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Abstract—We propose the use of a structure index for RDF. It can be used for querying RDF data for which the schema is
incomplete or not available. More importantly, we leverage it for a structure-oriented approach to RDF data partitioning and query
processing. Based on information captured by the structure index, similarly structured data elements are physically grouped and
stored contiguously on disk. At querying time, the index is used for “structure-level” processing to identify the groups of data that
match the query structure. Structure-level processing is then combined with standard “data-level” operations that involve retrieval
and join procedures executed against the data. In the experiment, our solution provides several times faster performance than a
state-of-the-art technique for data partitioning and query processing, and compares favorably with full-fledged RDF stores.

Index Terms—RDF, structure index, RDF data management, data partitioning, query processing.

1 INTRODUCTION

In recent years, the amount of structured data available
on the Web has been increasing rapidly, especially RDF
data. The Linking Open Data project' alone maintains tens
of billions of RDF triples in more than 100 interlinked
data sources. Besides strong (Semantic Web) community
support, this proliferation of RDF data can also be attributed
to the generality of the underlying graph-structured model,
i.e., many types of data can be expressed in this format in-
cluding relational and XML data. This data representation,
although flexible, has the potential for serious scalability
issues [1]. Another problem is that schema information is
often unavailable or incomplete, and evolves rapidly for
the kind of RDF data published on the Web. Thus, Web
applications built to exploit RDF data cannot rely on a fixed
and complete schema but in general, must assume the data
to be semi-structured.

1.1

Towards the scalable management of semi-structured RDF
data at Web-scale, we address the issues of (1) pseudo-
schema construction, (2) RDF data partitioning and (3)
conjunctive query processing.

Omitting special features such as blank nodes, a (semi-
structured) RDF data source can be conceived as a graph:

Definition 1. A data graph G is a tuple (V, L, E) where

e V is a finite set of vertices. Thereby, V is conceived
as the disjoint union Vg & Vi, of entities Vg and data
values Vi .

o L is a finite set of edge labels denoting properties,
subdivided via L = Lr W Ly into L representing

Problem

1. http://esw.w3.org/SweolG/TaskForces/CommunityProjects/
LinkingOpenData
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Fig. 1: A data graph.
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relations between entities, and L 4 representing entity
attributes.?

o E is a finite set of edges of the form e(vy,vs) with
v1,v2 € V and e € L. We require e € Ly if and only
if vi,v2 € Vg and e € L4 if and only if v1 € Vg
and vy € V. An edge e(v1,v9) is also called a triple
where e is referred to as the property, vy is the subject
and vy the object of the triple.

Information needs commonly addressed by RDF-based
applications can be expressed as a particular type of con-
junctive queries:

Definition 2. Let X be a countably infinite set of
variables. A conjunctive query is an expression of the

form (x1,...,25).3Tk11,. .. Tm.Pr A ... A P, where

2. Note that the separation between L and L,4 is not inherent to
the RDF model but is used here to explicitly distinguish properties that
associate entities with their attribute values and those that connect entities.
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Fig. 2: A query graph for our example, where u stands for
undistinguished and d stands for distinguished variable.

T1,...,Tr € X are called distinguished variables,
Thtl,---,Tm € X are undistinguished variables and
Py, ..., P, are query atoms. These atoms are of the form

p(v1,v2), where p € L are edge labels and vy,v5 € X U
Ve U Vi are variables or, otherwise, are called constants.

Fig. 1+2 show examples for the data and query we are
concerned with. Fig. 2 shows that since variables can be
connected in arbitrary ways, a conjunctive query q is graph-
structured. In fact, this type of queries corresponds to the
notion of Basic Graph Pattern (BGP) in SPARQL (more
precisely, BGP queries without unbound predicates because
e is always explicitly given): every query represents a graph
pattern ¢ = (V9,L9 EY) consisting of a set of triple
patterns e(vy,v2) € E%, e € L9, and v1,v2 € V9, where
V@ can be subdivided by V= V1 WV WV repre-
senting the sets of distinguished variables, undistinguished
variables, and constants.

A solution to a graph pattern ¢ on a graph G is a
mapping y from the variables in g to vertices in G such that
the substitution of variables would yield a subgraph of G.
The substitutions of distinguished variables constitute the
answers. In fact, 1’ can be interpreted as a homomorphism
(i.e., a structure preserving mapping) from the query graph
to the data graph.’

1.2 State of the Art

This task of matching a query graph pattern against the
data graph is supported by various RDF stores, which
retrieve data for every triple pattern and join it along the
query edges. While the efficiency of retrieval depends on
the physical data organization and indexing, the efficiency
of join is largely determined by the join implementation
and join order optimization strategies. We discuss these
performance drivers that distinguish existing RDF stores:
Data Partitioning. Different schemes have been pro-
posed to govern the ways data is physically organized and
stored. A basic scheme is the triple-based organization,
where one big three-column table is used to store all triples.
To avoid the many self-joins on the giant table, property-
based partitioning is suggested [2], where data is stored
in several “property tables”, each containing triples of one
particular type of entities. Vertical partitioning (VP) has
been proposed to decompose the data graph into n two-
column tables, where n is number of properties [1]. As

3. As usual, a homomorphism from G = (V,L,E) to G' =
(V',L',E") is a mapping h : V +— V' such that for every G-edge
e(v1,v2) € E we have an according G’-edge e(h(v1), h(v2)) € E’.

this scheme allows entries to be sorted, fast merge joins
can be performed.

Indexing Scheme. With multiple indexing, several in-
dexes are created for supporting different lookup patterns.
The scheme with the widest coverage of access patterns is
used in YARS [3], where six indexes are proposed to cover
16 possible access patterns of quads (triple patterns plus
one additional context element). In [4], sextuple indexing
has been suggested, which generalizes the strategy in [3]
such that for different access patterns, retrieved data comes
in a sorted fashion. In fact, this work extends VP with
the idea of multiple indexing to support fast merge joins
on different and more complex query patterns. Thus, this
indexing technique goes beyond triple lookup operations to
support fast joins. Along this line, entire join paths have
been materialized and indexed using suffix arrays [5]. A
different path index based on judiciously chosen “center
nodes” coined GRIN has been proposed in [6].

Query Processing & Optimization. Executing joins
during query processing can be greatly accelerated when the
retrieved triples are already sorted. Through VP, retrieved
data comes in sorted fashion, enabling fast merge joins
[1]. This join implementation has near linear complexity,
resulting in best performance. Sextuple indexing takes this
further to allow this join processing to be applied on many
more query patterns, e.2. when the query contains unbound
predicates such that p is a variable [4]. As shown for RDF-
3X, further efficiency gains can be achieved by finding an
optimal query plan, and additional optimization techniques
such as dictionary encoding and index compression [7]. For
query plan optimization, different approaches for selectivity
estimation have been proposed recently [8], [9]. Besides,
much of recent work also focuses on efficient data com-
pression and storage [10], [11].

There are no single systems but rather, the state-of-the-art
in RDF data management is constituted by a combination of
different concepts. In particular, VP [1] is a viable candidate
for physical data organization (especially for those queries
with bound predicates studied here), multiple indexes [3]
enable fast lookup, and optimized query plans [7] result in
fast performance for complex join processing.

