 1

7. Always return $\{$ Title \mapsto "Apocalypse Now", Director \mapsto "Coppola"\} as the answer.

Exercise 1

Films			Venues		
Title	Director	Actor	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	Schauburg	Königsbrücker Str. 55	8032185
\ldots	\ldots	\ldots	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Lessig	Program		
The Internet's Own Boy	Knappenberger	Berners-Lee			
\ldots	..	\ldots	Cinema	Title	Time
Dogma	Smith	Damon	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	CinemaxX	The Imitation Game	19:30

7. Always return \{Title \mapsto "Apocalypse Now", Director \mapsto "Coppola"\} as the answer.

$$
\left\{\left\{\text { Title } \mapsto \text { "Apocalypse Now"\}\} } \begin{array}{l}
\text { \{ Director } \mapsto \text { "Coppola" }\}\} \\
\hline
\end{array}\right.\right.
$$

Exercise 1

Films			Venues		
Title	Director	Actor	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	Schauburg	Königsbrücker Str. 55	8032185
\ldots	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	...	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Lessig	Program		
The Internet's Own Boy	Knappenberger	Berners-Lee			
...	\ldots	...	Cinema	Title	Time
Dogma	Smith	Damon	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	CinemaxX	The Imitation Game	19:30

7. Always return \{Title \mapsto "Apocalypse Now", Director \mapsto "Coppola"\} as the answer.

$$
\left\{\left\{\text { Title } \mapsto \text { "Apocalypse Now"\}\} } \begin{array}{l}
\text { \{ Director } \mapsto \text { "Coppola" }\}\} \\
\hline
\end{array}\right.\right.
$$

8. Find the actors cast in at least one film by "Smith".

Exercise 1

Films			Venues		
Title	Director	Actor	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	Schauburg	Königsbrücker Str. 55	8032185
\ldots	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	...	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Lessig	Program		
The Internet's Own Boy	Knappenberger	Berners-Lee			
...	\ldots	...	Cinema	Title	Time
Dogma	Smith	Damon	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	CinemaxX	The Imitation Game	19:30

7. Always return \{Title \mapsto "Apocalypse Now", Director \mapsto "Coppola"\} as the answer.

$$
\left\{\left\{\text { Title } \mapsto \text { "Apocalypse Now"\}\} } \begin{array}{l}
\text { \{ Director } \mapsto \text { "Coppola" }\}\} \\
\hline
\end{array}\right.\right.
$$

8. Find the actors cast in at least one film by "Smith".

$$
\pi_{\text {Actor }}\left(\sigma_{\text {Director="Smith" }}(\text { Films })\right)
$$

Exercise 1

9.1 Find the actors that are not cast in some movie directed by "Smith."

Exercise 1

9.1 Find the actors that are not cast in some movie directed by "Smith."

$$
q=\pi_{\text {Actor }}\left[\left(\pi_{\text {Actor }}(\text { Films }) \bowtie \pi_{\text {Titte }}\left(\sigma_{\text {Director="Smith" }}(\text { Films })\right)\right)-\pi_{\text {Actor, Titte }}\left(\sigma_{\text {Director="Smith" }}(\text { Films })\right)\right]
$$

Exercise 1

Films			Venues		
Title	Director	Actor	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	Schauburg	Königsbrücker Str. 55	8032185
\ldots	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Lessig	Program		
The Internet's Own Boy	Knappenberger	Berners-Lee			
...	\ldots	\ldots	Cinema	Title	Time
Dogma	Smith	Damon	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	CinemaxX	The Imitation Game	19:30

9.1 Find the actors that are not cast in some movie directed by "Smith."

$$
q=\pi_{\text {Actor }}\left[\left(\pi_{\text {Actor }}(\text { Films }) \bowtie \pi_{\text {Titte }}\left(\sigma_{\text {Director="Smith" }}(\text { Films })\right)\right)-\pi_{\text {Actor, Titte }}\left(\sigma_{\text {Director="Smith" }}(\text { Films })\right)\right]
$$

9 Find the actors cast in every film by "Smith."

Exercise 1

Films			Venues		
Title	Director	Actor	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	Schauburg	Königsbrücker Str. 55	8032185
\ldots	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Lessig	Program		
The Internet's Own Boy	Knappenberger	Berners-Lee			
\ldots	\ldots	\ldots	Cinema	Title	Time
Dogma	Smith	Damon	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	CinemaxX	The Imitation Game	19:30

9.1 Find the actors that are not cast in some movie directed by "Smith."

$$
q=\pi_{\text {Actor }}\left[\left(\pi_{\text {Actor }}(\text { Films }) \bowtie \pi_{\text {Titte }}\left(\sigma_{\text {Director="Smith" }}(\text { Films })\right)\right)-\pi_{\text {Actor, Titte }}\left(\sigma_{\text {Director="Smith" }}(\text { Films })\right)\right]
$$

9 Find the actors cast in every film by "Smith."

$$
\pi_{\text {Actor }}(\text { Films })-q
$$

Exercise 1

10 Find the actors cast only in films by "Smith."

Exercise 1

10 Find the actors cast only in films by "Smith."

$$
\pi_{\text {Actor }} \text { (Films) }-\pi_{\text {Actor }}\left[\text { Films }-\sigma_{\text {Director="Smith" }}(\text { Films })\right]
$$

Exercise 1

10 Find the actors cast only in films by "Smith."

$$
\pi_{\text {Actor }} \text { (Films) }-\pi_{\text {Actor }}\left[\text { Films }-\sigma_{\text {Director="Smith" }}(\text { Films })\right]
$$

11 Find all pairs of actors who act together in at least one film.

Exercise 1

10 Find the actors cast only in films by "Smith."

$$
\pi_{\text {Actor }} \text { (Films) }-\pi_{\text {Actor }}\left[\text { Films }-\sigma_{\text {Director="Smith" }}(\text { Films })\right]
$$

11 Find all pairs of actors who act together in at least one film.

$$
\pi_{R A, A c t o r}\left[\delta_{\text {Actor } \rightarrow \text { RA }}(\text { Films }) \bowtie \text { Films }\right]
$$

Exercise 1

12.1 Find all pairs of actors a and a^{\prime} such that a acts in a movie that does not feature a^{\prime}.

Exercise 1

Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone
UFA	St. Petersburger Str. 24	4825825
Schauburg	Königsbrücker Str. 55	8032185
CinemaxX	Hüblerstr. 8	3158910
\ldots	\ldots	\ldots

Program

Cinema	Title	Time
Schauburg	The Imitation Game	$19: 30$
Schauburg	Dogma	$20: 45$
UFA	The Imitation Game	$22: 45$
CinemaxX	The Imitation Game	$19: 30$

12.1 Find all pairs of actors a and a^{\prime} such that a acts in a movie that does not feature a^{\prime}.

$$
q_{1}=\pi_{\text {Actor,RA }}\left[\left(\pi_{\text {Actor }}(\text { Films }) \bowtie \delta_{\text {Actor } \rightarrow \text { RA }}(\text { Films })\right)-\left(\text { Films } \bowtie \delta_{\text {Actor } \rightarrow \text { RA }}\left(\pi_{\text {Actor }}(\text { Films })\right)\right)\right]
$$

Exercise 1

Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone
UFA	St. Petersburger Str. 24	4825825
Schauburg	Königsbrücker Str. 55	8032185
CinemaxX	Hüblerstr. 8	3158910
\ldots	\ldots	\ldots

Program

Cinema	Title	Time
Schauburg	The Imitation Game	$19: 30$
Schauburg	Dogma	$20: 45$
UFA	The Imitation Game	$22: 45$
CinemaxX	The Imitation Game	$19: 30$

12.1 Find all pairs of actors a and a^{\prime} such that a acts in a movie that does not feature a^{\prime}.

$$
q_{1}=\pi_{\text {Actor,RA }}\left[\left(\pi_{\text {Actor }}(\text { Films }) \bowtie \delta_{\text {Actor } \rightarrow \text { RA }}(\text { Films })\right)-\left(\text { Films } \bowtie \delta_{\text {Actor } \rightarrow \text { RA }}\left(\pi_{\text {Actor }}(\text { Films })\right)\right)\right]
$$

If $\left\{\left\{A c t o r \mapsto a^{\prime}\right\},\{R A \mapsto a\} \in q_{1}(\mathcal{D})\right.$, then a acts in a movie that does not feature a^{\prime}.

