
Artificial Intelligence Institute
Department of Computer Science
Dresden University of Technology

Diploma Thesis

Concept Learning in Description

Logics

Jens Lehmann

September 12, 2006

Supervisors: Prof. Dr. Steffen Hölldobler

Dr. habil. Pascal Hitzler, AIFB, Univ. of Karlsruhe

Abstract

The problem of learning logic programs has been researched extensively, but other know-
ledge representations formalisms like Description Logics are also an interesting target
language. The importance of inductive reasoning in Description Logics has increased
with the rise of the Semantic Web, because the learning algorithms can be used as
a means for the computer aided building of ontologies. Ontology construction is a
burdensome task and powerful tools are needed to support knowledge engineers.

The thesis focuses on learning ALC concept definitions, although many ideas apply
to concept learning in general. It deeply researches the properties of ALC refinement
operators, which are an efficient way to traverse the space of concepts ordered by sub-
sumption. We give a full theoretical analysis of interesting properties of such operators.
Based on this analysis, we propose a suitable concrete refinement operator and research
its properties. We show that it is not possible to define better operators with respect
to the properties we are investigating and establish a complete learning algorithm by
adding an intelligent search heuristic.

As a second approach we investigate the use of Genetic Programming to solve the
learning problem in Description Logics. We discuss the characteristics of Genetic Pro-
gramming in this context and show a way to incorporate refinement operators in the
Genetic Programming framework. Again, we define a suitable operator and analyse it.
Some further extensions like learning from uncertain data and concept invention are also
proposed.

Besides the analysis of the two learning approaches mentioned above, we will also
briefly investigate current problems in evaluating concepts and describe possible solu-
tions.

Contents

Contents

1 Introduction 5

2 Description Logics and Ontology Languages 8
2.1 The Description Language ALC . 8
2.2 Reasoning in Description Logics . 12
2.3 Normal Forms . 13
2.4 Other Description Languages . 15
2.5 The OWL Ontology Language . 17

3 The Learning Problem 19

4 Refinement Operators for ALC Concepts 22
4.1 Introduction . 22
4.2 Analysing the Properties of ALC Refinement Operators 25
4.3 A Refinement Operator for ALC Concepts 33
4.4 Weak Completeness of the Operator . 36
4.5 Achieving Properness . 40
4.6 Removing Redundancies . 42
4.7 Further Optimisations . 49
4.8 Creating a Full Learning Algorithm . 50

5 Concept Learning and Genetic Programming 57
5.1 Basics of Evolutionary Computing . 57
5.2 Introduction to Genetic Programming . 59
5.3 Application to Description Logics . 68
5.4 Refinement Operators in Genetic Programming 72
5.5 Other Improvements . 80

6 Concept Quality Measurement 84
6.1 Problems in Concept Learning . 84
6.2 A Fast Retrieval Algorithm . 85

7 Summary, Outlook, Further Work 96

4

1 Introduction

The field of Machine Learning (Mitchell, 1997) is an important area of Artificial Intel-
ligence (Russel and Norvig, 2003). Since logic is an important foundation of Artificial
Intelligence, it is natural that learning logic programs (also called induction) plays a sig-
nificant role in Machine Learning. While the induction of logic programs has been stud-
ied extensively in Inductive Logic Programming (ILP) (Nienhuys-Cheng and de Wolf,
1997) other knowledge representation languages also deserve attention. Description Log-
ics (Baader et al., 2003) are an interesting fragment of first order logic with decidable
inference methods. They have an easy to understand and readable syntax without func-
tion symbols and variables. Horn logics and Description Logics are incomparable (none
includes the other as a fragment), which is another argument for considering learning in
Description Logics worthwhile. Description Logics are also used for the Semantic Web
(Berners-Lee et al., 2001) as underlying knowledge representation formalism for ontolo-
gies. The World Wide Web Consortium and many KRR (knowledge representation and
reasoning) research groups consider it the most suitable choice for representing machine
processable knowledge in the web. The Web Ontology Language (OWL), which is used
to formally define terminologies, is based on Description Logics.

