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1 Introduction

The description logic £L belongs to the family of logic-based knowledge representation for-
malisms. It allows a user to define concepts with the help of concept names (N.), role names
(N,) and constructors: conjunction (M), existential restriction (Ir.C for » € N, and a concept
C') and top constructor (T).

Unification in Description Logics has been introduced in [6]. A unification problem in such
logic is defined as a set of subsumptions between concepts which contain occurrences of a
distinct set of concept names (called variables) and asks for definitions of these concept names,
which would make the subsumptions valid.

Unification in &L corresponds to unification modulo semilattices with monotone operators
[5]. In [4], we were able to show that unification in EL is NP-complete. The problem is how to
extend the unification in EL to such unification with a background ontology in the form of a set
of definitions of some concept names occuring in the unification problem, or more generally in
the form of additional statements about concept inclusions. If the background ontology is just
a set of non-cyclic definitions, unification in £L is NP-complete [5]. If the background ontology
satisfies some cycle restriction, it is still NP-complete [2]. At the moment it is not known what
is the status of the unification problem in £ with a background ontology in the general case.

In this paper, instead of restricting the background ontology, we allow cyclic definitions to
be used as unifiers. Moreover, we interpret these definitions in a greatest fixpoint semantics,
while the background ontology is still interpreted in the usual descriptive semantics. We show
that if the concept of unification in £C is modified in this way, such unification is NP-complete.
Detailed proofs and examples can be found in [3].

2 The Description Logic L

Concept descriptions written in the language of EL are interpreted over an interpretation Z =
(AZ,.T) which consists of a non-empty domain AZ and an interpretation function -Z that maps
concept names to subsets of AZ and role names to binary relations over AZ. This function is
inductively extended to concept descriptions as follows:
TI:=A%, (cnD)?:=Cc*tnD%, (I.C)L:={z|3y: (z,y) erf Aye CT}

A concept definition is an expression of the form X = C' where X is a concept name and
C' is a concept description, and a general concept inclusion (GCI) is an expression of the form
C C D, where C, D are concept descriptions. An interpretation Z is a model of this concept
definition (this GCI) if it satisfies X% = CZ (CT C D?). This semantics for GCIs and concept
definitions is usually called descriptive semantics.

A TBoxz is a finite set T of concept definitions that does not contain multiple definitions of
the same concept name. Note that we do mot prohibit cyclic dependencies among the concept
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definitions in a TBox. An acyclic TBoz is a TBox without cyclic dependencies. An ontology is
a finite set of GCIs. The interpretation Z is a model of a TBox (ontology) iff it is a model of
all concept definitions (GCIs) contained in it.

A concept description C is subsumed by a concept description D w.r.t. an ontology O
(written C Cop D) if every model of O is also a model of the GCI C T D. We say that C is
equivalent to D w.r.t. O (C =p D) if C Co D and D Cp C. As shown in [7], subsumption
w.r.t. EL-ontologies is decidable in polynomial time.

3 Hybrid Ontologies

We assume that the set of concept names N¢ is partitioned into the set of primitive concepts
Nprim and the set of defined concepts Ngef.

Definition 1 (Hybrid ££-ontologies). A hybrid £L-ontology is a pair (O, T), where O is an
& L-ontology containing only concept names from Ny, and T is a (possibly cyclic) ££-TBox
such that X = C € T if and only if X € Ngy.

A primitive interpretation J is defined like an interpretation, with the only difference that
it does not provide an interpretation for the defined concepts.

Given a primitive interpretation J, we say that the (full) interpretation Z is based on J if
it has the same domain as J and its interpretation function coincides with J on Ny, and
N,..

Given two interpretations Z; and Z, based on the same primitive interpretation J, we define
Ty =7 Iy iff X1 C X7 for all X € Ngs.

It is easy to see that the relation <7 is a partial order on the set of interpretations based
on J. In [I] the following was shown: given an ££-TBox T and a primitive interpretation 7,
there exists a unique model Z of 7 such that

e 7 is based on J;
e 7' <7 T for all models Z’ of T that are based on J.
We call such a model Z a gfp-model of T.

Definition 2 (Semantics of hybrid ££-ontologies). The interpretation Z is a hybrid model of
the hybrid £L-ontology (O, T) iff Z is a gfp-model of T and the primitive interpretation 7 it
is based on is a model of O.

It is well-known that gfp-semantics coincides with descriptive semantics for acyclic TBoxes.

Let (O, T) be a hybrid £L-ontology and C, D EL-concept descriptions. Then C' is subsumed
by D w.r.t. (O,T) (written C Cyp, 0,7 D) iff every hybrid model of (O, T) is also a model of
the GCI C' C D. As shown in [8, [10], subsumption w.r.t. hybrid EL-ontologies is decidable in
polynomial time.

Our algorithms for hybrid unification in EC are based on the Gentzen style calculus HC(O, T, A)
from [10]. HC(O, T, A) is parametrized by a hybrid ontology (O, T) and a set of subsumptions
A. It decides if C' Cyp, 0,7 D holds where C, D are concept descriptions occurring in A.