Exercise 1

Films			Venues		
Title	Director	Actor	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	Schauburg	Königsbrücker Str. 55	8032185
\ldots	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	...	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Lessig	Program		
The Internet's Own Boy	Knappenberger	Berners-Lee			
...	\ldots	...	Cinema	Title	Time
Dogma	Smith	Damon	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	CinemaxX	The Imitation Game	19:30

12.1 Find all pairs of actors a and a^{\prime} such that a acts in a movie that does not feature a^{\prime}.

$$
q_{1}=\pi_{\text {Actor,RA }}\left[\left(\pi_{\text {Actor }}(\text { Films }) \bowtie \delta_{\text {Actor } \rightarrow \text { RA }}(\text { Films })\right)-\left(\text { Films } \bowtie \delta_{\text {Actor } \rightarrow \text { RA }}\left(\pi_{\text {Actor }}(\text { Films })\right)\right)\right]
$$

If $\left\{\left\{\right.\right.$ Actor $\left.\left.\mapsto a^{\prime}\right\},\{R A \mapsto a\}\right\} \in q_{1}(\mathcal{D})$, then a acts in a movie that does not feature a^{\prime}.
12.2 Find all pairs of actors a and a^{\prime} such that a acts in all the movies that feature a^{\prime}.

Exercise 1

Films			Venues		
Title	Director	Actor	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	Schauburg	Königsbrücker Str. 55	8032185
\ldots	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	...	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Lessig	Program		
The Internet's Own Boy	Knappenberger	Berners-Lee			
...	\ldots	...	Cinema	Title	Time
Dogma	Smith	Damon	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	CinemaxX	The Imitation Game	19:30

12.1 Find all pairs of actors a and a^{\prime} such that a acts in a movie that does not feature a^{\prime}.

$$
q_{1}=\pi_{\text {Actor,RA }}\left[\left(\pi_{\text {Actor }}(\text { Films }) \bowtie \delta_{\text {Actor } \rightarrow \text { RA }}(\text { Films })\right)-\left(\text { Films } \bowtie \delta_{\text {Actor } \rightarrow \text { RA }}\left(\pi_{\text {Actor }}(\text { Films })\right)\right)\right]
$$

If $\left\{\left\{\right.\right.$ Actor $\left.\left.\mapsto a^{\prime}\right\},\{R A \mapsto a\}\right\} \in q_{1}(\mathcal{D})$, then a acts in a movie that does not feature a^{\prime}.
12.2 Find all pairs of actors a and a^{\prime} such that a acts in all the movies that feature a^{\prime}.

$$
q_{2}=\left(\pi_{\text {Actor }}(\text { Films }) \bowtie \delta_{\text {Actor } \rightarrow \text { RA }}\left(\pi_{\text {Actor }}(\text { Films })\right)\right)-q_{1}
$$

Exercise 1

Films			Venues		
Title	Director	Actor	Cinema	Address	Phone
The Imitation Game	Tyldum	Cumberbatch	UFA	St. Petersburger Str. 24	4825825
The Imitation Game	Tyldum	Knightley	Schauburg	Königsbrücker Str. 55	8032185
\ldots	CinemaxX	Hüblerstr. 8	3158910
The Internet's Own Boy	Knappenberger	Swartz	...	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Lessig	Program		
The Internet's Own Boy	Knappenberger	Berners-Lee			
...	\ldots	...	Cinema	Title	Time
Dogma	Smith	Damon	Schauburg	The Imitation Game	19:30
Dogma	Smith	Affleck	Schauburg	Dogma	20:45
Dogma	Smith	Morissette	UFA	The Imitation Game	22:45
Dogma	Smith	Smith	CinemaxX	The Imitation Game	19:30

12.1 Find all pairs of actors a and a^{\prime} such that a acts in a movie that does not feature a^{\prime}.

$$
q_{1}=\pi_{\text {Actor,RA }}\left[\left(\pi_{\text {Actor }}(\text { Films }) \bowtie \delta_{\text {Actor } \rightarrow \text { RA }}(\text { Films })\right)-\left(\text { Films } \bowtie \delta_{\text {Actor } \rightarrow \text { RA }}\left(\pi_{\text {Actor }}(\text { Films })\right)\right)\right]
$$

If $\left\{\left\{\right.\right.$ Actor $\left.\left.\mapsto a^{\prime}\right\},\{R A \mapsto a\}\right\} \in q_{1}(\mathcal{D})$, then a acts in a movie that does not feature a^{\prime}.
12.2 Find all pairs of actors a and a^{\prime} such that a acts in all the movies that feature a^{\prime}.

$$
q_{2}=\left(\pi_{\text {Actor }}(\text { Films }) \bowtie \delta_{\text {Actor } \rightarrow \text { RA }}\left(\pi_{\text {Actor }}(\text { Films })\right)\right)-q_{1}
$$

If $\left\{\{\right.$ Actor $\left.\mapsto a\},\left\{R A \mapsto a^{\prime}\right\}\right\} \in q_{2}(\mathcal{D})$, then a acts in all the movies that feature a^{\prime}.

Exercise 1

Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Cinema	Address	Phone
UFA	St. Petersburger Str. 24	4825825
Schauburg	Königsbrücker Str. 55	8032185
CinemaxX	Hüblerstr. 8	3158910
\ldots	\ldots	...
Program		
Cinema	Title	Time
Schauburg	The Imitation Game	19:30
Schauburg	Dogma	20:45
UFA	The Imitation Game	22:45
CinemaxX	The Imitation Game	19:30

12 Find all pairs of actors cast in exactly the same films.

$$
\begin{aligned}
& q_{1}=\pi_{\text {Actor }, \text { RA }}\left[\left(\pi_{\text {Actor }}(\text { Films }) \bowtie \delta_{\text {Actor } \rightarrow \text { RA }}(\text { Films })\right)-\left(\text { Films } \bowtie \delta_{\text {Actor } \rightarrow \text { RA }}\left(\pi_{\text {Actor }}(\text { Films })\right)\right)\right] \\
& q_{2}=\left(\pi_{\text {Actor }}(\text { Films }) \bowtie \delta_{\text {Actor } \rightarrow R A}\left(\pi_{\text {Actor }}(\text { Films })\right)\right)-q_{1}
\end{aligned}
$$

Exercise 1

Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Cinema	Address	Phone
UFA	St. Petersburger Str. 24	4825825
Schauburg	Königsbrücker Str. 55	8032185
CinemaxX	Hüblerstr. 8	3158910
\ldots	\ldots	...
Program		
Cinema	Title	Time
Schauburg	The Imitation Game	19:30
Schauburg	Dogma	20:45
UFA	The Imitation Game	22:45
CinemaxX	The Imitation Game	19:30

12 Find all pairs of actors cast in exactly the same films.

$$
\begin{aligned}
& q_{1}=\pi_{\text {Actor }, \text { RA }}\left[\left(\pi_{\text {Actor }}(\text { Films }) \bowtie \delta_{\text {Actor } \rightarrow \text { RA }}(\text { Films })\right)-\left(\text { Films } \bowtie \delta_{\text {Actor } \rightarrow \text { RA }}\left(\pi_{\text {Actor }}(\text { Films })\right)\right)\right] \\
& q_{2}=\left(\pi_{\text {Actor }}(\text { Films }) \bowtie \delta_{\text {Actor } \rightarrow R A}\left(\pi_{\text {Actor }}(\text { Films })\right)\right)-q_{1}
\end{aligned}
$$

$$
q_{2} \bowtie \delta_{\text {Actor,RA } \rightarrow R A, A c t o r}\left(q_{2}\right)
$$

Exercise 1

Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone
UFA	St. Petersburger Str. 24	4825825
Schauburg	Königsbrücker Str. 55	8032185
CinemaxX	Hüblerstr. 8	3158910
\ldots	\ldots	\ldots
	Program	
Cinema	Title	Time
Schauburg	The Imitation Game	$19: 30$
Schauburg	Dogma	$20: 45$
UFA	The Imitation Game	$22: 45$
CinemaxX	The Imitation Game	$19: 30$