1.3 Contributions

In this work, we focus on the aspects of data partition-
ing and query processing. For these tasks, we propose
a structure-oriented approach that exploits the structure
patterns exhibited by the underlying data captured using
a structure index. The contributions of our approach can be
summarized as follows:

Height- and Label-Parameterized Structure Index for
RDF. For capturing the structure of the underlying data,
we propose to use the structure index, a concept that has
been successfully applied in the area of XML- and semi-
structured data management. It is basically a graph, where
vertices represent groups of data elements that are similar in
structure. For constructing this index, we consider structure
patterns that exhibit certain edge labels L containing paths



of some maximum length n. By varying these parameters,
indexes with different properties and sizes can be obtained.

Structure-oriented Data Partitioning. A structure in-
dex can be used as a pseudo-schema for querying and
browsing semi-structured RDF data on the Web. Further, we
propose to leverage it for RDF data partitioning. To obtain
a contiguous storage of data elements that are structurally
similar, vertices of the structure index are mapped to tables.
This is different to VP, where properties of a given schema
are mapped to tables. Compared to VP, this scheme called
structure-oriented data partitioning (SP) results in more
fine-granular groupings of elements. Instead of triples with
the same property label, triples with subjects that share the
same structure are physically grouped. Such fine-granular
groups that match a given query contain more candidate
answers because while elements in a VP table have only
the property label in common with the query, elements in
a SP group match the entire query structure.

Integrated Data- and Structure-Level Processing.
Standard query processing [1] relies on what we call data-
level processing. It consists of operations that are executed
against the data only. We suggest to use the structure
index for structure-level query processing. A basic strategy
is to match the query against the structure index first to
identify groups of data that satisfy the query structure.
Then, via standard data-level processing, data in these
relevant groups are retrieved and joined. However, this
needs to be performed only for some parts of the query,
which additional to the structure constraints, also contain
constants and distinguished variables representing more
specific constraints that can only be validated using the
actual data. Instead of performing structure- and data-level
operations successively and independent from each other
like in this basic strategy, we further propose an integrated
strategy that aims at an optimal combination of these two
types of operations.

We compared our solution with the state-of-the-art
technique for data partitioning and join processing [1].
Through an evaluation on commonly used datasets, we
show w.r.t. a given query workload that the basic structure-
oriented strategy is several (up to 7-8) times faster. The
integrated strategy plus further optimizations result in ad-
ditional improvements. We also extend our solution with
some optimizations that are employed by full-fledged RDF
engines. Results suggest that it also compares favorably
with state-of-the-art engines (RDF-3X and Sesame).

1.4 Outline

Section 2 introduces the basic structure-oriented approach,
describing the notion of structure index, and the idea
behind structure-oriented partitioning and query processing.
The optimization of this approach comprising of index
parameterization and the integrated evaluation strategy is
elaborated in Section 3. Algorithmic complexity and op-
timal strategies for parameterization derived from it them
are presented in Section 4. Experiments along with perfor-
mance results are discussed in Section 5 before we review
related work in Section 6 and conclude in Section 7.
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Fig. 3: A snippet of the structure index graph.

2 STRUCTURE-ORIENTED APPROACH

We propose a structure-oriented approach to RDF data
management where data partitioning and query processing
make use of structure patterns captured by a structure index.

2.1 Structure Index for RDF

A structure index for graph structured data such as RDF is
a special graph derived from the data. Vertices of such an
index graph essentially stand for groups of data graph ele-
ments, which are similar in structure. Thereby, the structure
of an element is determined by its incoming and outgoing
paths. We draw from the well-known notion of bisimulation
originating from state-based dynamic systems, and consider
two graph vertices v1 and vy as bisimilar, if they cannot be
distinguished by looking at their paths. Later, we discuss
the use of a fixed neighborhood to consider only certain
paths with a maximum length. We first present the basic
approach which is based on complete bisimilarity, where
the neighborhood to be considered is simply the entire
graph.

Definition 3. Given a data graph G = (V,L,FE), a
backward-and-forward bisimulation on G is a binary re-
lation RCV XV s.t. for v,w e V:

(there is a backward bisimulation on incoming edges s.t.)

o VRw and l(v',v) € E implies that there is a w' € V
with l[(w',w) € E and v' Rw’, and
e vRw and l(w',w) € E implies that there is a v’ € V
with I(v',v) € E and v' Rw’,
(and there is a forward bisimulation on outgoing edges s.t.)

e VRw and l(v,v") € E implies that there is a w' € V
with l(w,w') € E and v' Rw', and
e vRw and l(w,w") € E implies that there is a v' € V
with l(v,v") € E and v' Rw'.
Two vertices v and w will be called bisimilar (written v ~
w), if there exists a bisimulation R with vRw.

Based on this notion of bisimilarity, we compute exten-
sions (discussed later in Section 3), which contain only of
bisimilar elements. These extensions form a partition of the
vertices V, i.e., a family P™~ of pairwise disjoint sets whose
union is V. The index graph G~ of G is defined in terms
of extensions and relations between them.



Definition 4. Let G = (V, L, E) be a data graph and ~
a bisimulation (or an adapted notion of bisimulation intro-
duced later on) on V. Vertices of the associated index graph
G~ = (V~,L,E™) are exactly G’s ~-equivalence classes
V> ={[w]” | veV} with v ={weV]|v~w}
Labels of G™ are exactly the labels of G. An edge with
a certain label | is established between two equivalence
classes [v]™ and [w]™ if there are two vertices v € [v]™
and w € [w]™ such that there is an edge l(v,w) in the
data graph, ie., E~ = {l([v]7,[w]™) | v € v]™,w €
[w]™,l(v,w) € E}.

Example 1. An index graph for our example data is
shown in Fig. 3. For the sake of presentation, this example
considers all structures formed by relation edges (all edges
with | € Lg) but omits some data value nodes such
as ISWC' and the attribute edge surname. Note that
for instance, pl and p3 are grouped into extension E2
because they share the incoming paths supervise and
knows and the outgoing paths knows, {worksAt, partOf)
and {authorO f, con ference).

2.2 Structure-oriented Partitioning & Indexing

The idea of structure-oriented partitioning (SP) is to apply
the grouping of elements captured by the structure index
to the physical organization of data. We create a physical
group for every vertex of the index graph, i.e., for every
extension. A group gp,,]~ contains all triples that refer
to elements in [v;]™, i.e., all {(v1,v2) where v € [v;]™.
Recall that extensions represent partitions of the data graph.
Thus, grouping triples based on extensions guarantees an
exhaustive and redundancy-free decomposition of the data.

Example 2. The physical group of triples corresponding
to Es is shown in Tab. 1.

property | subject | object
authorOf pl al
authorOf p3 a2
worksAt pl il
worksAt p3 i2
knows pl p3
knows p3 pl

TABLE 1: Triples for extension E2.

Compared to VP where triples with the same property
are grouped together, SP applies to triples that are similar in
structure. Using VP tables, triples retrieved from disk match
the property of a single triple pattern. However, whether
such a triple is also relevant for the entire query (i.e.,
contributes to the final results) depends on its structure.
Since SP tables contain only triples that are similar in
structure, they, when identified to be relevant for a query,
are likely to contain relatively more relevant triples. In fact,
triples of a SP table retrieved for a given query satisfy
not only the property of a triple pattern of that query but
also the entire query structure. Thus with SP, we can focus
on data contributing to the final results. It can reduce the
amount of irrelevant data that might have to be retrieved
from disk when using VP, and thus, can reduce I/O costs.

