

COMPLEXITY THEORY

Lecture 14: P vs. NP: Ladner's Theorem

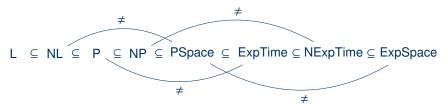
Markus Krötzsch Knowledge-Based Systems

TU Dresden, 6th Dec 2017

Review

Review: Hierarchies and Gaps

Hierarchy theorems tell us that more time/space leads to more power:



Gap theorems tell us that, for non-constructible functions as time/space bounds, arbitrary (constructible or not) boosts in resources may not lead to more power

Any natural problems in the hierarchy?

To show that complexity classes are different

- We have defined concrete diagonalisation languages that can show the difference (i.e., our argument was constructive),
- but these diagonalisation languages are rather artificial (i.e., not natural).

Are there, e.g., any natural ExpTime problems that are not in P?

Any natural problems in the hierarchy?

To show that complexity classes are different

- We have defined concrete diagonalisation languages that can show the difference (i.e., our argument was constructive),
- but these diagonalisation languages are rather artificial (i.e., not natural).

Are there, e.g., any natural ExpTime problems that are not in P?

Yes, many:

Theorem 14.1: If **L** is ExpTime-hard, then $\mathbf{L} \notin \mathbf{P}$.

Any natural problems in the hierarchy?

To show that complexity classes are different

- We have defined concrete diagonalisation languages that can show the difference (i.e., our argument was constructive),
- but these diagonalisation languages are rather artificial (i.e., not natural).

Are there, e.g., any natural ExpTime problems that are not in P?

Yes, many:

Theorem 14.1: If **L** is ExpTime-hard, then $L \notin P$.

Proof: We have shown that there is a language $\mathbf{D} \in \text{ExpTime} \setminus P$. If \mathbf{L} is ExpTime-hard, then there is a polynomial many-one reduction $\mathbf{D} \leq_p \mathbf{L}$. Therefore, if \mathbf{L} were in P, then so would \mathbf{D} – contradiction.

Similar results hold for other classes we separated: A problem that is hard for the larger class cannot be included in the smaller.

Markus Krötzsch, 6th Dec 2017

Complexity Theory

Ladner's Theorem

P vs. NP revisited

We have seen that a great variety of difficult problems in NP turn out to be NP-complete.

A natural question to ask is whether this apparent dichotomy is a law of nature:

Hypothesis: Every problem in NP is either in P or NP-complete.

We have seen that a great variety of difficult problems in NP turn out to be NP-complete.

A natural question to ask is whether this apparent dichotomy is a law of nature:

Hypothesis: Every problem in NP is either in P or NP-complete.

In 1975, Richard E. Ladner showed that this is wrong, unless P = NP

(in the latter case, uninterstingly, P would turn out to be exactly the set of NP-complete problems)

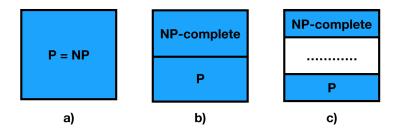
Theorem 14.2 (Ladner, 1975): If $P \neq NP$, then there are problems in NP that are neither in P nor NP-complete.

Such problems are called NP-intermediate.

Illustration

Theorem 14.2 (Ladner, 1975): If $P \neq NP$, then there are problems in NP that are neither in P nor NP-complete.

In other words, given the following illustrations of the possible relationships between P and NP:



Ladner tells us that the middle cannot be correct.

Markus Krötzsch, 6th Dec 2017

Proving the Theorem

Theorem 14.2 (Ladner, 1975): If $P \neq NP$, then there are problems in NP that are neither in P nor NP-complete.

Proof idea: We will directly define an NP-intermediate language by defining an NTM \mathcal{K} that recognises it.

Proving the Theorem

Theorem 14.2 (Ladner, 1975): If $P \neq NP$, then there are problems in NP that are neither in P nor NP-complete.

Proof idea: We will directly define an NP-intermediate language by defining an NTM ${\cal K}$ that recognises it.

- We want to construct $L(\mathcal{K})$ to be:
- (1) different from all problems in P
- (2) different from all problems that SAT can be reduced to
- **Observation:** This is similar to two concurrent diagonalisation arguments

Proving the Theorem

Theorem 14.2 (Ladner, 1975): If $P \neq NP$, then there are problems in NP that are neither in P nor NP-complete.

Proof idea: We will directly define an NP-intermediate language by defining an NTM ${\cal K}$ that recognises it.