13.1 Find all pairs of directors a and actors a such that d directs some movie that features a.

Exercise 1

Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone
UFA	St. Petersburger Str. 24	4825825
Schauburg	Königsbrücker Str. 55	8032185
CinemaxX	Hüblerstr. 8	3158910
\ldots	\ldots	\ldots
	Program	
Cinema	Title	Time
Schauburg	The Imitation Game	$19: 30$
Schauburg	Dogma	$20: 45$
UFA	The Imitation Game	$22: 45$
CinemaxX	The Imitation Game	$19: 30$

13.1 Find all pairs of directors a and actors a such that d directs some movie that features a.

$$
q_{1}=\pi_{\text {Director,Actor }}(\text { Films })
$$

Exercise 1

Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone	
UFA	St. Petersburger Str. 24	4825825	
Schauburg	Königsbrücker Str. 55	8032185	
CinemaxX	Hüblerstr. 8	3158910	
\ldots	\ldots	\ldots	
	Program	Time	
Cinema	Title	$19: 30$	
Schauburg	The Imitation Game	$20: 45$	
Schauburg	Dogma	$22: 45$	
UFA	The Imitation Game	$19: 30$	
CinemaxX	The Imitation Game		

13.1 Find all pairs of directors a and actors a such that d directs some movie that features a.

$$
q_{1}=\pi_{\text {Director,Actor }}(\text { Films })
$$

13.2 Find the directors who do not direct all actors.

Exercise 1

Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone
UFA	St. Petersburger Str. 24	4825825
Schauburg	Königsbrücker Str. 55	8032185
CinemaxX	Hüblerstr. 8	3158910
\ldots	\ldots	\ldots
	Program	
Cinema	Title	Time
Schauburg	The Imitation Game	$19: 30$
Schauburg	Dogma	$20: 45$
UFA	The Imitation Game	$22: 45$
CinemaxX	The Imitation Game	$19: 30$

13.1 Find all pairs of directors a and actors a such that d directs some movie that features a.

$$
q_{1}=\pi_{\text {Director,Actor }}(\text { Films })
$$

13.2 Find the directors who do not direct all actors.

$$
q_{2}=\left(\pi_{\text {Director }}(\text { Film }) \bowtie \pi_{\text {Actor }}(\text { Film })\right)-q_{1}
$$

Exercise 1

Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone
UFA	St. Petersburger Str. 24	4825825
Schauburg	Königsbrücker Str. 55	8032185
CinemaxX	Hüblerstr. 8	3158910
\ldots	\ldots	\ldots
	\ldots	
Program	Cinema	Title
Schauburg	The Imitation Game	Time
Schauburg	Dogma	$20: 30$
UFA	The Imitation Game	$22: 45$
CinemaxX	The Imitation Game	$19: 30$

13 Find the directors such that every actor is cast in one of their films.

$$
\begin{aligned}
& q_{1}=\pi_{\text {Director }, \text { Actor }}(\text { Films }) \\
& q_{2}=\left(\pi_{\text {Director }}(\text { Film }) \bowtie \pi_{\text {Actor }}(\text { Film })\right)-q_{1}
\end{aligned}
$$

Exercise 1

Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone
UFA	St. Petersburger Str. 24	4825825
Schauburg	Königsbrücker Str. 55	8032185
CinemaxX	Hüblerstr. 8	3158910
\ldots	\ldots	\ldots
	\ldots	
Program	Cinema	Title
Schauburg	The Imitation Game	Time
Schauburg	Dogma	$20: 30$
UFA	The Imitation Game	$22: 45$
CinemaxX	The Imitation Game	$19: 30$

13 Find the directors such that every actor is cast in one of their films.

$$
\begin{aligned}
& q_{1}=\pi_{\text {Director,Actor }}(\text { Films }) \\
& q_{2}=\left(\pi_{\text {Director }}(\text { Film }) \bowtie \pi_{\text {Actor }}(\text { Film })\right)-q_{1}
\end{aligned}
$$

$$
\pi_{\text {Director }}(\text { Film })-q_{2}
$$

Exercise 2

Exercise. We use ε to denote the empty function, i.e., the function with the empty domain, which is defined for no value. We use \emptyset to denote the empty table with no rows and no columns.
Now for a table R, what are the results of the following expressions?
(1) $R \bowtie R$
(2) $R \bowtie \emptyset$
(3) $R \bowtie\{\varepsilon\}$

Solution.

Exercise 2

Exercise. We use ε to denote the empty function, i.e., the function with the empty domain, which is defined for no value. We use \emptyset to denote the empty table with no rows and no columns.
Now for a table R, what are the results of the following expressions?
(1) $R \bowtie R$
(2) $R \bowtie \emptyset$
(3) $R \bowtie\{\varepsilon\}$

Solution. Recall the definition of the natural join (Lecture 1, Slide 22):

$$
R \bowtie S=\left\{f: U \cup V \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{V} \in S\right\},
$$

where f_{U} and f_{V} are the restriction of f to elements in U and V, respectively, i.e., $f(u)=f_{U}(u)$ for all $u \in U$ and $f(v)=f_{V}(v)$ for all $v \in V$.

Exercise 2

Exercise. We use ε to denote the empty function, i.e., the function with the empty domain, which is defined for no value. We use \emptyset to denote the empty table with no rows and no columns.
Now for a table R, what are the results of the following expressions?
(1) $R \bowtie R$
(2) $R \bowtie \emptyset$
(3) $R \bowtie\{\varepsilon\}$

Solution. Recall the definition of the natural join (Lecture 1, Slide 22):

$$
R \bowtie S=\left\{f: U \cup V \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{V} \in S\right\},
$$

where f_{U} and f_{V} are the restriction of f to elements in U and V, respectively, i.e., $f(u)=f_{U}(u)$ for all $u \in U$ and $f(v)=f_{V}(v)$ for all $v \in V$.
(1)

$$
R \bowtie R=\left\{f: R \cup R \rightarrow \operatorname{dom} \mid f_{R} \in R \text { and } f_{R} \in R\right\}
$$

Exercise 2

Exercise. We use ε to denote the empty function, i.e., the function with the empty domain, which is defined for no value. We use \emptyset to denote the empty table with no rows and no columns.
Now for a table R, what are the results of the following expressions?
(1) $R \bowtie R$
(2) $R \bowtie \emptyset$
(3) $R \bowtie\{\varepsilon\}$

Solution. Recall the definition of the natural join (Lecture 1, Slide 22):

$$
R \bowtie S=\left\{f: U \cup V \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{V} \in S\right\},
$$

where f_{U} and f_{V} are the restriction of f to elements in U and V, respectively, i.e., $f(u)=f_{U}(u)$ for all $u \in U$ and $f(v)=f_{V}(v)$ for all $v \in V$.
(1)

$$
\begin{aligned}
R \bowtie R & =\left\{f: R \cup R \rightarrow \operatorname{dom} \mid f_{R} \in R \text { and } f_{R} \in R\right\} \\
& =\left\{f: R \rightarrow \operatorname{dom} \mid f_{R} \in R\right\}
\end{aligned}
$$

Exercise 2

Exercise. We use ε to denote the empty function, i.e., the function with the empty domain, which is defined for no value. We use \emptyset to denote the empty table with no rows and no columns.
Now for a table R, what are the results of the following expressions?
(1) $R \bowtie R$
(2) $R \bowtie \emptyset$
(3) $R \bowtie\{\varepsilon\}$

Solution. Recall the definition of the natural join (Lecture 1, Slide 22):

$$
R \bowtie S=\left\{f: U \cup V \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{V} \in S\right\},
$$

where f_{U} and f_{V} are the restriction of f to elements in U and V, respectively, i.e., $f(u)=f_{U}(u)$ for all $u \in U$ and $f(v)=f_{V}(v)$ for all $v \in V$.
(1)

$$
\begin{aligned}
R \bowtie R & =\left\{f: R \cup R \rightarrow \operatorname{dom} \mid f_{R} \in R \text { and } f_{R} \in R\right\} \\
& =\left\{f: R \rightarrow \operatorname{dom} \mid f_{R} \in R\right\} \\
& =\left\{f_{R} \mid f_{R} \in R\right\}
\end{aligned}
$$