For fast lookup on SP tables, we employ multiple indexes
to support different access patterns. We use the standard
PSO and POS indexes (e.g. as employed for indexing VP
tables), which given the property and subject or given
the property and object, return the object or subject, re-
spectively. These are the indexes that are employed for
standard data-level query processing, i.e. the kind of query
processing based on the PSO and POS indexes that has been
proposed for VP. Besides, we use two additional indexes
called PESO and PEOS to support structure-level query
processing. These indexes are similar to the other two, with
the only difference that they also require extension infor-
mation, e.g. PESO returns the object, given the property,
extension and subject.

Because the structure index is also a kind of data graph,
VP (in combination with the PSO and POS indexes) can
be used for managing those that are large in size. In our
approach, we propose to parameterize the index construc-
tion process to consider only certain structure information
so that its size can be controlled to fit in main memory.

2.3 Structure-aware Query Processing

We propose not to process the query directly against
the data graph but to use the index graph first. Through
this structure-level processing, we aim to locate candidate
groups of data that satisfy the query structure. Only then,
“relevant” data is retrieved from these candidate groups
and processed using standard query processing techniques.
Since these operations performed subsequently apply on the
data, they are referred to as data-level processing.

In the basic query evaluation strategy, data-level process-
ing applies after structure-level processing has been com-
pletely finished. The procedure for that can be decomposed
into three main steps: (1) index graph matching, (2) query
pruning and (3) final answer computation.

(1) At first, the query graph ¢ is matched against the in-
dex graph G~ (kept in memory) to find matching extensions
[v;]™. This graph matching is performed using the same
operations that are also used for standard query processing,
i.e. retrieve triples (edges of G™) for every triple pattern of
q and then join them along edges of ¢. This step results in
extensions [v;]~, which contain candidate results to q.

(2) In particular, we know after the first step that data
in [v;]™ satisfies the entire query structure. Query parts
containing undistinguished variables only capture structure
constraints. Since we already know that data in [v;]™
satisfies these constraints, these parts are removed in the
second pruning step to obtained ¢'.

(3) Final results are computed from [v;]™ in the third
step. Using standard query processing techniques, triples
are retrieved from tables corresponding to [v;]™, and joined
along the edges of the pruned query ¢'.

The soundness and completeness for this procedure is
based on the following property:

Proposition 1. Let G be a data graph, G~ its index graph
and q be a query graph s.t. there is a homomorphism h from



q to G. Then h™ with h™ (v) =
from q to G™.

[h(v)]™ is a homomorphism

Intuitively speaking, there is a match of ¢ on G only
when there is also a match of ¢ on G™. Further, the resulting
index graph matches [h(v)]~ will contain all answers h(v).

Proof: Given a g¢-edge [(v1,vs), first observe that
[(h(v1),h(ve)) is a G-edge since h is a homo-
morphism. Then we find that [(h™(v1),h™(v2)) =
I([h(v1)]™, [h(v2)]™) is a G™~-edge due to the definition
of the index graph. (]

For computing the answers h(v), another property of
the structure index can be exploited. It is based on the
observation that for certain tree-shaped parts of the query,
no further processing at the data-level is needed because
they capture structure constraints that have already been
verified during the previous index matching step. We firstly
inductively define this notion of tree-shaped query part:

Definition 5. Every edgeless single-vertex rooted query
graph (q,r) with ¢ = ({r}, L,0) is tree-shaped. Let (q1,71)
and (qa,7r2) with ¢ = (V1, L, E1) and g2 = (Va, L, Es)
be two tree-shaped query graphs with disjoint vertex sets
Viand Vo, v € Vi, and e € {l(re,v) | | € L} U
{l(v,m9) | I € L}, then the rooted graph (q3,r1) with
qgs = (Vi UVa, L, Ey U Ey U {e}) is tree-shaped. Further,
such a query graph (q,r) is undistinguished tree-shaped
when except for the root node r, all other nodes of q
represent undistinguished variables.

Given an undistinguished tree-shaped query (g, r) of this
kind, the following proposition specifies that data contained
in the index graph extension [h(r)]™ matching the root node
r of q contains all and only the final answers such that no
further processing is required for g.

Proposition 2. Let G be a data graph, G~ its index graph,
(q,7) be an undistinguished tree-shaped query graph s.t. h
is a homomorphism from q to G and h"™ is a homomorphism
from q to G~ with h™(r) = [h(r)]™, then h(r) = v for
every data graph node v € h™ (r).

Proof: We do an induction on the maximal tree-depth of
q. As base case, note that for depth 0, the claim is trivially
satisfied. For any greater depth, subsequently consider every
child node 7. of r in q. Assume the forward case with
outgoing edges [(h™(r),h™ (r.)) € E™~ (the backward case
follows by symmetry) and h(r) = v. Then, by definition of
bisimilarity, there must exist a w € h™(r.) with (v, w) €
E. We chose h(r.) = w. Now we invoke the induction
hypothesis for the subtree of G~ with root r. which yields
us the values h(r.) for all successors r. of r.. So we have
constructed h with the desired properties. (|

Example 3. As illustrated in Fig. 4, the query in Fig.
2 produces one match on the index graph in Fig. 3,
ie, h = {h~(z) = E3,h~(u) = E5h~(x) =
E2,h~(y) = E4,h~(v) = E6,h~(w) = FEl}. We
know that data elements in extensions of this match satisfy
the query structure, e.g. elements in E2 are authors of
y, supervised by w, work at some place z etc. Tree-

Fig. 4: The index match h7".

shaped parts that can be pruned are supervises(w,x) and
(authorOf (x,y), conference(y,v)). For instance, since el-
ements in E2 are already known to be supervised by some
w, there is no need to process supervises(w,x).

Data-level processing is needed for the remaining query
parts. Fig. 5 shows the pruned query and the data involved
in this step. Now, we have to find out which elements in E2
are of age 29, which elements in E3 have the name AIFB,
which elements in E5 have the name KIT, and whether
the elements matching these constants are connected over
the relations specified in the query. For this, we need to
retrieve and join the triples for age(x,29), worksAt(x, z),
name(z, AIFB), partOf (z,u), name(u, KIT). Note that
in the extreme cases where no index graph matches can be
found, or when the entire query can be pruned, we can skip
the entire data-level processing step.

Fig. 5: Data graph match for g,runed, 17"

3 OPTIMIZED QUERY PROCESSING

The basic approach captures the main idea of using the
structure index. However, it has certain drawbacks, which
are addressed by the optimization discussed here.

3.1

The structure index introduced previously is based on
complete bisimilarity. For constructing such an index, all
paths in the data graph have to be considered. It results
in very fine-grained extensions, where constituent elements
are similar w.r.t. possibly very complex structures. Thus,
the number of extensions might be high,* resulting in
an index graph that is too large in size, which in turn,
has a negative effect on the complexity of structure-level
processing. To address this problem, we propose a param-
eterizable structure index which applies a more relaxed
notion of neighborhood-equivalence than full bisimulation,
hence results in a coarser partition.

Parameterizing the Structure Index

4. Note however, that there are at most as many extensions as data
graph vertices, i.e., the index is never larger than the data.



Height- and Label-Parameterized Structure Index.
Instead of all property labels, we propose to consider
only certain labels (L; for backward and Lo for forward
bisimulation). In addition, we can restrict the size of the
neighborhood taken into account by an upper limit n
for the number of consecutive hops from the considered
node. For this, we introduce the L1-Lo label-parameterized
bisimulation of bounded heigth n.

In particular, two elements w and v are n-bisimilar
(wAv), if G contains for every tree structure (¢,w) with
root w of height n an equivalent structure (¢, v) with root
v and vice versa; and furthermore, they are Li-backward-
Lo-forward bisimilar if w and v are coincide w.r.t. being
roots of trees with the property that all edges with leaf-to-
root orientation are from L; and all edges with root-to-leaf
orientation are from L.