We want to construct $L(\mathcal{K})$ to be:

- (1) different from all problems in P
- (2) different from all problems that SAT can be reduced to

Observation: This is similar to two concurrent diagonalisation arguments

Moreover, the sets we diagonalise against are effectively enumerable:

- There is an effective enumeration M₀, M₁, M₂,... of all polynomially time-bounded DTMs, each together with a suitable bounding function
 For example, enumerate all pairs of TMs and polynomials, and make the enumeration consist of the TMs obtained by artificially restricting the run of a TM with a suitable countdown.
- There is an effective enumeration $\mathcal{R}_0, \mathcal{R}_1, \mathcal{R}_2, \ldots$ of all polynomial many-one reductions, each together with a suitable bounding function

This is similar to enumerating polytime TMs; we can restrict to one input alphabet that we also use for SAT

The problem with diagonalisation

How can we do two diagonalisations at once?

The problem with diagonalisation

How can we do two diagonalisations at once? — Simply interleave the enumerations:

- On each even number 2*i*, show that the *i*th polytime TM M_i is not equivalent to K: there is w such that M_i(w) ≠ K(w)
- For each odd number 2i + 1, show that the *i*th reduction \mathcal{R}_i does not reduce \mathcal{K} to **SAT**:

there is *w* such that $\mathcal{K}(\mathcal{R}_i(w)) \neq \mathbf{Sat}(w)$

The problem with diagonalisation

How can we do two diagonalisations at once? — Simply interleave the enumerations:

- On each even number 2*i*, show that the *i*th polytime TM M_i is not equivalent to K: there is w such that M_i(w) ≠ K(w)
- For each odd number 2i + 1, show that the *i*th reduction \mathcal{R}_i does not reduce \mathcal{K} to **SAT**:

there is *w* such that $\mathcal{K}(\mathcal{R}_i(w)) \neq \mathbf{Sat}(w)$

Nevertheless, there is a problem: How can we flip the output of SAT?

- \mathcal{K} is required to run in NP
- Computing the actual result of **SAT** is NP-hard
- To show K(R_i(w)) ≠ SAT(w), one might have to show w ∉ SAT, which is presumably not in NP
- \rightsquigarrow the required computation seems too hard!

Solution: Lazy diagonalisation

Idea: Do not attempt to show too much on small inputs, but wait patiently until inputs are large enough to show the required differences

Main ingredients:

- A very slow growing but polynomially computable function *f*
- A problem in NP that is NP-hard: SAT
- A problem in NP that is not NP-hard:

Solution: Lazy diagonalisation

Idea: Do not attempt to show too much on small inputs, but wait patiently until inputs are large enough to show the required differences

Main ingredients:

- A very slow growing but polynomially computable function *f*
- A problem in NP that is NP-hard: SAT
- A problem in NP that is not NP-hard: Ø

Solution: Lazy diagonalisation

Idea: Do not attempt to show too much on small inputs, but wait patiently until inputs are large enough to show the required differences

Main ingredients:

- A very slow growing but polynomially computable function *f*
- A problem in NP that is NP-hard: SAT
- A problem in NP that is not NP-hard: Ø

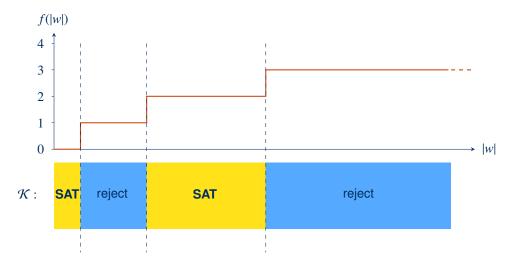
We will define a TM \mathcal{K} that does the following on input w:

- (1) Compute the value f(|w|)
- (2) If f(|w|) is even: return whether $w \in Sat$
- (3) If f(|w|) is odd: return whether $w \in \emptyset$, i.e., reject

Intuition: the NP-intermediate language $L(\mathcal{K})$ is **Sat** with "holes punched out of it" (namely for all inputs where *f* is odd)

Illustration of \mathcal{K} 's behaviour

We can sketch the behaviour of ${\mathcal K}$ as follows:



Reminder: $\mathcal{K}(w)$ is **Sat**(*w*) if f(|w|) is even, and *false* if f(|w|) is odd.

The key to the proof is the definition of f – this is where the diagonalisation happens.

Reminder: $\mathcal{K}(w)$ is **Sat**(*w*) if f(|w|) is even, and *false* if f(|w|) is odd.