When we investigate learning methods in Description Logics we have two application
areas in mind:

First, we can consider classical ILP application areas (see Bratko and Muggleton,
1995). There is a variety of existing ILP systems and ILP has been applied successfully
in many areas, e.g. learning drug-structure activity rules for Alzheimer’s disease, pre-
dicting mutagenesis, and many more. While Description Logics are different from logic
programs, it may be the case that for some of the tasks, where ILP is used, Description
Logics are also suited. For some tasks it may even be a better target language. (The
used target language is an important bias of a learning algorithm, so the performance
of a learning algorithm greatly depends on whether the target language is appropriate.)

The second application area of our work is ontology engineering in the Semantic Web.
A lot of research effort has been spent to develop knowledge representation formalisms
for the Semantic Web and standardise them. However, the creation of ontolgies is still
a bottleneck. Building up an ontology is a difficult and error-prone task, so there is
currently a great need for tool support in this area. Our approach helps to overcome
this problem by automatically inducing concept definitions (concepts are called classes
in the OWL context) from examples. This means that the knowledge engineer can select
positive and negative examples for the class he wants to define and will automatically
receive a correct class definition. The first advantage of this approach is that the obtained
definition is guaranteed not to contradict other knowledge in the ontology. Furthermore
the induced definition is likely to cover all important aspects of the class, which the
knowledge engineer may have missed or does not know about.

Learning in Description Logics has attracted some attention during the 90s, e.g. (Co-
hen and Hirsh, 1994). It has recently gained momentum (Esposito et al., 2004) due to
the rise of the Semantic Web. So far only a few learning systems exist in practise with
YINYANG being the most recent one (see Iannone and Palmisano, 2005, for the theory

5

1 Introduction

underlying the YINYANG system) .
Refinement operators have been shown to be sucessful in Inductive Logic Program-

ming, so a large part of the thesis will be devoted to a thorough analysis of such opera-
tors. For the description language ALER some theoretical issues have been researched
in (Badea and Nienhuys-Cheng, 2000). In this thesis we will give a full analysis of
interesting properties of refinement operators for the description language ALC. To
the best of our knowledge, such a complete analysis has not been done before for a
description language. Using this theoretical analysis as a starting point, we design a
new refinement operator for ALC and extend this step-by-step to a complete learning
algorithm. We believe that the algorithm we invent offers a number of advantages over
existing approaches. Later in the thesis, we will introduce the novel idea of using Ge-
netic Programming (see Koza et al., 2003, for a general overview) for concept learning.
In particular, we will show how to usefully combine refinement operators and genetic
programming. We think that these contributions will be useful for practical applications
and the future research in the field of learning in Description Logics.

Outline In Section 2 we will give a brief introduction in Description Logics. Of course,
it is impossible to cover all important aspects of Description Logics, but we will introduce
all necessary notions, which are needed to understand the content of the thesis. We
will also show the connection between Description Logics and ontology languages, in
particular OWL. Section 3 introduces the learning problem in Description Logics. In
this section we will describe the goal we want to achieve and give an overview of a general
framework for solving it. We propose two solution approaches in Section 4 and 5.

In Section 4 we will introduce the notion of refinement operators and define interesting
properties of such operators like completeness, weak completeness, properness, non-
redundancy, and finiteness. After that we do a full analysis of these properties, i.e. we
look which of these properties can be combined and which properties are impossible to
combine. This serves as a useful guide for designing concrete operators. We will design
such an operator and show that it is complete. Then we will extend it to a complete
and proper operator. We will give reasons why weakly complete, proper, and non-
redundant operators are impractical (although they exist). We show that redundancy
can be avoided for a complete and proper operator by using a redundancy-eliminating
heuristic. We show how such a heuristic works and which steps have to be done to
implement it efficiently. After mentioning further optimisations, we formally define a
full learning algorithm, prove its correctness and analyse its characteristics. Finally an
example run is presented.