Clearly, Proposition 1 and 2 also hold in the case of
the height- and label-parameterized structure index, given
some restrictions on the query. Namely, the notion of
undistinguished tree-shaped query must be extended:

Definition 6. The notion of a Li-backward-Lo-forward
tree-shaped (short: L1 Lots) query is inductively defined as
follows: Every edgeless single-vertex rooted query graph
(q,7) with ¢ = ({r},L,0) is LyLots. Let (q1,71) and
(q2,72) with q = (V1,L1 U Lo, Ey) and gz = (Va, L1 U
Lo, E5) be two LyLots query graphs, v € Vi, and e €
{l(re,v) | 1 € L1} U{l(v,72) | | € Ly}, then the rooted
graph (qs, 1) with g3 = (V1UVa, LiULs, EyUE>U{e}) is
Ly Lots. Further, such a query graph (q,r) is L1-backward-
L2-forward n-tree-shaped when the height of q is n.

Only certain query parts that are Ll-backward-L2-
forward n-tree-shaped can be pruned. This parameterization
reduces the size of the index: for a given data graph, the
number of vertices and edges of the index graph increases
with n and the number of labels contained in L; and L.

Constructing the Parameterized Index. The concept
of structure index is not new. Various strategies for index
construction, management, and updates exist [12], [13],
[14], [15].

In general, the construction of a structure index is based
on the algorithm for forward bisimulation presented in [16]
which essentially, is an extension of Paige & Tarjan’s algo-
rithm [17] for determining the coarsest stable refinement
of a partitioning. This algorithm starts with a partition
consisting of one single extension that contains all nodes
from the data graph. This extension is successively split
into smaller extension until the partition is stable, i.e., the
graph formed by the partition is a complete bisimulation.

In order to support the parameterization proposed pre-
viously, we make the following modifications to this algo-
rithm:

(1) For creating a bisimulation of depth n only, we also
compute partitions of the data graph by splitting blocks so
that each partition is stable with respect to its predecessor.
However, this refinement is performed n times only.

(2) In order to perform both backward and forward
bisimulation according to the parameters L; and Lo, we

essentially exploit the observation that L;-forward-Lo-
backward bisimulation on a data graph G = (V,L, E)
coincide with forward bisimulation on an altered data graph
Gr,1, with the same set of nodes as G, containing all of
G’s Li-edges and flipped around copies of G’s Lo-edges,
formally: GLle = (V, LU {l_ ‘ l e L2}7EL1L2}) where
ErL, = {l(a:,y) | l(x,y) € El € Ll} U {l_(y7T) ‘
l(x,y) € E,l € Lo}. Therefore, applying the algorithm
from [16] to the specified label sets L; and L yields the de-
sired result, and time complexity (O(|L;ULs|-| E|-log |V])).

After having determined the bisimulation, the resulting
extensions from the stable partition P~ are used to form in-
dex graph vertices, and edges between them are constructed
according to Definition 4.

It is important to note that updates pose an interesting
problem in the presence of a structure index. There is
existing work [18] which shows that it is feasible for XML-
and semi-structured data. However, adopting this work to
support our structure index concept goes beyond the scope
of this paper as the focus is set on how to exploit such an
index for data partitioning and query processing.

3.2 Integrated Query Processing

Recall that the main idea behind our approach is to apply
structure-level processing to obtain a smaller query and
smaller sets of candidates. This strategy makes sense when
the effect of this “pruning” outweighs the cost of structured-
level processing. Here, we propose an optimization based
on the observation that the naive strategy discussed before
might fail to succeed in the following cases:

(1) Highly selective (non-prunable) triple patterns: When
queries contain only few triple patterns and these patterns
are highly selective, e.g. have many constants, standard
query processing (i.e., data-level processing only) can be
performed efficiently. The amount of data retrieved in these
cases is relatively small and thus, can be joined fast. Here,
there is simply no much potential gain that can be achieved
through pruning. In particular, patterns containing constants
are non-prunable.

(2) Queries with only a few prunable parts: This is the
case when most query parts contain constants and distin-
guished variables. Structure-level processing only helps to
locate candidate groups and data-level processing is still
needed for most parts of the query.

General Idea. Instead of carrying out structure-level
and data-level operations subsequently, we perform these
operations in an integrated fashion. It is based on the
following intuitions:

(1) Data-level processing shall be executed when pro-
cessing selective query patterns, i.e., patterns with con-
stants. In the extreme case when all triple patterns con-
tain constants, the query is processed using the standard
approach based on data-level operations only.

(2) Structure-level processing shall be executed for prun-
able parts. In the case when the entire query can be pruned,
it is processed using structure-level operations only.

(3) Structure-level processing shall leverage results of
data-level processing to reduce the number of candidates,



and vice versa, i.e., the query is processed via a mixture of
structure- and data-level operations.

Detailed Algorithm. The procedure for integrated query
processing is shown in Alg. 1 and illustrated in Fig. 6. The
query is decomposed into two parts, one prunable part that
is processed via structure-level processing and one non-
prunable part that is processed via data-level processing.
Results of both processes are combined and propagated to
reduce the number of candidates at both levels.
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Algorithm 1: Integrated Query Processing
Input: Query ¢(Vg, WV WV L9 E); data

varg Vary con’
G(V, L, E); the parameters n, Ly, Lo.
Data: Queue E? , . of triple patterns sorted
according to selectivity; prunable query parts
Q'

Result: R containing data matches of ¢ on G.

1 Q' < prunableQueryParts(q,n, L1, Ls).
2 e(v],vg) < selectNextBest(EZ . ).

3 R+ {e(h(v}),h(vd)) € E}.

4 while |[E? . .| #0 do

5 | e(v],v]) « selectNextBest(E? . .).
6 if e(v],vd) € ¢ € Q' then

7 R, <« structureJoin(¢’, R).

8 R+ R~ R,.

9 end

10 else

1 Eout gy {e(h(v!), h(vd)) € E}.
12 R+ R~ Ee(vgvvg).

13 end

14 end

15 Return R.

The integrated strategy starts with (Part 1) identifying
prunable parts ¢ € Q' (line 1). Then, the method se-
lectNextBest is used to select and remove the first triple
pattern from E? , . and R is then initialized to contain
the data matching that pattern, such that further joins can
be performed. Then, triple patterns e(v{,v3) € E? ..,
are worked off. This is performed in the order of their
selectivity as proposed in [19]. Here, selectNextBest selects
and removes a triple pattern from E? . . that can be
joined with at least one already processed pattern (that

is, join processing follows a left-deep query plan). If

e(v},vd) belongs to one of the prunable query parts, (Part

2) structure-level processing is performed (lines 5-6), (Part
3) data-level processing otherwise (line 9-10).

(Part 1) Prunable query parts are computed for the
parameters n, L1, Lo. For this, we firstly identify all tree-
shaped parts of ¢ containing undistinguished variables
only. This is performed by traversing q. Starting from
leave nodes representing undistinguished query variables,
neighbors of these nodes are visited (in a breadth-first-
search manner) and labeled. A search from a particular
leave node stops when (1) the neighbor to be visited is
not an undistinguished variable node or (2) is a root node
of a tree structure of height n or (3) the neighbor edge is
not labeled with elements in the sets L, L. In the end, all
triple patterns containing only labeled nodes are grouped
into connected components which constitute exactly the
prunable tree-shaped query parts ¢’ € Q’.