Exercise 2

Exercise. We use ε to denote the empty function, i.e., the function with the empty domain, which is defined for no value. We use \emptyset to denote the empty table with no rows and no columns.
Now for a table R, what are the results of the following expressions?
(1) $R \bowtie R$
(2) $R \bowtie \emptyset$
(3) $R \bowtie\{\varepsilon\}$

Solution. Recall the definition of the natural join (Lecture 1, Slide 22):

$$
R \bowtie S=\left\{f: U \cup V \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{V} \in S\right\},
$$

where f_{U} and f_{V} are the restriction of f to elements in U and V, respectively, i.e., $f(u)=f_{U}(u)$ for all $u \in U$ and $f(v)=f_{V}(v)$ for all $v \in V$.
(1)

$$
\begin{aligned}
R \bowtie R & =\left\{f: R \cup R \rightarrow \operatorname{dom} \mid f_{R} \in R \text { and } f_{R} \in R\right\} \\
& =\left\{f: R \rightarrow \operatorname{dom} \mid f_{R} \in R\right\} \\
& =\left\{f_{R} \mid f_{R} \in R\right\} \\
& =R
\end{aligned}
$$

Exercise 2

Exercise. We use ε to denote the empty function, i.e., the function with the empty domain, which is defined for no value. We use \emptyset to denote the empty table with no rows and no columns.
Now for a table R, what are the results of the following expressions?
(1) $R \bowtie R$
(2) $R \bowtie \emptyset$
(3) $R \bowtie\{\varepsilon\}$

Solution. Recall the definition of the natural join (Lecture 1, Slide 22):

$$
R \bowtie S=\left\{f: U \cup V \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{V} \in S\right\},
$$

where f_{U} and f_{V} are the restriction of f to elements in U and V, respectively, i.e., $f(u)=f_{U}(u)$ for all $u \in U$ and $f(v)=f_{V}(v)$ for all $v \in V$.
(2)

$$
R \bowtie \emptyset=\left\{f: R \cup \emptyset \rightarrow \operatorname{dom} \mid f_{R} \in R \text { and } f_{\emptyset} \in \emptyset\right\}
$$

Exercise 2

Exercise. We use ε to denote the empty function, i.e., the function with the empty domain, which is defined for no value. We use \emptyset to denote the empty table with no rows and no columns.
Now for a table R, what are the results of the following expressions?
(1) $R \bowtie R$
(2) $R \bowtie \emptyset$
(3) $R \bowtie\{\varepsilon\}$

Solution. Recall the definition of the natural join (Lecture 1, Slide 22):

$$
R \bowtie S=\left\{f: U \cup V \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{V} \in S\right\},
$$

where f_{U} and f_{V} are the restriction of f to elements in U and V, respectively, i.e., $f(u)=f_{U}(u)$ for all $u \in U$ and $f(v)=f_{V}(v)$ for all $v \in V$.
(2)

$$
\begin{aligned}
R \bowtie \emptyset & =\left\{f: R \cup \emptyset \rightarrow \operatorname{dom} \mid f_{R} \in R \text { and } f_{\emptyset} \in \emptyset\right\} \\
& =\emptyset
\end{aligned}
$$

Exercise 2

Exercise. We use ε to denote the empty function, i.e., the function with the empty domain, which is defined for no value. We use \emptyset to denote the empty table with no rows and no columns.
Now for a table R, what are the results of the following expressions?
(1) $R \bowtie R$
(2) $R \bowtie \emptyset$
(3) $R \bowtie\{\varepsilon\}$

Solution. Recall the definition of the natural join (Lecture 1, Slide 22):

$$
R \bowtie S=\left\{f: U \cup V \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{V} \in S\right\},
$$

where f_{U} and f_{V} are the restriction of f to elements in U and V, respectively, i.e., $f(u)=f_{U}(u)$ for all $u \in U$ and $f(v)=f_{V}(v)$ for all $v \in V$.
(3)

$$
R \bowtie\{\epsilon\}=\left\{f: R \cup \emptyset \rightarrow \operatorname{dom} \mid f_{R} \in R \text { and } f_{\{\epsilon\}} \in\{\epsilon\}\right\}
$$

Exercise 2

Exercise. We use ε to denote the empty function, i.e., the function with the empty domain, which is defined for no value. We use \emptyset to denote the empty table with no rows and no columns.
Now for a table R, what are the results of the following expressions?
(1) $R \bowtie R$
(2) $R \bowtie \emptyset$
(3) $R \bowtie\{\varepsilon\}$

Solution. Recall the definition of the natural join (Lecture 1, Slide 22):

$$
R \bowtie S=\left\{f: U \cup V \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{V} \in S\right\},
$$

where f_{U} and f_{V} are the restriction of f to elements in U and V, respectively, i.e., $f(u)=f_{U}(u)$ for all $u \in U$ and $f(v)=f_{V}(v)$ for all $v \in V$.
(3)

$$
\begin{aligned}
R \bowtie\{\epsilon\} & =\left\{f: R \cup \emptyset \rightarrow \operatorname{dom} \mid f_{R} \in R \text { and } f_{\{\epsilon\}} \in\{\epsilon\}\right\} \\
& =\left\{f: R \rightarrow \operatorname{dom} \mid f_{R} \in R \text { and } f_{\{\epsilon\}} \in\{\epsilon\}\right\}
\end{aligned}
$$

Exercise 2

Exercise. We use ε to denote the empty function, i.e., the function with the empty domain, which is defined for no value. We use \emptyset to denote the empty table with no rows and no columns.
Now for a table R, what are the results of the following expressions?
(1) $R \bowtie R$
(2) $R \bowtie \emptyset$
(3) $R \bowtie\{\varepsilon\}$

Solution. Recall the definition of the natural join (Lecture 1, Slide 22):

$$
R \bowtie S=\left\{f: U \cup V \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{V} \in S\right\},
$$

where f_{U} and f_{V} are the restriction of f to elements in U and V, respectively, i.e., $f(u)=f_{U}(u)$ for all $u \in U$ and $f(v)=f_{V}(v)$ for all $v \in V$.
(3)

$$
\begin{aligned}
R \bowtie\{\epsilon\} & =\left\{f: R \cup \emptyset \rightarrow \operatorname{dom} \mid f_{R} \in R \text { and } f_{\{\epsilon\}} \in\{\epsilon\}\right\} \\
& =\left\{f: R \rightarrow \operatorname{dom} \mid f_{R} \in R \text { and } f_{\{\epsilon\}} \in\{\epsilon\}\right\} \\
& =\left\{f: R \rightarrow \operatorname{dom} \mid f_{R} \in R\right\}
\end{aligned}
$$

Exercise 2

Exercise. We use ε to denote the empty function, i.e., the function with the empty domain, which is defined for no value. We use \emptyset to denote the empty table with no rows and no columns.
Now for a table R, what are the results of the following expressions?
(1) $R \bowtie R$
(2) $R \bowtie \emptyset$
(3) $R \bowtie\{\varepsilon\}$

Solution. Recall the definition of the natural join (Lecture 1, Slide 22):

$$
R \bowtie S=\left\{f: U \cup V \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{V} \in S\right\},
$$

where f_{U} and f_{V} are the restriction of f to elements in U and V, respectively, i.e., $f(u)=f_{U}(u)$ for all $u \in U$ and $f(v)=f_{V}(v)$ for all $v \in V$.
(3)

$$
\begin{aligned}
R \bowtie\{\epsilon\} & =\left\{f: R \cup \emptyset \rightarrow \operatorname{dom} \mid f_{R} \in R \text { and } f_{\{\epsilon\}} \in\{\epsilon\}\right\} \\
& =\left\{f: R \rightarrow \operatorname{dom} \mid f_{R} \in R \text { and } f_{\{\epsilon\}} \in\{\epsilon\}\right\} \\
& =\left\{f: R \rightarrow \operatorname{dom} \mid f_{R} \in R\right\} \\
& =R
\end{aligned}
$$

Exercise 3

Exercise. Express the following operations using other operations presented in the lecture:

1. Intersection $R \cap S$.
2. Cartesian product $R \times S$.
3. Selection $\sigma_{n=a}(R)$ with a a constant.
4. Arbitrary constant tables in queries.