Section 5 starts with an overview of Evolutionary Computing and then presents Ge-
netic Programming as an evolutionary algorithm in more detail. It is more appropriate
to view Genetic Programming as a framework instead of looking at it as a specific algo-
rithm. What we introduce first is the standard approach, which is widely used. We then
discuss the characteristics of this approach and conclude that modifications are neces-
sary to create an efficient learning algorithm. As main modification we introduce so
called genetic refinement operators, which provide a way to use refinement operators as

6

genetic operators. We show how this works in general for all finite refinement operators
and then define a concrete refinement operator, which is suitable for learning within the
Genetic Programming framework. In this section we will also show how the algorithm
can handle noise, learn from uncertain data and invent new helper concepts.

Section 6 looks at the quality measurement of concepts. Quality measurement means
to measure how good a concept is, i.e. to compute which examples are covered (follow
logically) by a concept. We show that the Open World Assumption in Description Logics
can be a problem in learning. To solve this problem, we propose a simple retrieval
algorithm, which can reason under a fixed domain (so the Open World Assumption is
weakenend) and is sound and incomplete. We show that with some restrictions the
algorithm is also complete and we give reasons why it makes sense to use the algorithm
within the learning framework.

Finally in Section 7, we summarise the results of the thesis and look at future work
and research directions.

7

2 Description Logics and Ontology Languages

2 Description Logics and Ontology Languages

Description Logics is the name of a family of knowledge representation (KR) formalisms.
They emerged from earlier KR formalisms like semantic networks and frames. The origin
is a work of Bachman on structured inheritance networks (Brachman, 1978). Since
then Description Logics have enjoyed increasing popularity. They can essentially be
understood as fragments of first order predicate logic. They have less expressive power,
but usually decidable inference problems and a user-friendly variable free syntax.

Description Logics represent knowledge in terms of objects, concepts, and roles. Con-
cepts formally describe notions in an application domain, e.g. we could define the con-
cept of being a father as "a man having a child". Objects are members of entities in the
application domain and roles are binary relations between objects. Objects correspond
to constants, concepts to unary predicates, and roles to binary predicates in first order
logic.

In Description Logic systems information is stored in a knowledge base. It is divided
in two parts: TBox and ABox. The ABox contains assertions about objects. It relates
objects to concepts and roles. The TBox describes the terminology by relating concepts
and roles. (For some expressive description logics this clear separation does not exist.)

As mentioned before, DLs are a family of KR formalisms. In order to simplify the
introduction we will introduce the ALC Description Logic as a prototypical example and
then briefly describe other description logics.

2.1 The Description Language ALC

ALC stands for attribute language with complement. It allows to construct complex
concepts from simpler ones using various language constructs. The next definition shows
how such concepts can be build.

Definition 2.1 (syntax of ALC concepts)
Let NR be a set of role names and NC be a set of concept names (NR ∩ NC = ∅).
The elements of the latter set are called atomic concepts. The set of ALC concepts is
inductively defined as follows:

1. Each atomic concept is a concept.

2. If C and D are ALC concepts and r ∈ NR a role, then the following are also ALC
concepts:

• > (top), ⊥ (bottom)

• C tD (disjunction), C uD (conjunction), ¬C (negation)

• ∀r.C (value/universal restriction), ∃r.C (existential restriction) �

The following rule is a more succinct description of ALC syntax:

C,D → A | > | ⊥ | ¬C | C uD | C tD | ∀r.C | ∃r.C

8

We now know how to syntactically build ALC concepts. We still have to define their
semantics. As usual in logic this is done by interpretations.

Definition 2.2 (interpretation)
An interpretation I consists of a non-empty interpretation domain ∆I and an interpre-
tation function ·I, which assigns to each A ∈ NC a set AI ⊆ ∆I and to each r ∈ NR a
binary relation rI ⊆ ∆I × ∆I. �

As we can see from Definition 2.2 atomic concepts are interpreted as sets of objects and
roles are interpreted as binary relations. We will now extend the interpretation function
to complex ALC terms. This is done as shown in Table 1. Given an interpretation this
allows us to interpret any ALC concept.