(Part 2) During structure-level processing, prunable
query parts ¢’ are processed using structure-level join (line
5). The procedure for that is shown in Alg. 2. It matches
q' against the index graph G~ to produce a result set
R, containing data graph elements that match the root
node v,‘!/ of ¢’. However, only extensions found to be
relevant through previous data-level processing are taken
into account, i.e., R™ is instantiated with extensions in
Ry (line 2); and R, comprises only those extensions
which contain data elements v matching the root node v?f
(line 1). Note that these data matches have already been
computed and stored in the intermediate results R. We
leverage these data-level results to reduce the number of
structure-level candidates. Now, starting from vﬁl, all triple
patterns e(v{,v3) in ¢’ are visited via breadth-first search
(line 4). Edges of the index graph, which match e(v{, v)
are retrieved (line 5), and combined with the intermediate
results R~ (line 6). Finally, data contained in extensions in
R™, which match the root node vgl, are returned (line 8-9).

These results of the structure-level processing feed back
into the main query processing procedure (Alg. 1). Data
elements in the result table R, are joined with element
in R (line 6). As a result, only data elements that match
the query part ¢’ are maintained in R, i.e., structure-level
results are propagated back to the data-level process.

(Part 3) During data-level processing (Alg. 1), triples
matching the current triple pattern are retrieved from the
data graph G (line 9) and combined with the intermediate
results in R (line 10).

Example 4. This example illustrates how the query in Fig.
2 is processed against the data graph in Fig. 1.

During the search for prunable parts of q we obtain
the patterns Q' = {supervises(wy, xq), authorOf (x4, y.),
conference(yu, vy ) }. As they are connected, they form one
prunable part ¢ .

For processing the query, we start with age(xz4,29) (age
is most selective). From the data graph we retrieve all
matches for xq4, which are pl, p3, pb, and p6. When
processing the next triple pattern authorOf (x4, y.,), we ob-
serve that this pattern is part of the prunable part q' which



Algorithm 2: Structure-level Join Processing

Input: Index graph G~ (V™~, L, E™); prunable query
part ¢’; R containing data matches for g¢.
Data: RY containing candidate index matches for the
root node v;%/ of ¢’; R™ containing index graph
matches for ¢’.
Output: R, containing data matches for v?f.
1t RY « {[v]” | h(v?) = v, h € R}.
2 R~ < Ry.
3 while nextBFSNeighbor(q') # () do
4 e(v{,vd) < nextBFSNeighbor(q’).
5 E:(v;l,vg) — {e(h~(v]),h~(v])) € E~}.
6 R~ +— R~ E;(U“g).
7 end
8 R, < {v|h~(?)=[v]™, h~ € R™}.
9 Return R,.

is to be processed on the index level. Hence, we determine
R by looking up the extensions the matches of x4 belong
to: E2, E11, E7. We now retrieve the index level edges for
the pattern authorOf (zq,y.): (E2,E4) and (E11, E4).
The subsequent join with R, does not further reduce this
edge set in this case (because E2,E11 € R;’). Next,
we process the triple pattern supervises(w.,xq). In the
index graph, there is only one supervises edge: (E1, E2).
The join with R’ leaves us with only one index graph
match: h™~(w,) = E1, h™(xq) = E2, h™(y,) = F4
Processing conference (Y, vy,), the last triple pattern of ¢/,
yields h™(v,) = E6.

Hence, on the structural level, we found E2 as the only
match for x4. As a result, the data elements matching x4
must be contained in E2, i.e., R, = {pl,p3}. Returning
to the data level, we can thus rule out p5 and p6 as
matches for x4. Joining the two remaining matches with the
worksAt edge results in the (x4, z,) assignments (pl,il)
and (p3,12). The second one of these is ruled out by the
next triple pattern name(z,, AIFB). The two remaining
Jjoins on the data level do not change this result. As answer,
pl is returned as the only binding to xg.

4 ALGORITHM ANALYSIS

4.1 Soundness and Completeness

Based on the properties elaborated for the structure index,
the following result can be established:

Proposition 3. Given a data graph, its associated index
graph and a query, the result obtained by Algorithm 1 is
sound and complete, i.e., it returns exactly all data graph
matches.

Proof sketch: Soundness can be inferred from the sound-
ness of data- and the structure-level operations: the proce-
dure (including the join operations) we employ for data as
well as index graph matching is the same as the standard
and sound technique used for processing graph patterns

(e.g. [1]). Completeness of the retrieved results is guar-
anteed by completeness of the join operations on the data-
level for the non-prunable query part and by Proposition
1. Recall that this proposition ensures that any match of a
query on the data graph (hence also any match of prunable
query parts) is “witnessed” by an according match on the
index graph. Therefore, constraining the search for prunable
query part matches by according index matches will not
result in the loss of any match. Subsequent join operations
performed on the remaining non-prunable query part find
all the possible data matches per index match. U

4.2 Complexity

Complexity of standard query processing [1] is
O(edgemax!F’l), where |E9| denotes the number of
triple patterns and edgemax is |{(v1,v2) | {(v1,v2) € E}|
with [ being the property instantiated by the largest number
of edges. This is because joins have to be performed |E9|
times and every operation A >1 E can be calculated in
at most |A| - |E| time and space. This cost cannot be
avoided in the general case but in practice, techniques for
partitioning and indexing ([1], [4]) result in near-linear
behavior. Compared to this, the complexity of our approach
is as follows:

Proposition 4. For a query with |EY| triple patterns,
the time and space for query processin§ is bounded
by O(edgeﬂmam'dyc‘Eq| + edgemaa:data‘EPm"edl) where
edgemazider = maxjer [{{([v1]~,[v2]™) € E~}| and
edgemardata = maxp,, |~ [v]~ev~,ier [{I(v1,v2) | v1 €
[v1]™, v2 € 2]},

Proof sketch: The complexity of our algorithm is com-
posed of the complexity for data-level as well as structure-
level processing. The cost for computing index matches is
O(edgemazidz!F’l), where edgemazidz is bounded by
the size of the index graph (presisely: the label [ that is
associated with the largest number of edges). Data-level
joins have to be performed only along the pruned version

B inea © E? of the query. So we obtain a complex-

ity of O(edgemaxdatalEzmmd‘), where edgemaxdata is
bounded by the size of the largest extension. (]

Compared to existing approaches ([1], [4], [7]), less
data have to be retrieved from G (i.e., edgemazxdata <
edgemax because structure-oriented data groups are more
fine-granular), and also, fewer joins are required (i.e.,
|E}umeal < [E9)). The overhead introduced to achieve this
O(edgemazxidz!P*1).

4.3 Structure Index Parametrization

Note that the parametrization has an effect on both the
overhead and the gain introduced by structure-oriented
query processing: when more labels and (or) larger height
are used, the index graph and thus edgemaxidxr becomes
larger. On the other hand more labels and (or) larger height
can be considered for query pruning, potentially resulting

in larger prunable query parts (i.e., smaller \Ezmnedb.



Also, the physical groups obtained from structure-oriented
partitioning become more fine-grained, thereby reducing
the size of edgemaxdata.