Solution.

Exercise 3

Exercise. Express the following operations using other operations presented in the lecture:

1. Intersection $R \cap S$.
2. Cartesian product $R \times S$.
3. Selection $\sigma_{n=a}(R)$ with a a constant.
4. Arbitrary constant tables in queries.

Solution.

1. Note that $R \cap S$ is well-defined only if the attributes of R and S coincide. Suppose that the common set of attributes is U. Then we have

$$
R \cap S=\{f: U \rightarrow \operatorname{dom} \mid f \in R \text { and } f \in S\}
$$

Exercise 3

Exercise. Express the following operations using other operations presented in the lecture:

1. Intersection $R \cap S$.
2. Cartesian product $R \times S$.
3. Selection $\sigma_{n=a}(R)$ with a a constant.
4. Arbitrary constant tables in queries.

Solution.

1. Note that $R \cap S$ is well-defined only if the attributes of R and S coincide. Suppose that the common set of attributes is U. Then we have

$$
\begin{aligned}
R \cap S & =\{f: U \rightarrow \operatorname{dom} \mid f \in R \text { and } f \in S\} \\
& =\left\{f: U \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{U} \in S\right\}
\end{aligned}
$$

Exercise 3

Exercise. Express the following operations using other operations presented in the lecture:

1. Intersection $R \cap S$.
2. Cartesian product $R \times S$.
3. Selection $\sigma_{n=a}(R)$ with a a constant.
4. Arbitrary constant tables in queries.

Solution.

1. Note that $R \cap S$ is well-defined only if the attributes of R and S coincide. Suppose that the common set of attributes is U. Then we have

$$
\begin{aligned}
R \cap S & =\{f: U \rightarrow \operatorname{dom} \mid f \in R \text { and } f \in S\} \\
& =\left\{f: U \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{U} \in S\right\} \\
& =\left\{f: U \cup U \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{U} \in S\right\}
\end{aligned}
$$

Exercise 3

Exercise. Express the following operations using other operations presented in the lecture:

1. Intersection $R \cap S$.
2. Cartesian product $R \times S$.
3. Selection $\sigma_{n=a}(R)$ with a a constant.
4. Arbitrary constant tables in queries.

Solution.

1. Note that $R \cap S$ is well-defined only if the attributes of R and S coincide. Suppose that the common set of attributes is U. Then we have

$$
\begin{aligned}
R \cap S & =\{f: U \rightarrow \operatorname{dom} \mid f \in R \text { and } f \in S\} \\
& =\left\{f: U \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{U} \in S\right\} \\
& =\left\{f: U \cup U \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{U} \in S\right\} \\
& =R \bowtie S
\end{aligned}
$$

Exercise 3

Exercise. Express the following operations using other operations presented in the lecture:

1. Intersection $R \cap S$.
2. Cartesian product $R \times S$.
3. Selection $\sigma_{n=a}(R)$ with a a constant.
4. Arbitrary constant tables in queries.

Solution.

1. Note that $R \cap S$ is well-defined only if the attributes of R and S coincide. Suppose that the common set of attributes is U. Then we have

$$
\begin{aligned}
R \cap S & =\{f: U \rightarrow \operatorname{dom} \mid f \in R \text { and } f \in S\} \\
& =\left\{f: U \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{U} \in S\right\} \\
& =\left\{f: U \cup U \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{U} \in S\right\} \\
& =R \bowtie S
\end{aligned}
$$

2. Suppose R has attributes U and S has attributes V. Let W be a set of fresh attributes with $|W|=|V|$ and $W \cap U=\emptyset$. Then, $R \times S=R \bowtie \delta_{\vec{V} \rightarrow \vec{W}}(S)$.

Exercise 3

Exercise. Express the following operations using other operations presented in the lecture:

1. Intersection $R \cap S$.
2. Cartesian product $R \times S$.
3. Selection $\sigma_{n=a}(R)$ with a a constant.
4. Arbitrary constant tables in queries.

Solution.

1. Note that $R \cap S$ is well-defined only if the attributes of R and S coincide. Suppose that the common set of attributes is U. Then we have

$$
\begin{aligned}
R \cap S & =\{f: U \rightarrow \operatorname{dom} \mid f \in R \text { and } f \in S\} \\
& =\left\{f: U \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{U} \in S\right\} \\
& =\left\{f: U \cup U \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{U} \in S\right\} \\
& =R \bowtie S
\end{aligned}
$$

2. Suppose R has attributes U and S has attributes V. Let W be a set of fresh attributes with $|W|=|V|$ and $W \cap U=\emptyset$. Then, $R \times S=R \bowtie \delta_{\vec{v} \rightarrow \vec{W}}(S)$.
3. $\sigma_{n=a}(R)=R \bowtie\{\{n \mapsto a\}\}$

Exercise 3

Exercise. Express the following operations using other operations presented in the lecture:

1. Intersection $R \cap S$.
2. Cartesian product $R \times S$.
3. Selection $\sigma_{n=a}(R)$ with a a constant.
4. Arbitrary constant tables in queries.

Solution.

1. Note that $R \cap S$ is well-defined only if the attributes of R and S coincide. Suppose that the common set of attributes is U. Then we have

$$
\begin{aligned}
R \cap S & =\{f: U \rightarrow \operatorname{dom} \mid f \in R \text { and } f \in S\} \\
& =\left\{f: U \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{U} \in S\right\} \\
& =\left\{f: U \cup U \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{U} \in S\right\} \\
& =R \bowtie S
\end{aligned}
$$

2. Suppose R has attributes U and S has attributes V. Let W be a set of fresh attributes with $|W|=|V|$ and $W \cap U=\emptyset$. Then, $R \times S=R \bowtie \delta_{\vec{v} \rightarrow \vec{W}}(S)$.
3. $\sigma_{n=a}(R)=R \bowtie\{\{n \mapsto a\}\}$
4. To create a constant table with a single row and many attribute-value pairs, simply join several single attribute-value pair constant tables (cf. query 7 in Exercise 1). Then use union to create a table with several rows.

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution.

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.
1.

$$
R \bowtie S=\left\{f: U \cup V \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{V} \in S\right\}
$$

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.
1.

$$
\begin{aligned}
R \bowtie S & =\left\{f: U \cup V \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{V} \in S\right\} \\
& =\left\{f: V \cup U \rightarrow \operatorname{dom} \mid f_{V} \in S \text { and } f_{R} \in R\right\}
\end{aligned}
$$

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.
1.

$$
\begin{aligned}
R \bowtie S & =\left\{f: U \cup V \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{V} \in S\right\} \\
& =\left\{f: V \cup U \rightarrow \operatorname{dom} \mid f_{V} \in S \text { and } f_{R} \in R\right\} \\
& =S \bowtie R
\end{aligned}
$$

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.
2.

$$
R \bowtie(S \bowtie T)=R \bowtie\left\{f: V \cup W \rightarrow \operatorname{dom} \mid f_{V} \in S \text { and } f_{W} \in T\right\}
$$

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.
2.

$$
\begin{aligned}
R \bowtie(S \bowtie T) & =R \bowtie\left\{f: V \cup W \rightarrow \operatorname{dom} \mid f_{V} \in S \text { and } f_{W} \in T\right\} \\
& =\left\{f: U \cup(V \cup W) \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and }\left(f_{V} \in S \text { and } f_{W} \in T\right)\right\}
\end{aligned}
$$

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.
2.

$$
\begin{aligned}
R \bowtie(S \bowtie T) & =R \bowtie\left\{f: V \cup W \rightarrow \operatorname{dom} \mid f_{V} \in S \text { and } f_{W} \in T\right\} \\
& =\left\{f: \cup \cup(V \cup W) \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and }\left(f_{V} \in S \text { and } f_{W} \in T\right)\right\} \\
& =\left\{f:(U \cup V) \cup W \rightarrow \operatorname{dom} \mid\left(f_{U} \in R \text { and } f_{V} \in S\right) \text { and } f_{W} \in T\right\}
\end{aligned}
$$