The key to the proof is the definition of f – this is where the diagonalisation happens.

Intuition: Keep the current value of f until progress has been made in diagonalisation

- Keep an even value f(|w|) = 2i until you can show in polynomial time (in |w|) that there is v such that M_i(v) ≠ K(v)
- Keep an odd value f(|w|) = 2i + 1 until you can show in polynomial time (in |w|) that there is v such that $\mathcal{K}(\mathcal{R}_i(v)) \neq \mathbf{Sat}(v)$

Reminder: $\mathcal{K}(w)$ is **Sat**(*w*) if f(|w|) is even, and *false* if f(|w|) is odd.

The key to the proof is the definition of f – this is where the diagonalisation happens.

Intuition: Keep the current value of f until progress has been made in diagonalisation

- Keep an even value f(|w|) = 2i until you can show in polynomial time (in |w|) that there is v such that M_i(v) ≠ K(v)
- Keep an odd value f(|w|) = 2i + 1 until you can show in polynomial time (in |w|) that there is v such that $\mathcal{K}(\mathcal{R}_i(v)) \neq \mathbf{Sat}(v)$

If we can do this in NP, it will be enough already:

Reminder: $\mathcal{K}(w)$ is **Sat**(*w*) if f(|w|) is even, and *false* if f(|w|) is odd.

The key to the proof is the definition of f – this is where the diagonalisation happens.

Intuition: Keep the current value of f until progress has been made in diagonalisation

- Keep an even value f(|w|) = 2i until you can show in polynomial time (in |w|) that there is v such that M_i(v) ≠ K(v)
- Keep an odd value f(|w|) = 2i + 1 until you can show in polynomial time (in |w|) that there is v such that $\mathcal{K}(\mathcal{R}_i(v)) \neq \mathbf{Sat}(v)$

If we can do this in NP, it will be enough already:

If K were equivalent to any M_i, then f would eventually become an even constant, and K would solve SAT on all but finitely many instances
 → K would be NP-hard, and equivalent to a polytime TM → P = NP

Reminder: $\mathcal{K}(w)$ is **Sat**(*w*) if f(|w|) is even, and *false* if f(|w|) is odd.

The key to the proof is the definition of f – this is where the diagonalisation happens.

Intuition: Keep the current value of f until progress has been made in diagonalisation

- Keep an even value f(|w|) = 2i until you can show in polynomial time (in |w|) that there is v such that M_i(v) ≠ K(v)
- Keep an odd value f(|w|) = 2i + 1 until you can show in polynomial time (in |w|) that there is v such that $\mathcal{K}(\mathcal{R}_i(v)) \neq \mathbf{Sat}(v)$

If we can do this in NP, it will be enough already:

- If K were equivalent to any M_i, then f would eventually become an even constant, and K would solve SAT on all but finitely many instances
 → K would be NP-hard, and equivalent to a polytime TM → P = NP

In each case, this contradicts our assumption that $P \neq NP$

We consider some fixed deterministic TM S with L(S) = Sat, and an enumeration v_0, v_1, \ldots of all words ordered by length, and lexicographic for words of equal length.

Reminder: $\mathcal{K}(w)$ is $\mathcal{S}(w)$ if f(|w|) is even, and *false* if f(|w|) is odd.

We consider some fixed deterministic TM S with L(S) = Sat, and an enumeration v_0, v_1, \ldots of all words ordered by length, and lexicographic for words of equal length.

Reminder: $\mathcal{K}(w)$ is $\mathcal{S}(w)$ if f(|w|) is even, and *false* if f(|w|) is odd.

We consider some fixed deterministic TM S with L(S) = Sat, and an enumeration v_0, v_1, \ldots of all words ordered by length, and lexicographic for words of equal length.

Reminder: $\mathcal{K}(w)$ is $\mathcal{S}(w)$ if f(|w|) is even, and *false* if f(|w|) is odd.

Definition: The value of *f* on input *w* with |w| = n is defined recursively

Perform the computations of f(0), f(1), f(2), ... in order until n computing steps have been performed in total. Store the largest value f(l) = k that could be computed in this time (set k = 0 if no value was computed).

We consider some fixed deterministic TM S with L(S) = Sat, and an enumeration v_0, v_1, \ldots of all words ordered by length, and lexicographic for words of equal length.

Reminder: $\mathcal{K}(w)$ is $\mathcal{S}(w)$ if f(|w|) is even, and *false* if f(|w|) is odd.