Thus, it is not straightforward to derive the optimal
parameterization for the general case. However, the parame-
ters can be used for fine tuning the approach w.r.t. the given
workload. One simple strategy is to support only the labels
and the maximum query height derived from the workload,
i.e., Ly, Ly contains all query predicates and the length
of the longest query path is < n. More fine-granularly,
the parametrization can be done for classes of queries,
which are used frequently. In this case, structure-oriented
technique can be seen as an optimization technique, which
is applied only to some queries. Instead of assuming a
given workload, another strategy is to focus on potentially
frequent and problematic queries derived from the data.
For this, existing techniques for frequent graph patterns can
be adopted [20]. In particular, the strategy here would be
to select those patterns as queries, which are frequent and
produce a large number of results (and thus are potentially
more problematic because they require more data to be
processed.

Note that while the integrated evaluation strategy does
not change the worst-case complexity, it aims at minimizing
both edgemazidzr and edgemaxdata by prioritizing cheap
operations to quickly filter out irrelevant candidates.

5 EVALUATION

We performed two experiments, one to focus the compar-
ison on differences between our approach and an imple-
mentation of VP, the most related work, and the other also
involves full-fledged RDF stores (Sesame, RDF-3X). All
experiments were carried out on a machine with two Intel
Xeon Dual Core 2.33 GHz processors and 2GB main mem-
ory were allocated to the Java virtual machines. All data and
indexes are stored on a Samsung SpinPoint S250 200GB,
SATA 1II. Components of all systems under consideration
have been implemented in Java 5. All times presented
represent the average of 10 runs. Between queries, we
explicitly clear the operating system cache and internal
caches of subprograms (e.g. Lucene).

5.1 Structure-oriented Approach vs. Baseline

Systems. To focus on the aspect of data partitioning and
query processing, we compare our approach with VP.
In particular, we implemented three systems. The first
system called VPQP is the baseline, which is based on
the execution of merge joins on VP tables [1]. This is
compared against a simple version of our structure-oriented
approach called SQP, which implements the basic strategy
and uses the label-parameterized index G7, ;, (described
below). Then, we compare SQP against another version
called OSQP, which uses the same index and additionally,
implements the integrated evaluation strategy.

To achieve comparability, all these approaches were
implemented on top of the same infrastructure: For data
indexing and storage, we have implemented all systems

using the inverted index that comes with Lucene (following
the design in [21]). For query processing, we use the same
implementation for merge join, and query predicates are
worked off in a random but same order for all systems
(i.e., no query optimization).

Datasets and Indexes. We use DBLP, which captures
bibliographic information. Further, we used the data gener-
ator proposed for the LUBM benchmark to create 4 datasets
for 1, 5, 10, and 50 imaginary universities.

For these datasets, the number of edges are shown in
Table 2. For comparison, Table 2 also contains the number
of edges for three different versions of the structure index.
The first one called G7,; is calculated using complete
bisimulation. The second one, called Gzh L,> fepresents a
label-parameterization that was derived from the the query
workload, i.e., by searching for prunable query parts in the
queries and parameterizing L1, Lo accordingly such that
labels of all edges contained in these parts are included. The
third one denoted G5, is based on height-parameterization
with n = 2. The results show that while the size of the
full indexes G’ is almost as big as the size of the dataset
(62%-87%), the size of Gzl,h is much smaller (4%-30%).
The size of the heigth-parameterized indexes G5’; makes up
only a small percentage (0.08%-2%).

Gy Gzl Lo Gran Dataset
DBLP 1278 557,423 11,600,000 12,920,826
LUBMI 665 30,641 87,590 100,577
LUBMS5 736 151,396 553,362 722,987
LUBMI10 552 253,088 1,127,231 1,272,609
LUBMS50 559 343,682 5,754,191 6,654,596

TABLE 2: Statistics for the data graphs and indexes.

5.2 AQueries

We use queries of five different types, each representing a
particular query shape. We create 3 queries for each of the
types, resulting in 15 queries for each dataset and a total
of 30 queries. The complete list of queries can be found in
our technical report [22]. We will now discuss examples.
(1) Single-triple-pattern queries consist of exactly one
single triple pattern. Query 1 on DBLP (Qpprpl) for
instance, simply asks for all persons. (2) Path queries
consist of several connected triple patterns that form a
path. As an example, Qg6 retrieves all students and
courses that are lectured by full professors. (3) Star queries
are composed of more than two path queries. These parts
share exactly one common node, i.e., the center node. For
instance, Qpprpl2 retrieves names of people, who are
both editors and authors, and whose papers have been cited.
(4) Entity queries are similar to star queries. They are
formed by triple patterns that share exactly one common
node, i.e., the entity node. Qrypay9 asks for entities who
have a given email address, research interest and telephone.
(5) Graph-shaped queries consist of nodes and edges that
form a graph. As opposed to the star query, queries of
this type might contain cycles and loops. Qruypa15 for
instance, retrieve authors z and advisors a that match some
specified constraints. Namely, both shall be member of the
same organization, a telephone number is specified for a,



and x shall be taking the course run by FullProfessorb
and also, has authored Publication?.

Results. Total query processing for both approaches for
the two datasets are presented in Fig. 7a+7b. For most
cases, SQP is faster than VPQP. For DBLP, SQP is a factor
of 7-8 faster on average. We noted that SQP exhibited much
better performance than VPQP w.r.t. queries that have more
complex structures, i.e., the queries (Q4-Q)15 representing
path, entity, star and graph-shaped queries. SQP is slightly
worse w.r.t. simple queries, i.e., the single triple patterns
@Q1-Q3. This suggests that with more complex queries, the
overhead incurred by additional structure-level processing
can be outweighed by the accumulated gain.

To better understand the reasons for this, we decom-
posed total processing time into the fragment required for
structure-level processing, i.e., index matching (idx match),
to retrieve data from disk (load) and to combine them
(join). We compared the time SQP needed for matching
with the difference for load and join between SQP and
VPQP. This is shown in Fig. 7c+7d to illustrate when
the additional cost of index matching is outweighed by
the gain in loading and join performance. Fig. 7c+7d also
illustrates the impact of query pruning measured in terms
of the number of query nodes, which were discarded after
structure-level processing. Along these factors, we will now
discuss results for each specific query type.

Single-triple-patterns QI1-Q3: Here, SQP was slower
than VPQP. This is because only a single index lookup
or table scan is needed to answer these queries. In the
cases of index lookup only, i.e., Qpprp1-3, Qrupml and
Qrusm3, our approach did not provide any advantages
but required additional effort for structure-level processing.
For Q2 on LUBM, which required a scan to retrieve all
triples matching a predicate, one can see that SQP improved
loading time. Performance of SQP equals VPQP in this
case, as the gain fully compensated the cost for structure-
level processing.

Path Queries Q4-Q6: For processing these queries,
triples retrieved for the patterns have to be joined along the
path. Here, we observed that SQP largely reduced time for
load and join w.r.t. all queries of this type. This is especially
true for queries containing patterns with low selectivity.
For instance for Qpypm6 the number of triples retrieved
for the SP table (y € B; teacherOf z) was many times
smaller than the VP table (y teacherOf z), resulting in
large relative advantages for load and join performance.
Another advantage is that path queries lend themselves to
be pruned: on average 1.6 query nodes were removed.

Entity Queries Q7-09: For these queries, triples need
to be retrieved and joined on the node representing the
entity. Also here, SQP improved I/O and join performance.
SQP outperformed VPQP w.r.t. all queries except for
QrLuBM9. We observe that best performance was achieved
with queries containing few constants (Qr,usm8, QDBLPS,
QppLprY). Query patterns without constants could be re-
moved in most cases, thus helped to avoid unnecessary
load and join operations. For instance (Qr,ypm8 contains
only one constant, while Qpupm9 has 3 constants. Both

contain the same number of triple patterns but Qpupm8
benefited much more from reduction in I/O and join. In
fact, the performance gain for Qrupm9 did not outweigh
the cost for structure-level processing. SQP was slower than
VPQP in this case, as many constants could be effectively
used for triple lookups. There is thus not much data that
could be “filtered” through structure-level processing. One
could say that the number of constants and the selectivity
of triple patterns have an adverse effect on the gain that
can be achieved with SQP.