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.
2.

$$
\begin{aligned}
R \bowtie(S \bowtie T) & =R \bowtie\left\{f: V \cup W \rightarrow \operatorname{dom} \mid f_{V} \in S \text { and } f_{W} \in T\right\} \\
& =\left\{f: U \cup(V \cup W) \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and }\left(f_{V} \in S \text { and } f_{W} \in T\right)\right\} \\
& =\left\{f:(U \cup V) \cup W \rightarrow \operatorname{dom} \mid\left(f_{U} \in R \text { and } f_{V} \in S\right) \text { and } f_{W} \in T\right\} \\
& =\left\{f:(U \cup V) \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{V} \in S\right\} \bowtie T
\end{aligned}
$$

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.
2.

$$
\begin{aligned}
R \bowtie(S \bowtie T) & =R \bowtie\left\{f: V \cup W \rightarrow \operatorname{dom} \mid f_{V} \in S \text { and } f_{W} \in T\right\} \\
& =\left\{f: U \cup(V \cup W) \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and }\left(f_{V} \in S \text { and } f_{W} \in T\right)\right\} \\
& =\left\{f:(U \cup V) \cup W \rightarrow \operatorname{dom} \mid\left(f_{U} \in R \text { and } f_{V} \in S\right) \text { and } f_{W} \in T\right\} \\
& =\left\{f:(U \cup V) \rightarrow \operatorname{dom} \mid f_{U} \in R \text { and } f_{V} \in S\right\} \bowtie T \\
& =(R \bowtie S) \bowtie T
\end{aligned}
$$

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.
3.1

$$
\pi_{X}(R \cup S)=\pi_{X}(R) \cup \pi_{X}(S)
$$

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.
3.1

$$
\pi_{X}(R \cup S)=\pi_{X}(R) \cup \pi_{X}(S)
$$

Let $f \in \pi_{X}(R \cup S)$. Then there is some $f^{\prime} \in R \cup S$ with $f_{X}^{\prime}=f$ and hence $f \in \pi_{X}(R) \cup \pi_{X}(S)$.

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.
3.1

$$
\pi_{X}(R \cup S)=\pi_{X}(R) \cup \pi_{X}(S)
$$

Let $f \in \pi_{X}(R \cup S)$. Then there is some $f^{\prime} \in R \cup S$ with $f_{X}^{\prime}=f$ and hence $f \in \pi_{X}(R) \cup \pi_{X}(S)$.
Conversely, let $f \in \pi_{X}(R) \cup \pi_{X}(S)$. Then $f \in \pi_{X}(R)$ or $f \in \pi_{X}(S)$, and there is some $f^{\prime} \in R \cup S$ such that $f_{X}^{\prime}=f$.
Thus $f \in \pi_{X}(R \cup S)$.

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.
3.2

$$
\pi_{X}(R \cap S)=\pi_{X}(R) \cap \pi_{X}(S)
$$

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.
3.2

$$
\pi_{X}(R \cap S)=\pi_{X}(R) \cap \pi_{X}(S)
$$

Consider tables $R=\{\{A \mapsto 1, B \mapsto 2\}\}$ and $S=\{\{A \mapsto 1, B \mapsto 3\}\}$.

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.
3.2

$$
\pi_{X}(R \cap S)=\pi_{X}(R) \cap \pi_{X}(S)
$$

Consider tables $R=\{\{A \mapsto 1, B \mapsto 2\}\}$ and $S=\{\{A \mapsto 1, B \mapsto 3\}\}$.
Then $\pi_{A}(R \cap S)=\emptyset \subsetneq \pi_{A}(R) \cap \pi_{A}(S)=\{\{A \mapsto 1\}\}$.

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.
3.3

$$
\pi_{X}(R \bowtie S)=\pi_{X}(R) \bowtie \pi_{X}(S)
$$

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.
3.3

$$
\pi_{X}(R \bowtie S)=\pi_{X}(R) \bowtie \pi_{X}(S)
$$

Consider tables $R=\{\{A \mapsto 1, B \mapsto 2\}\}$ and $S=\{\{A \mapsto 1, B \mapsto 3\}\}$.

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.
3.3

$$
\pi_{X}(R \bowtie S)=\pi_{X}(R) \bowtie \pi_{X}(S)
$$

Consider tables $R=\{\{A \mapsto 1, B \mapsto 2\}\}$ and $S=\{\{A \mapsto 1, B \mapsto 3\}\}$.
Then $\pi_{A}(R \bowtie S)=\emptyset \subsetneq \pi_{A}(R) \bowtie \pi_{A}(S)=\{\{A \mapsto 1\}\}$.

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.
3.4

$$
\pi_{X}(R-S)=\pi_{X}(R)-\pi_{X}(S)
$$

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.
3.4

$$
\pi_{X}(R-S)=\pi_{X}(R)-\pi_{X}(S)
$$

Consider tables $R=\{\{A \mapsto 1, B \mapsto 2\}\}$ and $S=\{\{A \mapsto 1, B \mapsto 3\}\}$.

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.
3.4

$$
\pi_{X}(R-S)=\pi_{X}(R)-\pi_{X}(S)
$$

Consider tables $R=\{\{A \mapsto 1, B \mapsto 2\}\}$ and $S=\{\{A \mapsto 1, B \mapsto 3\}\}$.
Then $\pi_{A}(R-S)=\{\{A \mapsto 1\}\} \supsetneq \pi_{A}(R)-\pi_{A}(S)=\emptyset$.

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

4

$$
\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S) \quad \text { for all } \circ \in\{\cup, \cap,-\}
$$

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

4

$$
\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S) \quad \text { for all } \circ \in\{\cup, \cap,-\}
$$

True, proof is analogous to 3.1.

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

5

$$
\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S \quad \text { for } n \text { and } m \text { attributes of } R \text { only }
$$

Exercise 4

Exercise. Consider the following identities and decide for each whether it is true or false. If true, prove your answer using the definitions from the lecture; if false, give a counterexample.

1. $R \bowtie S=S \bowtie R$
2. $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
3. $\pi_{X}(R \circ S)=\pi_{X}(R) \circ \pi_{X}(S)$ for all $\circ \in\{\cup, \cap,-, \bowtie\}$
4. $\sigma_{n=m}(R \circ S)=\sigma_{n=m}(R) \circ \sigma_{n=m}(S)$ for all $\circ \in\{\cup, \cap,-\}$.
5. $\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S$, for n and m attributes of R only.

Why are these identities of interest?
Solution. These identities can be used to optimise queries, e.g., by pushing selection inwards so that joins receive smaller inputs.

5

$$
\sigma_{n=m}(R \bowtie S)=\sigma_{n=m}(R) \bowtie S \quad \text { for } n \text { and } m \text { attributes of } R \text { only }
$$

True, proof is analogous to 3.1 .

Exercise 5

Exercise. Let R^{I} and S^{I} be tables of schema $R[U]$ and $S[V]$, respectively. The division of R^{I} by S^{I}, written as ($R^{I} \div S^{I}$), is defined to be the maximal table over the attributes $U \backslash V$ that satisfies $\left(R^{I} \div S^{I}\right) \bowtie S^{I} \subseteq R^{I}$. Note that the joined tables here do not have any attributes in common, so the natural join works as a cross product.
Consider the following table and use the division operator to (1) express a query for the cities that have been visited by all people.
Visited

Person	City
Tomas	Berlin
Markus	Santiago
Markus	Berlin
Fred	New York
Fred	Berlin

Then, (2) express division using the standard relational algebra operators.

Solution.

(1)

$$
\text { Visited } \div \pi_{\text {Person }}(\text { Visited })
$$

Exercise 5

Exercise. Let R^{I} and S^{I} be tables of schema $R[U]$ and $S[V]$, respectively. The division of R^{I} by S^{I}, written as ($R^{I} \div S^{I}$), is defined to be the maximal table over the attributes $U \backslash V$ that satisfies $\left(R^{I} \div S^{I}\right) \bowtie S^{I} \subseteq R^{I}$. Note that the joined tables here do not have any attributes in common, so the natural join works as a cross product.
Consider the following table and use the division operator to (1) express a query for the cities that have been visited by all people.
Visited

Person	City
Tomas	Berlin
Markus	Santiago
Markus	Berlin
Fred	New York
Fred	Berlin

Then, (2) express division using the standard relational algebra operators.