construct syntax semantics
atomic concept A AI ⊆ ∆I

role r rI ⊆ ∆I × ∆I

top concept > ∆I

bottom concept ⊥ ∅
conjunction C uD (C uD)I = CI ∩DI

disjunction C tD (C tD)I = CI ∪DI

negation ¬C (¬C)I = ∆I \ CI

exists restriction ∃r.C (∃r.C)I = {a | ∃b.(a, b) ∈ rI and b ∈ CI}
value restriction ∀r.C (∀r.C)I = {a | ∀b.(a, b) ∈ rI implies b ∈ CI}

Table 1: ALC semantics

Example 2.3 (interpreting concepts)
Let the interpretation I be given by:

∆I = {MONICA, JESSICA, STEPHEN}

WomanI = {MONICA, JESSICA}

hasChildI = {(MONICA, STEPHEN), (STEPHEN, JESSICA)}

We then have:
(Woman u ∃hasChild.>)I = {MONICA}

�

Previously we mentioned that a DL knowledge base consists of TBox and ABox. We
will first introduce TBoxes and then ABoxes.

Definition 2.4 (terminological axiom)
If C and D are concepts, then C v D and C ≡ D are terminological axioms. The former
axioms are called inclusions and the latter equalities. �

We can define the semantics of terminological axioms in a straightforward way. An
interpretation I satisfies an inclusion C v D if CI ⊆ DI and it satisfies the equality
C ≡ D if CI = DI. I satisfies a set of terminological axioms if it satisfies all axioms in
the set.

9

2 Description Logics and Ontology Languages

Definition 2.5 (model of terminological axioms, equivalence)
An interpretation, which satisfies a (set of) terminological axioms is called a model of
this (set of) axioms. Two (sets of) axioms are equivalent if they have the same models.�

Definition 2.6 (concept definition)
An equality whose left hand side is an atomic concept is a concept definition. �

Definition 2.7 (TBox)
A finite set T of concept definitions is called TBox if it does not contain multiple
definitions (a concept name does not occur more than once on the left hand side). �

Often a different definition of a TBox is used, which is sometimes called general TBox.
In this thesis we refer to general TBoxes unless mentioned otherwise.

Definition 2.8 ((general) TBox)
A finite set T of terminological axioms is called a (general) TBox. �

TBoxes are used to describe the relationship between concepts. The next step is to
look at ABoxes, which relate objects to concepts and roles.

Definition 2.9 (assertion)
Let NI be the set of object names (disjoint with NR and NC). An assertion has the
form C(a) (concept assertion) or r(a, b) (role assertion), where a, b are object names, C
is a concept, and r is a role. �

Definition 2.10 (ABox)
An ABox A is a finite set of assertions. �

Objects are also called individuals. To allow interpreting ABoxes we extend the defi-
nition of an interpretation. Additionally to mapping concepts to subsets of our domain
and roles to binary relations, an interpretation has to assign to each individual name
a ∈ NI an element aI ∈ ∆I . In particular different individual names must not be
mapped to the same domain element. This is required in order to satisfy the unique
names assumption (UNA), which states that individuals with different names have to
be interpreted as different individuals.

Definition 2.11 (model of an ABox)
An interpretation I is a model of an ABox A (written I |= A) if aI ∈ CI for all
C(a) ∈ A and (aI, bI) ∈ rI for all r(a, b) ∈ A. �

Definition 2.12 (model of a knowledge base)
An interpretation I is a model of a knowledge base K = (T ,A) (written I |= K) iff it is
a model of T and A . �

Example 2.13 (models of a knowledgebase)
We have introduced basic notions relating to DL knowledge bases and interpretations.
An example is in order. Let the knowledge base K = (T ,A) be given by:

10

TBox T :

Man ≡ ¬Woman

Mother ≡ Woman u ∃hasChild.>

ABox A :

Man(STEPHEN).

¬Man(MONICA).

Woman(JESSICA).

hasChild(STEPHEN, JESSICA).

We will now look at some interpretations and determine whether or not they are a
model of K . For all interpretations we use the domain {MONICA, JESSICA, STEPHEN} and
all object names are interpreted in the obvious way (STEPHEN is interpreted as STEPHEN
etc.).