- Perform the computations of f(0), f(1), f(2), ... in order until n computing steps have been performed in total. Store the largest value f(l) = k that could be computed in this time (set k = 0 if no value was computed).
- (2) Determine if f(n) should remain k or increase to k + 1:

We consider some fixed deterministic TM S with L(S) = Sat, and an enumeration v_0, v_1, \ldots of all words ordered by length, and lexicographic for words of equal length.

Reminder: $\mathcal{K}(w)$ is $\mathcal{S}(w)$ if f(|w|) is even, and *false* if f(|w|) is odd.

- Perform the computations of f(0), f(1), f(2), ... in order until n computing steps have been performed in total. Store the largest value f(l) = k that could be computed in this time (set k = 0 if no value was computed).
- (2) Determine if f(n) should remain k or increase to k + 1:
 - (2.a) If k = 2i is even: Iterate over all words v, simulate $\mathcal{M}_i(v)$, $\mathcal{S}(v)$, and (recursively) compute f(|v|). Terminate this effort after n steps. If a word is found such that $\mathcal{K}(v) \neq \mathcal{M}_i(v)$, then return k + 1; else return k

We consider some fixed deterministic TM S with L(S) = Sat, and an enumeration v_0, v_1, \ldots of all words ordered by length, and lexicographic for words of equal length.

Reminder: $\mathcal{K}(w)$ is $\mathcal{S}(w)$ if f(|w|) is even, and *false* if f(|w|) is odd.

- Perform the computations of f(0), f(1), f(2), ... in order until n computing steps have been performed in total. Store the largest value f(l) = k that could be computed in this time (set k = 0 if no value was computed).
- (2) Determine if f(n) should remain k or increase to k + 1:
 - (2.a) If k = 2i is even: Iterate over all words v, simulate $\mathcal{M}_i(v)$, $\mathcal{S}(v)$, and (recursively) compute f(|v|). Terminate this effort after n steps. If a word is found such that $\mathcal{K}(v) \neq \mathcal{M}_i(v)$, then return k + 1; else return k
 - (2.b) If k = 2i + 1 is odd: Iterate over all words v, simulate $\mathcal{R}_i(v)$ (this produces a word), $\mathcal{S}(v)$, $\mathcal{S}(\mathcal{R}_i(v))$, and (recursively) compute $f(|\mathcal{R}_i(v)|)$. Terminate this effort after *n* steps. If a word is found such that $\mathcal{K}(\mathcal{R}_i(v)) \neq \mathcal{S}(v)$, then return k + 1; else return *k*.

ls *f* well-defined?

Our definition of f computes values for f recursively. Is this ok?

- Yes, the computation that needs to be done for each f(n) is fully defined
- All the simulated TMs are known or computable
- Since computation is time-limited to the input value *n*, there is no danger of endless recursion
- For example, f(0) = 0: nothing will be achieved in 0 steps

ls *f* well-defined?

Our definition of f computes values for f recursively. Is this ok?

- Yes, the computation that needs to be done for each f(n) is fully defined
- All the simulated TMs are known or computable
- Since computation is time-limited to the input value *n*, there is no danger of endless recursion
- For example, f(0) = 0: nothing will be achieved in 0 steps

Indeed, *f* grows very slowly!

- A large input *n* might be needed to find the next counterexample word *v* needed in diagonalisation
- Even if such *v* was found in *n* steps (making progress from *n* to *n* + 1), it will be only much later that *f*(*n*) can be computed in step (1) and *f* will even start to look for a way of getting to *n* + 2.
- In fact, already the requirement to recompute all previous values of *f* before considering an increase ensures that *f* ∈ *O*(log log *n*).

Theorem 14.2 (Ladner, 1975): If $P \neq NP$, then there are problems in NP that are neither in P nor NP-complete.

Proof: Let \mathcal{K} be defined as before.

Theorem 14.2 (Ladner, 1975): If $P \neq NP$, then there are problems in NP that are neither in P nor NP-complete.

Proof: Let \mathcal{K} be defined as before.

 $\ensuremath{\mathcal{K}}$ runs in nodeterministic polynomial time:

- The computation of *f* is in polynomial deterministic time (since it is artificially bounded to a short time)
- The computation of **SAT** for the cases where f(|w|) is even is possible in NP

Theorem 14.2 (Ladner, 1975): If $P \neq NP$, then there are problems in NP that are neither in P nor NP-complete.

Proof: Let \mathcal{K} be defined as before.