Solution.

(1)

$$
\text { Visited } \div \pi_{\text {Person }}(\text { Visited })
$$

(2) Let X be the set of all attributes of R that are not attributes of S (i.e., $X=U \backslash V$).

$$
R \div S=\pi_{X}(R)-\pi_{X}\left[\left(\pi_{X}(R) \bowtie S\right)-R\right]
$$

Exercise 6

Exercise. Suggest how to write the relational algebra operations for using the unnamed perspective. What changes?
Solution.

Exercise 6

Exercise. Suggest how to write the relational algebra operations for using the unnamed perspective. What changes?
Solution.

- Natural join becomes cartesian product x.

Exercise 6

Exercise. Suggest how to write the relational algebra operations for using the unnamed perspective. What changes?
Solution.

- Natural join becomes cartesian product \times.
- No renaming.

Exercise 6

Exercise. Suggest how to write the relational algebra operations for using the unnamed perspective. What changes?

Solution.

- Natural join becomes cartesian product x.
- No renaming.
- Order matters in projections.

Exercise 6

Exercise. Suggest how to write the relational algebra operations for using the unnamed perspective. What changes?

Solution.

- Natural join becomes cartesian product x.
- No renaming.
- Order matters in projections.
- New set of operators: $\{\sigma, \pi, \cup,-, \times\}$.

Exercise 7

Exercise. The set of operations $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$ can express all queries of relational algebra. Show that it is not possible to reduce this set any further.
Solution.

Exercise 7

Exercise. The set of operations $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$ can express all queries of relational algebra. Show that it is not possible to reduce this set any further.
Solution.

- Operator δ is the only one that can rename attributes in tables.

Exercise 7

Exercise. The set of operations $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$ can express all queries of relational algebra. Show that it is not possible to reduce this set any further.
Solution.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.

Exercise 7

Exercise. The set of operations $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$ can express all queries of relational algebra. Show that it is not possible to reduce this set any further.

Solution.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator \bowtie is the only one that can produce tables with more attributes.

Exercise 7

Exercise. The set of operations $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$ can express all queries of relational algebra. Show that it is not possible to reduce this set any further.

Solution.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator \bowtie is the only one that can produce tables with more attributes.
- Operator \cup cannot be removed:

1. Let \mathcal{D} be the database containing the tables $R=\{\{A \mapsto 1\}\}$ and $S=\{\{A \mapsto 2\}\}$.

Exercise 7

Exercise. The set of operations $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$ can express all queries of relational algebra. Show that it is not possible to reduce this set any further.

Solution.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator \bowtie is the only one that can produce tables with more attributes.
- Operator \cup cannot be removed:

1. Let \mathcal{D} be the database containing the tables $R=\{\{A \mapsto 1\}\}$ and $S=\{\{A \mapsto 2\}\}$.
2. Then, $(R \cup S)(\mathcal{D})=\{\{A \mapsto 1\},\{A \mapsto 2\}\}$.

Exercise 7

Exercise. The set of operations $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$ can express all queries of relational algebra. Show that it is not possible to reduce this set any further.

Solution.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator \bowtie is the only one that can produce tables with more attributes.
- Operator \cup cannot be removed:

1. Let \mathcal{D} be the database containing the tables $R=\{\{A \mapsto 1\}\}$ and $S=\{\{A \mapsto 2\}\}$.
2. Then, $(R \cup S)(\mathcal{D})=\{\{A \mapsto 1\},\{A \mapsto 2\}\}$.
3. Let q be a query constructed using only $\{\sigma, \pi,-, \bowtie \bowtie, \delta\}$.

Exercise 7

Exercise. The set of operations $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$ can express all queries of relational algebra. Show that it is not possible to reduce this set any further.

Solution.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator \bowtie is the only one that can produce tables with more attributes.
- Operator \cup cannot be removed:

1. Let \mathcal{D} be the database containing the tables $R=\{\{A \mapsto 1\}\}$ and $S=\{\{A \mapsto 2\}\}$.
2. Then, $(R \cup S)(\mathcal{D})=\{\{A \mapsto 1\},\{A \mapsto 2\}\}$.
3. Let q be a query constructed using only $\{\sigma, \pi,-, \bowtie \bowtie, \delta\}$.
4. Every intermediate table produced in the evaluation of q over \mathcal{D} contains at most 1 row (proof via induction).

Exercise 7

Exercise. The set of operations $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$ can express all queries of relational algebra. Show that it is not possible to reduce this set any further.

Solution.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator \bowtie is the only one that can produce tables with more attributes.
- Operator \cup cannot be removed:

1. Let \mathcal{D} be the database containing the tables $R=\{\{A \mapsto 1\}\}$ and $S=\{\{A \mapsto 2\}\}$.
2. Then, $(R \cup S)(\mathcal{D})=\{\{A \mapsto 1\},\{A \mapsto 2\}\}$.
3. Let q be a query constructed using only $\{\sigma, \pi,-, \bowtie \bowtie, \delta\}$.
4. Every intermediate table produced in the evaluation of q over \mathcal{D} contains at most 1 row (proof via induction).
5. Then, $q(\mathcal{D}) \neq\{\{A \mapsto 1\},\{A \mapsto 2\}\}$.

Exercise 7

Exercise. The set of operations $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$ can express all queries of relational algebra. Show that it is not possible to reduce this set any further.

Solution.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator \bowtie is the only one that can produce tables with more attributes.
- Operator \cup cannot be removed:

1. Let \mathcal{D} be the database containing the tables $R=\{\{A \mapsto 1\}\}$ and $S=\{\{A \mapsto 2\}\}$.
2. Then, $(R \cup S)(\mathcal{D})=\{\{A \mapsto 1\},\{A \mapsto 2\}\}$.
3. Let q be a query constructed using only $\{\sigma, \pi,-, \bowtie \bowtie, \delta\}$.
4. Every intermediate table produced in the evaluation of q over \mathcal{D} contains at most 1 row (proof via induction).
5. Then, $q(\mathcal{D}) \neq\{\{A \mapsto 1\},\{A \mapsto 2\}\}$.
6. The query language $\{\sigma, \pi,-, \bowtie, \delta\}$ is less expressive than $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$.

Exercise 7

Exercise. The set of operations $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$ can express all queries of relational algebra. Show that it is not possible to reduce this set any further.

Solution.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator \bowtie is the only one that can produce tables with more attributes.
- Operator \cup cannot be removed.
- Operator σ cannot be removed:

1. Let \mathcal{D} be the database containing the table $R=\{\{A \mapsto 1\},\{A \mapsto 2\}\}$.

Exercise 7

Exercise. The set of operations $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$ can express all queries of relational algebra. Show that it is not possible to reduce this set any further.

Solution.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator \bowtie is the only one that can produce tables with more attributes.
- Operator \cup cannot be removed.
- Operator σ cannot be removed:

1. Let \mathcal{D} be the database containing the table $R=\{\{A \mapsto 1\},\{A \mapsto 2\}\}$.
2. Then, $\sigma_{A=B}\left(R \bowtie \delta_{A \rightarrow B}(R)\right)(\mathcal{D})=\{\{A \mapsto 1, B \mapsto 1\},\{A \mapsto 2, B \mapsto 2\}\}$.

Exercise 7

Exercise. The set of operations $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$ can express all queries of relational algebra. Show that it is not possible to reduce this set any further.

Solution.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator \bowtie is the only one that can produce tables with more attributes.
- Operator \cup cannot be removed.
- Operator σ cannot be removed:

1. Let \mathcal{D} be the database containing the table $R=\{\{A \mapsto 1\},\{A \mapsto 2\}\}$.
2. Then, $\sigma_{A=B}\left(R \bowtie \delta_{A \rightarrow B}(R)\right)(\mathcal{D})=\{\{A \mapsto 1, B \mapsto 1\},\{A \mapsto 2, B \mapsto 2\}\}$.
3. Let q be a query constructed using only $\{\pi, \cup,-, \bowtie \infty, \delta\}$.