Let the interpretation I1 be given by:

ManI1 = {JESSICA, STEPHEN}

WomanI1 = {MONICA, JESSICA}

MotherI1 = ∅

hasChildI1 = {(STEPHEN, JESSICA)}

Clearly this does not satisfy T , because the definition Man ≡ ¬Woman is not satisfied. We
have ManI1 = {JESSICA, STEPHEN} and (¬Woman)I1 = {STEPHEN}, which are not equal.
However, I1 satisfies A .

Let the interpretation I2 be given by:

ManI2 = {STEPHEN}

WomanI2 = {JESSICA, MONICA}

MotherI2 = ∅

hasChildI2 = ∅

I2 satisfies T , but does not satisfy A , because we have hasChild(STEPHEN, JESSICA) ∈
A but (STEPHENI2, JESSICAI2) 6∈ hasChildI2 .

Let the interpretation I3 be given by:

ManI3 = {STEPHEN}

WomanI3 = {JESSICA, MONICA}

MotherI3 = {MONICA}

hasChildI3 = {(MONICA, STEPHEN), (STEPHEN, JESSICA)}

I3 is a model of T and A , so it is a model of K . One may argue that nothing in our
knowledgebase justifies the fact that we interpret MONICA as mother. However, in DLs

11

2 Description Logics and Ontology Languages

we usually have the open world assumption. This means that the given knowledge is
viewed as incomplete. There is nothing, which tells us that MONICA is not a mother.
In databases one usually uses the closed world assumption, i.e. all facts, which are not
explicitly stored, are assumed to be false. �

2.2 Reasoning in Description Logics

As we have seen a knowledge base can be used to store the information we have about
the application domain. Besides this explicit knowledge we can also deduce implicit
knowledge from a knowledge base, e.g. from the fact that JESSICA belongs to the
concept Woman and the axiom Man ≡ ¬Woman we can deduce that JESSICA does not
belong to the concept Man. It is the aim of inference algorithms to extract such implicit
knowledge. There are some standard reasoning tasks in Description Logics, which we
will briefly describe.

In terminological reasoning we reason about concepts. The standard problems are
satisfiability and subsumption. Intuitively satisfiability determines if a concept can be
satisified, i.e. it is free of contradictions. Subsumption of two concepts detects if one of
the concepts is more general than the other.

Definition 2.14 (satisfiability)
Let C be a concept and T a TBox. C is satisfiable iff there is an interpretation I such
that CI 6= ∅. C is satisfiable with respect to T iff there is a model I of T such that
CI 6= ∅. �

Example 2.15 (satisfiability)
Male u Female is satisfiable. However, it is not satisfiable with respect to the TBox in
Example 2.13. �

Definition 2.16 (subsumption, equivalence)
Let C, D be concepts and T a TBox. C is subsumed by D, denoted by C v D, iff for
any interpretation I we have CI ⊆ DI. C is subsumed by D with respect to T (denoted
by C vT D) iff for any model I of T we have CI ⊆ DI .
C is equivalent to D (with respect to T), denoted by C ≡ D (C ≡T D), iff C v D

(C vT D) and D v C (D vT C).
C is strictly subsumed by D (with respect to T), denoted by C @ D (C @T D), iff

C v D (C vT D) and not C ≡ D (C ≡T D). �

Example 2.17 (subsumption)
Mother is not subsumed by Woman. However, Mother is subsumed by Woman with respect
to the TBox in Example 2.13. �

In assertional reasoning we reason about objects. The consistency problem is the
question whether an ABox has a model. The instance problem is to find out whether an
object is an instance of a concept, i.e. belongs to it. Retrieval is the problem of finding
all instances of a given concept.

12

Definition 2.18 (consistency)
An Abox A is consistent iff it has a model. An ABox A is consistent with respect to a
TBox T iff A and T have a common model. �

Example 2.19 (consistency)
The ABox {Male u ¬Male(STEPHEN)} is inconsistent. �

Definition 2.20 (instance)
Let A be an ABox, T a TBox, K = (T ,A) a knowledge base, C a concept, and a ∈ NI

an object. a is an instance of C with respect to A , denoted by A |= C(a), iff in any
model I of A we have aI ∈ CI . a is an instance of C with respect to K , denoted by
K |= C(a), iff in any model I of K we have aI ∈ CI.