 $\ensuremath{\mathcal{K}}$ runs in nodeterministic polynomial time:

- The computation of *f* is in polynomial deterministic time (since it is artificially bounded to a short time)
- The computation of **Sat** for the cases where f(|w|) is even is possible in NP

 $L(\mathcal{K})$ is not in P: As argued before: if it were in P, it would be equivalent to some polytime TM \mathcal{M}_i , and f would eventually be constant at 2i, making \mathcal{K} equivalent to **SAT** (up to finite variations), which contradicts $P \neq NP$.

Theorem 14.2 (Ladner, 1975): If $P \neq NP$, then there are problems in NP that are neither in P nor NP-complete.

Proof: Let \mathcal{K} be defined as before.

 ${\cal K}$ runs in nodeterministic polynomial time:

- The computation of *f* is in polynomial deterministic time (since it is artificially bounded to a short time)
- The computation of **Sat** for the cases where f(|w|) is even is possible in NP

 $L(\mathcal{K})$ is not in P: As argued before: if it were in P, it would be equivalent to some polytime TM \mathcal{M}_i , and f would eventually be constant at 2i, making \mathcal{K} equivalent to **SAT** (up to finite variations), which contradicts $P \neq NP$.

L(\mathcal{K}) is not in NP-hard: As argued before: if it were NP-hard, there would be a polynomial many-one reduction \mathcal{R}_i from **Sat**, and *f* would eventually be constant at 2i + 1, making \mathcal{K} equivalent to \emptyset (up to finite variations), which contradicts $P \neq NP$. Markus Krötzsch, 6th Dec 2017 Complexity Theory slide 15 of 18

Note 1: It is interesting to meditate on the following facts:

- We have defined a rather "busy" computation of *f* that checks that diagonalisation (over two different sets) must happen
- This definition of computation is essential to prove the result
- Nevertheless, diagonalisation remained "internal": from the outside, K is just a TM that sometimes solves SAT (for a long range of inputs), and at other times just rejects every input (again for very long ranges of inputs)

Note 1: It is interesting to meditate on the following facts:

- We have defined a rather "busy" computation of *f* that checks that diagonalisation (over two different sets) must happen
- This definition of computation is essential to prove the result
- Nevertheless, diagonalisation remained "internal": from the outside, *K* is just a TM that sometimes solves SAT (for a long range of inputs), and at other times just rejects every input (again for very long ranges of inputs)

Note 2: The constructed language is very artificial

• It is very "non-uniform" in terms of how hard it is, alternating between long stretches of NP-hardness and long stretches of triviality

Note 1: It is interesting to meditate on the following facts:

- We have defined a rather "busy" computation of *f* that checks that diagonalisation (over two different sets) must happen
- This definition of computation is essential to prove the result
- Nevertheless, diagonalisation remained "internal": from the outside, *K* is just a TM that sometimes solves SAT (for a long range of inputs), and at other times just rejects every input (again for very long ranges of inputs)

Note 2: The constructed language is very artificial

• It is very "non-uniform" in terms of how hard it is, alternating between long stretches of NP-hardness and long stretches of triviality

Note 3: Are there any natural problems that are known to be NP-intermediate?

Note 1: It is interesting to meditate on the following facts:

- We have defined a rather "busy" computation of *f* that checks that diagonalisation (over two different sets) must happen
- This definition of computation is essential to prove the result
- Nevertheless, diagonalisation remained "internal": from the outside, K is just a TM that sometimes solves SAT (for a long range of inputs), and at other times just rejects every input (again for very long ranges of inputs)

Note 2: The constructed language is very artificial

• It is very "non-uniform" in terms of how hard it is, alternating between long stretches of NP-hardness and long stretches of triviality

Note 3: Are there any natural problems that are known to be NP-intermediate?

- No: finding one would prove $P \neq NP$
- Candidate problems (link) include, e.g., GRAPH IsomoRPHISM and Factoring Beware: the latter is not about deciding if a number is prime, but about checking something specific about its factors, e.g., whether the largest factor contains at least one 7 when written in decimal

15min for Teaching Evaluation

Summary and Outlook

Ladner's theorem tells us that, in the inuitive case that $P \neq NP$, there must be (counterintuitively?) many problems in NP that are neither polynomially solvable nor NP-complete

The proof is based on a technique of lazy diagonalisation

What's next?

- Generalising Ladner's Theorem
- Computing with oracles (reprise)
- The limits of diagonalisation, proved by diagonalisation