Exercise 7

Exercise. The set of operations $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$ can express all queries of relational algebra. Show that it is not possible to reduce this set any further.

Solution.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator \bowtie is the only one that can produce tables with more attributes.
- Operator \cup cannot be removed.
- Operator σ cannot be removed:

1. Let \mathcal{D} be the database containing the table $R=\{\{A \mapsto 1\},\{A \mapsto 2\}\}$.
2. Then, $\sigma_{A=B}\left(R \bowtie \delta_{A \rightarrow B}(R)\right)(\mathcal{D})=\{\{A \mapsto 1, B \mapsto 1\},\{A \mapsto 2, B \mapsto 2\}\}$.
3. Let q be a query constructed using only $\{\pi, \cup,-, \bowtie \infty, \delta\}$.
4. Via induction, we can show that every intermediate table T produced in the evaluation of q over \mathcal{D} satisfies the following property: if T has n attributes, then T contains 2^{n} rows featuring every single combination of the symbols 1 and 2 .

Exercise 7

Exercise. The set of operations $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$ can express all queries of relational algebra. Show that it is not possible to reduce this set any further.

Solution.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator \bowtie is the only one that can produce tables with more attributes.
- Operator \cup cannot be removed.
- Operator σ cannot be removed:

1. Let \mathcal{D} be the database containing the table $R=\{\{A \mapsto 1\},\{A \mapsto 2\}\}$.
2. Then, $\sigma_{A=B}\left(R \bowtie \delta_{A \rightarrow B}(R)\right)(\mathcal{D})=\{\{A \mapsto 1, B \mapsto 1\},\{A \mapsto 2, B \mapsto 2\}\}$.
3. Let q be a query constructed using only $\{\pi, \cup,-, \bowtie \infty, \delta\}$.
4. Via induction, we can show that every intermediate table T produced in the evaluation of q over \mathcal{D} satisfies the following property: if T has n attributes, then T contains 2^{n} rows featuring every single combination of the symbols 1 and 2 .
5. Then, $q(\mathcal{D}) \neq\{\{A \mapsto 1, B \mapsto 1\},\{A \mapsto 2, B \mapsto 2\}\}$.

Exercise 7

Exercise. The set of operations $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$ can express all queries of relational algebra. Show that it is not possible to reduce this set any further.

Solution.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator \bowtie is the only one that can produce tables with more attributes.
- Operator \cup cannot be removed.
- Operator σ cannot be removed:

1. Let \mathcal{D} be the database containing the table $R=\{\{A \mapsto 1\},\{A \mapsto 2\}\}$.
2. Then, $\sigma_{A=B}\left(R \bowtie \delta_{A \rightarrow B}(R)\right)(\mathcal{D})=\{\{A \mapsto 1, B \mapsto 1\},\{A \mapsto 2, B \mapsto 2\}\}$.
3. Let q be a query constructed using only $\{\pi, \cup,-, \bowtie \infty, \delta\}$.
4. Via induction, we can show that every intermediate table T produced in the evaluation of q over \mathcal{D} satisfies the following property: if T has n attributes, then T contains 2^{n} rows featuring every single combination of the symbols 1 and 2 .
5. Then, $q(\mathcal{D}) \neq\{\{A \mapsto 1, B \mapsto 1\},\{A \mapsto 2, B \mapsto 2\}\}$.
6. The query language $\{\pi, \cup,-, \bowtie, \delta\}$ is less expressive than $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$.

Exercise 7

Exercise. The set of operations $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$ can express all queries of relational algebra. Show that it is not possible to reduce this set any further.

Solution.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator \bowtie is the only one that can produce tables with more attributes.
- Operator \cup cannot be removed.
- Operator σ cannot be removed.
- Operator - cannot be removed:

1. Let $R-S$.

Exercise 7

Exercise. The set of operations $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$ can express all queries of relational algebra. Show that it is not possible to reduce this set any further.

Solution.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator \bowtie is the only one that can produce tables with more attributes.
- Operator \cup cannot be removed.
- Operator σ cannot be removed.
- Operator - cannot be removed:

1. Let $R-S$.
2. Suppose for a contradiction that there is some query q over $\{\sigma, \pi, \cup, \bowtie, \delta\}$ that is equivalent to $R-S$.

Exercise 7

Exercise. The set of operations $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$ can express all queries of relational algebra. Show that it is not possible to reduce this set any further.

Solution.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator \bowtie is the only one that can produce tables with more attributes.
- Operator \cup cannot be removed.
- Operator σ cannot be removed.
- Operator - cannot be removed:

1. Let $R-S$.
2. Suppose for a contradiction that there is some query q over $\{\sigma, \pi, \cup, \bowtie, \delta\}$ that is equivalent to $R-S$.
3. Let \mathcal{D} be a database containing the tables $R=\{\{A \mapsto+\},\{A \mapsto *\}\}$ and $S=\{\{A \mapsto+\}\}$ where + and $*$ are two fresh constants that do not occur in q.

Exercise 7

Exercise. The set of operations $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$ can express all queries of relational algebra. Show that it is not possible to reduce this set any further.

Solution.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator \bowtie is the only one that can produce tables with more attributes.
- Operator \cup cannot be removed.
- Operator σ cannot be removed.
- Operator - cannot be removed:

1. Let $R-S$.
2. Suppose for a contradiction that there is some query q over $\{\sigma, \pi, \cup, \bowtie, \delta\}$ that is equivalent to $R-S$.
3. Let \mathcal{D} be a database containing the tables $R=\{\{A \mapsto+\},\{A \mapsto *\}$ and $S=\{\{A \mapsto+\}\}$ where + and $*$ are two fresh constants that do not occur in q.
4. Then, $(R-S)(\mathcal{D})=\{\{A \mapsto *\}\}$

Exercise 7

Exercise. The set of operations $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$ can express all queries of relational algebra. Show that it is not possible to reduce this set any further.

Solution.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator \bowtie is the only one that can produce tables with more attributes.
- Operator \cup cannot be removed.
- Operator σ cannot be removed.
- Operator - cannot be removed:

1. Let $R-S$.
2. Suppose for a contradiction that there is some query q over $\{\sigma, \pi, \cup, \bowtie \infty, \delta\}$ that is equivalent to $R-S$.
3. Let \mathcal{D} be a database containing the tables $R=\{\{A \mapsto+\},\{A \mapsto *\}$ and $S=\{\{A \mapsto+\}\}$ where + and $*$ are two fresh constants that do not occur in q.
4. Then, $(R-S)(\mathcal{D})=\{\{A \mapsto *\}\}$
5. Every intermediate tables produced in the evaluation of q over \mathcal{D} contains some row in which every attribute is mapped to + (proof via induction).

Exercise 7

Exercise. The set of operations $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$ can express all queries of relational algebra. Show that it is not possible to reduce this set any further.

Solution.

- Operator δ is the only one that can rename attributes in tables.
- Operator π is the only one that can produce tables with less attributes.
- Operator \bowtie is the only one that can produce tables with more attributes.
- Operator \cup cannot be removed.
- Operator σ cannot be removed.
- Operator - cannot be removed:

1. Let $R-S$.
2. Suppose for a contradiction that there is some query q over $\{\sigma, \pi, \cup, \bowtie \infty, \delta\}$ that is equivalent to $R-S$.
3. Let \mathcal{D} be a database containing the tables $R=\{\{A \mapsto+\},\{A \mapsto *\}\}$ and $S=\{\{A \mapsto+\}\}$ where + and $*$ are two fresh constants that do not occur in q.
4. Then, $(R-S)(\mathcal{D})=\{\{A \mapsto *\}\}$
5. Every intermediate tables produced in the evaluation of q over \mathcal{D} contains some row in which every attribute is mapped to + (proof via induction).
6. The query language $\{\sigma, \pi, \cup, \bowtie, \delta\}$ is less expressive than $\{\sigma, \pi, \cup,-, \bowtie, \delta\}$.