To denote that a is not an instance of C with respect to A (K) we write A 6|= C(a)
(K 6|= C(a)). �

Definition 2.21 (retrieval)
Let A be an ABox, T a TBox, K = (T ,A) a knowledge base, C a concept. The
retrieval RA(C) of a concept C with respect to A is the set of all instances of C:
RA(C) = {a | a ∈ NI and A |= C(a)}. Similarly the retrieval RA(C) of a concept C
with respect to K is: RK(C) = {a | a ∈ NI and K |= C(a)} �

Example 2.22 (instance, retrieval)
In Example 2.13 we have RK(Woman) = {JESSICA, MONICA}. JESSICA and MONICA are
instances of Woman, because in any model I of K we have JESSICAI ∈ WomanI and
MONICAI ∈ WomanI . �

2.3 Normal Forms

In this section we will introduce normal forms of ALC concepts, which will be of interest
later on. A normal form of a given concept is an equivalent concept, i.e. it has the same
meaning, but differs in its syntactical representation. The most well known normal form
of ALC concepts is the negation normal form.

Definition 2.23 (negation normal form)
An ALC concept is in negation normal form if negation only occurs in front of concept
names. �

It is usually the case that we can produce a normal form of an arbitrary concept with
the help of rewriting rules. An ALC normal form of a concept can be obtained by using
the following rewrite rules (which have to be applied exhaustively):

13

2 Description Logics and Ontology Languages

¬⊥ → >

¬> → ⊥

¬¬C → C

¬(C tD) → ¬C u ¬D

¬(C uD) → ¬C t ¬D

¬(∀r.C) → ∃r.¬C

¬(∃r.C) → ∀r.¬C

Example 2.24 (negation normal form)
The negation normal form of the concept ¬(∃r.¬Au(At∀r.A)) is ∀r.At(¬Au∃r.¬A).�

We can also define concepts in negation normal form inductively. In contrast to the
definition of ALC concepts (Definition 2.1, page 8) we will omit parentheses in the
case of nested disjunctions and conjunctions, e.g. ((C1 u C2) u C3) u C4 is written as
C1 u C2 u C3 u C4.

Definition 2.25 (inductive definition of negation normal form)
The set of ALC concepts in negation normal form is inductively defined as follows:

1. If A ∈ NC then A and ¬A are ALC concepts in negation normal form.

2. If C,C1, . . . Cn are ALC concepts in negation normal form and r ∈ NR, then the
following are also ALC concepts in negation normal form:

• >

• ⊥

• C1 u · · · u Cn

• C1 t · · · t Cn

• ∀r.C

• ∃r.C �

Definitions 2.23 and 2.25 are equivalent. Obviously every concept, which satisifies
Definition 2.25, has the negation symbol only in front of atomic concepts. And conversely
a concept, which satisfies Definition 2.23, can be build like in Definition 2.25, because it
corresponds to the definition of ALC concepts with the exception that negation is only
allowed in front of atomic concepts.

A more restricted version than negation normal form is ALC normal form. ALC
normal form is not as widely used as negation normal form. It has been defined in a
similar way like we will do it here in (Brandt et al., 2002).

14

Definition 2.26 (ALC normal form)
A concept C is in ALC normal form iff C ≡ > or C ≡ ⊥ or C = C1 t · · · t Cn with

Ci =
l

A∈pos(Ci)

A u
l

A∈neg(Ci)

¬A u
l

r∈NR

l

C′∈exr(Ci)

∃r.C ′ u ∀r.valr(Ci)

with

• pos(C) is the set of all atomic concepts occuring on the top level conjunction of C

• neg(C) is the set of all negated atomic concepts occuring on the top level conjunc-
tion of C

• valr(C) is

C ′ if there exists a value restriction of the form ∀r.C ′ on the top level conjunction
of C (due to the equivalence ∀r.(C1 u C2) ≡ ∀r.C1 u ∀r.C2 we can assume
without loss of generality that only one such value restriction exists on the
top level conjunction of C)

> otherwise

• exr(C) = {C ′ | there exists ∃r.C ′ on the top level conunction of C} �

An ALC normal form of a given ALC concept can be reached by moving negations
inside, placing disjunctions over conjunctions, e.g. (A1tA2)uA3 ≡ (A1uA3)t(A2uA3),
and by using the equality ∀r.(C1 u C2) ≡ ∀r.C1 u ∀r.C2.