4 Hybrid unification in £C

Definition 3. Let O be an &L-ontology containing only concept names from Npyim. An EL-
unification problem w.r.t. O is a finite set of GCIs I' = {Cy C Dy,...,C,, C D, } (which may
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also contain concept names from Ng.r). The TBox T is a hybrid unifier of T w.r.t. O if (O, T) is
a hybrid £L-ontology that entails all the GCIs in I', i.e. , C1 Cypp.0,7 D1,--.,Cn Cypp,0,7 Dn.
We call such a TBox T a classical unifier of ' w.r.t. O if T is acyclic.

Notice that Np i and Ngep respectively correspond to the sets of concept constants and
concept variables in previous papers on unification in DLs. A substitution o can be expressed
as concept definitions X = F in a corresponding acyclic TBox. In contrast, hybrid unifiers
cannot be translated into substitutions since the unfolding process would not terminate for a
cyclic TBox.

Our hybrid unification algorithm works on a flat unification problem and assumes a flattened
ontology. In order to define this form we need the following notions.

An atom is a concept name or an existential restriction. An atom is called flat if it is a
concept name or an existential restriction of the form Jr.A for a concept name A or Ir.T.

The GCI C C D is called flat if C is a conjunction of n > 0 flat atoms and D is a flat atom.
The unification problem I' w.r.t. the ontology O is called flat if both I and O consist of flat
GCls.

Given a unification problem I' w.r.t. an ontology O, we can compute in polynomial time (see
[3]) a flat ontology O’ and a flat unification problem I such that I" has a (hybrid or classical)
unifier w.r.t. O iff I has a (hybrid or classical) unifier w.r.t. O’. For this reason, we will assume
in the following that all unification problems are flat.

The main reason why hybrid unification in £ is in NP is that any unification problem that
has a unifier also has a local unifier. For classical unification w.r.t. background ontologies this
is only true if the background ontology is cycle-restricted [2].

Given a flat unification problem I' w.r.t. an ontology O, we denote by At the set of atoms
occurring as sub-descriptions in GCIs in I or O. The set of non-variable atoms is defined as
by Atn, := At \ Ngef.

In order to define local unifiers, we consider assignments ¢ of subsets (x of At,, to defined
concepts X € Nger. Such an assignment induces a TBox

T, ={X = |_| D | X € Ny}
Decx

We call such a TBox local. The (hybrid or classical) unifier 7 of I" w.r.t. O is called local unifier
if T is local, i.e., there is an assignment ( such that 7 = T¢.

5 Hybrid £L-unification is NP-complete

The fact that hybrid E£-unification w.r.t. arbitrary EL-ontologies is in NP is an easy consequence
of the following proposition.

Proposition 4. Consider a flat EL-unification problem T' w.r.t. an EL-ontology O. If T has a
hybrid unifier w.r.t. O then it has a local hybrid unifier w.r.t. O.

In fact, the NP-algorithm simply guesses a local TBox and then checks (using the polynomial-
time algorithm for hybrid subsumption) whether it is a hybrid unifier.

To prove the proposition, we assume that 7 is a hybrid unifier of I' w.r.t. O. We use this
unifier to define an assignment ¢7 as follows:

Cg; = {D = Atnv | X ngp,O,T D}
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Let 7' be the TBox induced by this assignment. To show that 77 is indeed a hybrid unifier of
I' w.r.t. O, we consider the set of GCls

A:={C,N...NCp T D|Cy,...,Crn,D € At},

and show that, for any GC1 C1M...NC,,, C D € A, aproof of C1M...MC,, T D by HC(O, T, A)
implies a proof of C; M...MCy, € D also in HC(O, 77, A).

NP-hardness does not follow directly from NP-hardness of classical EL-unification. In fact
an &L-unification problem that does not have a classical unifier may well have a hybrid unifier.
Instead, we reduce ££-matching modulo equivalence to hybrid EC-unification.

An EL-matching problem modulo equivalence is an EL-unification problem of the form {C' C
D, D C C} such that D does not contain elements of Nger. A matcher of such a problem is a
classical unifier of it. As shown in [9], testing whether a matching problem modulo equivalence
has a matcher or not is an NP-complete problem. Thus, NP-hardness of hybrid £L-unification
w.r.t. EL-ontologies is an immediate consequence of the following lemma, whose (non-trivial)
proof can be found in [3].

Lemma 5. If an EL-matching problem modulo equivalence has a hybrid unifier w.r.t. the empty
ontology, then it also has a matcher.

To sum up, we have thus determined the exact worst-case complexity of hybrid EL-unification.

Theorem 6. The problem of testing whether an EL-unification problem w.r.t. an arbitrary
EL-ontology has a hybrid unifier or not is NP-complete.

6 Conclusions

In this paper, we have proved that hybrid EL-unification w.r.t. arbitrary EL-ontologies is NP-
complete. In [3] we have developed also a goal-oriented NP-algorithm for hybrid ££-unification
that is better than the brute-force “guess and then test” algorithm used to show the “in NP”
result. The decidability and complexity of classical EL-unification w.r.t. arbitrary EL-ontologies
is an important topic for future research. We hope that hybrid unification may also be helpful
in this context.
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