Star Queries Q10-Q12: These queries behaved similar
to entity queries. However, pruning is more delicate as
distinguished variables might be not at the center but
anywhere. However, since star queries were larger than
entity queries on average, larger portion of the queries lent
themselves to be pruned. Also for this type of queries,
results show that performance of SQP was superior to
VPQP.

Graph-shaped Queries Q13-Q15: We expected that the
relative performance of SQP is best here, since these
queries have most complex structures. However, while the
performance of SQP was still better than VPQP for all
graph-shaped queries, except for Qrupm15, the relative
improvement of SQP over VPQP is not as high as the
improvement achieved for entity and star queries, i.e., 3-4
times compared to 9-10 times improvement. Results show
that the main reason for this is because structure-level
processing cost largely increased with complexity.

Scalability. We measured the average performance for
LUBM with varying size, i.e., different number of uni-
versities (1, 5, 10, 20, 50). Fig. 7e shows the differences
(VPQP-SQP) in total processing time, load and join and
also the times SQP needed for index matching. Clearly, the
performance of SQP improved with the size of the data. The
improvement of SQP over VPQP (indicated by VPQP-SQP)
increased more than linearly with the size, e.g., LUBMS5
(LUBMG60) is 7 (66) times bigger in size than LUBMI1
while the improvement for LUBMS (LUBMS50) is more
than 8 (92) times the improvement achieved for LUBMI.

In particular, the differences in performance for load
and join increased in larger proportion (the gain) than the
overhead incurred for index match. This is because match
performance is determined by the size of the index graph.
This size depends on the structures exhibited by the data
but not the actual size of the data. For instance, the fact that
the size of G5; for LUBMI1O0 is smaller than for LUBM5
(see Table 2) simply tells that LUBMS exhibits higher
structural complexity (when only paths of maximum length
2 are considered). Thus, the index match time does not
necessarily increase when the data graph becomes larger.
The positive effect of data filtering and query pruning (load
and join) however, correlates with the data size.

5.3 The Results of Optimization

The structure index may be large for datasets that have
diverse structures. Also, SQP does not perform well on
queries that are simple and (or) do not lend themselves to
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Fig. 7: Evaluation results for structure-oriented approach (SQP), its optimization (OSQP) and VP.

pruning. We will discuss the effects of the further optimiza-
tions, which aim to address these problems. Namely, we
show how parameterization can help to obtain indexes with
a manageable size (especially when height is set to n = 1),
and that the integrated strategy can leverage standard data-
level processing in cases where structure-level processing
cannot be successfully applied.

Queries. For this part, we use a query generation proce-
dure to obtain a larger number of test queries, which vary
in the maximum number of constants, paths, cycles, and the
maximum path length. It is run for both DBLP and LUBM
to obtain 160 queries of the 5 types already discussed.

The Effect of the Integrated Strategy. We compare
SQP with OSQP. Fig. 7f shows the average time for the
160 queries. Clearly, OSQP consistently outperformed SQP.
The average time obtained for OSQP was lower than SQP
for all datasets, up to 50 percent in the case of LUBMS.

We provide a breakdown of the average time to un-
derstand the effect of query structure (and complexity).
In Fig. 7g, we show the average time for the different
query types. For both approaches, query processing times
increased with the complexity of the query. For single triple
patterns, OSQP slightly improved SQP. In fact, it equals
VPQP because in this case, only data-level operations were
performed. The largest difference could be observed for
entity queries. Improvement could also be observed for
more complex structures, i.e., graph-shaped queries.

The Effect of Bisimulation Height. Fig. 7h shows
the ratio of structure index size to data size at various
bismulation heights n = 1,2,3, Full. Clearly, for all
datasets, the relative index size largely increased with n.

To understand the effect of this parameter on query
processing, we run both OSQP and SQP on structure

indexes with different heights. Fig. 7i shows the average
times for n = 1,2, 3. They increased with the bisimulation
height. For greater height, the structure index size increased,
thus resulting in higher overhead for evaluating structure-
level joins. While the prunable parts become larger, it
seems that the effect of pruning could not compensate the
overhead when the index is too large. For the datasets in
the experiments, using structure index with n = 1 achieved
best performance.

5.4 Comparison to Triple Stores

We now describe the second part of the evaluation, where
we compare our solution to full-fledged triple stores,
namely RDF3-X and Sesame.

Systems. In order to support queries with more advanced
access patterns (e.g. unbound predicates), full-fledged RDF
stores such as Sesame® and RDF-3X° typically employ
additional indexes. Furthermore, they implement advanced
optimization techniques such as index compression, mate-
rialized join indexes, and query plan optimization that are
largely orthogonal to our solution [23]. For instance, RDF-
3X employs multiple B+-tree indexes to support lookups
on all possible triple patterns. By using separate indexes
for each triple pattern, RDF-3x is able to provide sorted
access, thereby allowing for efficient merge joins without
sorting at runtime. Sesame also uses B+-tree indexes to
store data using dictionary encoding. We configured these
systems to use all indexes needed to support the queries in
the experiments (SPO, POS, OSP).

To make the comparison more fair, we extended OSQP
with some optimization techniques also used by these

5. Sesame 2.6.1, http://www.openrdf.org/
6. RDF3-X 0.3.7, https://code.google.com/p/rdf3x/
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stores. Similar to RDF-3X and Sesame, we also used
dictionary encoding to manage the data and indexes. In
particular, this version of OSQP employs a sparse index
and page-level compression using the Snappy algorithm’.
It uses hash and merge join operators, and employs join
optimizations similar to RDF-3X (sideways information
passing).

Datasets and Indexes. In order to see how our approach
performs w.r.t. more heterogeneous datasets, the Crossref
Domain (DBPedia, LinkedMDB, Geonames, New York
Times, Semantic Web Dog Food, Jamendo) and Life Sci-
ence Domain (DBPedia, KEGG, Drugbank, ChEBI) dataset
collections from the FedBench [24] benchmark were used
in this experiment. These datasets cover a wide range of
domains and are representative of RDF data as they are
used in real-world applications. More information about
them can be found on the benchmark website®.

The dataset used in this experiment consists of about
167M ftriples. The structure index G| ;. created for this
(with » = 1) contains only 136,566 edges.

Queries. We used modified FedBench queries as some
of them contain operators that are not supported (such
as UNION and FILTER). From the Cross Domain, Life
Science and Linked Data query sets, we obtained 20
queries that differ in sizes (number of triple patterns) and
prunability.

Overall Results. Fig. 8a shows the query times for
all queries for all three systems. The measurements for
OSQP are again split into the times for structure index
matching, data loading and (join) processing. Overall, we
see that OSQP and RDF-3X both outperformed Sesame by
a large margin. One reason for this seems to be that Sesame
decoded dictionary encoded values directly after loading
from disk while the other systems process encoded values,
thereby requiring less disk accesses. OSQP on average
performed slightly better than RDF-3X. The average query
time for OSQP is 169.61 ms, compared to 191.89 ms for
RDF-3X and 13059.24 ms for Sesame.

However, individual queries varied a lot in the compari-
son between OSQP and RDF-3X. For example, for queries
Q6 and Q14, OSQP outperformed RDF-3X by factors of

7. https://code.google.com/p/snappy-java/
8. http://code.google.com/p/fbench/

2.55 and 2.96, respectively. For both queries, OSQP was
able to prune query patterns (one for Q6 and two for Q14)
and could apply structure-level operations. On the other
hand, queries such as Q11 and Q13 could not be pruned,
and consequently, were executed faster by RDF-3X than
OSQP. We found that while the amount of data required
were comparable between these two systems (OSQP relied
mostly on data-level processing) in these cases, RDF-3X
was still more efficient in processing the data. In fact,
also the join implementations used by these systems are
conceptually the same in these cases. However, RDF-3X
seems to benefit from more optimized data structures (and
faster execution of the C++ code), compared to our Java-
based implementation.

In Fig. 8a we see that query times for OSQP were
dominated by data loading (86% of total time on average).
Structure index matching and join processing had a rela-
tively small impact on query times for most queries. The
structure index was small enough to be kept in memory,
leading to an average of 2.47 ms (0.02%) for structure
index matching. Join processing on average took 23.28 ms
(13.8%). For a few queries, it took a larger fraction of total
query time. For query Ql1, join processing took 92 ms
(51% of 180.5 ms total time). The triple patterns in this
query were not very selective and only a single merge join
could be used while the other joins were performed as hash
joins. Here, RDF-3X performed better.

Effect of Structure-level Processing. Fig. 8b+c compare
query times of OSQP and RDF-3X by showing the ratio of
OSQP and RDF-3X query times for two query properties:
a) the number of pruned triple patterns and b) the number
of structure-level operations performed during query pro-
cessing. In Fig 8b we see that when there was no or little
pruning possible, query times of OSQP and RDF-3X were
roughly equal. However, when OSQP was able to prune
two triple patterns, query time decreased to 42%.

Fig. 8c shows the ratio between OSQP and RDF-3X
for different numbers of structure-level operations applied
by OSQP during query processing. These include pruned
query patterns and query patterns that were not pruned but
evaluated on structure-based partitioned data (i.e., using
matches from the structure index). Overall, we can see
that OSQP performed better when structure-level opera-



tions were performed. When no structure-level operations
were applied, OSQP times were roughly equal to RDF-3X
(97%), whereas OSQP performed better when one or more
such operations could be used (72%-89%).

6 RELATED WORK

We have already pointed out specific differences to VP,
the related partitioning and query processing techniques
used in existing triple stores [1]. Standard (data-level)
processing [1], [7] is used for matching query patterns
against graphs (same data access and join implementation).
However, additional to processing query patterns against
the data graph, our solution involves structure-level match-
ing and an integrated strategy that interleaves data- and
structure-level operations.

Now, we focus on related work in the field of graph-
structured, XML and semi-structured data management.

Graph Indexing This is a popular topic in the graph
database community. A well-studied technique is based
on the idea of grouping graphs based on their contained
subgraphs. In [25] for instance, frequent substructures are
identified and used for indexing graph databases (such as
chemical databases containing molecule data). With such an
approach, the complexity of subgraph matching inevitably
leads to scalability problems for larger data sets, which
can be partially overcome by essentially restricting to tree-
shaped substructures [26]. As a crucial difference to our
approach, these methods aim at indexing sets of graphs
while we are primarily concerned with query processing
over one single large data graph.

Structure Index This concept has been extensively
studied for indexing semi-structured and XML data ([12],
[13], [14], [15]). Dataguide [27] is a well-known concept
that has been proposed for rooted graphs, i.e., graphs having
one distinguished root node from which all other vertices
can be reached through directed paths. A strong dataguide is
established by grouping together nodes sharing edge label
sequences of incoming paths starting from the root. The
technique is similar to the conversion of a nondeterministic
finite automaton into an equivalent deterministic automaton.
As opposed to our approach, the grouping in dataguides
is not a partition, i.e., one data element may be assigned
to several groups. The advantage is that for any labeled
path starting from the root, there is exactly one associated
node in the dataguide. However, the size of the dataguide
can get exponentially larger than that of the original data
graph. The index proposed in [12] can avoid this worst-
case exponential blow-up of dataguides. The strategy of
constructing this index is similar to minimizing a nonde-
terministic finite automaton. To further reduce the index
size, the A(k)-Index [14] has been proposed, which relaxes
the equivalence condition to consider only incoming paths
whose lengths are no longer than k. Further, the D(k)-
Index allows for adjusting k to the query load [15]. Instead
of backward bisimulation only, both back- and forward
bisimulation is employed for the construction of a covering
index for XML branch queries [13].

The differences to the structure index employed in this
scenario are as follows: its concept of structural similarity is
more fine grained, as it rests on characterizing the structure
of an element via trees instead of paths [14], [13]; it can be
parameterized not only based on height [14] but also based
on the edge labels L; and Ls.

Recently, a bisimulation-based structure index has also
been proposed for RDF [28]. The idea there is to group
nodes by their labeled neighborhoods. However, the bisim-
ulation is actually defined on a neighborhood with labeled
nodes and unlabeled edges. Our approach is rather focused
on the structure defined by the edge labels. Further, we
propose a principled way to parameterize the index con-
struction so that the index size can be controlled.

Query Processing Our structure-aware processing tech-
nique is similar to work on evaluating path queries using
structure indexes such as dataguides [27]. The procedure
proposed in [29] for instance is similar to structure-level
processing. Firstly, the set of index nodes is computed.
Then, the union of all data elements associated with these
index matches are returned as answers. Since the queries
we consider are graph-structured, structure-level processing
is not sufficient. Our technique involves the additional steps
of query pruning and data-level processing.

There are techniques for finding occurrences of twig pat-
terns (tree-structures) in XML data ([30], [31]). Typically,
the twig pattern is decomposed into binary relationships,
i.e., parent-child and ancestor-descendant. Matching is
achieved in two main steps: (1) match binary relationships
against XML data and combine them using structural join
algorithms to obtain basic matches and (2) combine basic
matches to obtain final answer. For this first step, a variation
of the traditional merge join algorithm has been proposed
to deal with “structure predicates”, i.e., the multi-predicate
merge join (MPM]J) [30]. The main problem with MPMJ is
that it may generate unnecessary intermediate results such
that join results of individual binary relationships might not
appear in the final results. Bruno et al. proposed a method
called TwigJoin for solving this problem [31]. It outputs a
list of element paths, where each matches one root-to-leaf
path of the twig pattern. When there are only ancestor-
descendant edges, this algorithm is optimal such that each
of these matches is part of the final answer.

These XML-based techniques rely on tree structures, and
in particular, assume that relationships among elements
are either parent-child or ancestor-descendant. They are
not applicable to our setting, where both query and data
are graph structured, and different edge labels have to be
considered for matching.

7 CONCLUSION

We propose the use of a structure index for dealing with
semi-structured RDF data on the Web. Based on this
concept, we proposed structure-oriented data partitioning
and query processing which effectively reduces I/O and
the number of joins. Compared to state-of-the-art data
partitioning and query processing, our solution achieves



several times faster performance w.r.t. a given workload.
For complex structured queries with bound predicates,
it provides superior performance w.r.t. full-fledged RDF
engines. More importantly, the proposed solution shows
promising scalability results, i.e., performance improve-
ment increases more than linearly with the size of the data.
This is because its performance does not strictly correlate
with data size but depends on the heterogeneity of structure
patterns exhibited by the data.
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