Unfortunately a transformation of a concept to ALC normal form can take exponential
time (Brandt et al., 2002). The size of the ALC normal form of the concept (A1 tA2)u
· · · u (A2n−1 t A2n) is exponential (with respect to n). In contrast the negation normal
form of a given concept C can at most add a negation symbol in front of all concept
names in C, so this transformation at most doubles the length (later we will define the
notion of the length of a concept formally).

2.4 Other Description Languages

In the area of Description Logics a variety of different Description Languages has evolved.
In principle many of the notions and ideas we introduced for ALC can be transfered to
other Description Languages.

While first order predicate logic is undecidable Description Logics are usually decidable
fragments of first order logic. Description Languages mainly differ in their expressive
power and syntactic structures.

There is a naming scheme for Description Logics. As mentioned before ALC stands for
attribute language with complement. The letters in the name of a Description Language
describe its syntactic constructs. Some of these letters and their corresponding (informal)
meaning are:

15

2 Description Logics and Ontology Languages

construct syntax semantics
atomic concept A AI ⊆ ∆I

role r rI ⊆ ∆I × ∆I

nominals {o} {o}I ⊆ ∆I , |{o}|I = 1
top concept > ∆I

bottom concept ⊥ ∅
conjunction C uD (C uD)I = CI ∩DI

disjunction C tD (C tD)I = CI ∪DI

negation ¬C (¬C)I = ∆I \ CI

exists restriction ∃r.C (∃r.C)I = {a | ∃b.(a, b) ∈ rI and b ∈ CI}
value restriction ∀r.C (∀r.C)I = {a | ∀b.(a, b) ∈ rI implies b ∈ CI}
atleast restriction ≥ n r.C (≥ n r)I = {a | |({b | (a, b) ∈ rI}| ≥ n}
atmost restriction ≤ n r.C (≤ n r)I = {a | |({b | (a, b) ∈ rI}| ≤ n}

Table 2: syntax and semantics for concepts in SHOIN

S ALC + transivity: Transitivity allows to express that a role is transitive.

H subroles: r v s says that r is a subrole of s, i.e. rI ⊆ sI.

I inverse roles: r− denotes the inverse role of r, i.e. (a, b) ∈ rI iff (b, a) ∈ r−
I.

O nominals: Sets of objects can be used to construct concepts, e.g. {MONICA} denotes
the singleton set, which only contains MONICA. This can be used as a concept
constructor. Nominals are useful in cases where the members of a concept should
be enumerated, e.g. the members of the European Union.

N number restrictions: Allows constructs of the form ≥ n r and ≤ n r to build
concepts. This is useful if you want to define a concept like "mother of at least
three children" (Womanu ≥ 3 hasChild).

Q qualified number restrictions: Concept constructors of the form ≥ n r.C and
≤ n r.C can be used. If C is the top concept, this is equivalent to (unqualified)
number restrictions. This is useful to define a concept like "mother of at least
three male children" (Womanu ≥ 3 hasChild.Male).

F functional roles: Allows to express that a role r is functional, which is equivalent
to the axiom > v≤ 1 r.

D data types: Data types are used to incorporate different types of data e.g. numbers
or strings in Description Logics. This allows for instance to define the concept of
an old person as a person of age 65 or higher. Techniques for integrating data types
in Description Logics have been developed, but will not be discussed further.

An interesting Description Language in context of the Semantic Web (Berners-Lee
et al., 2001) is SHOIN (D). Table 2 shows how concepts can be constructed in this

16

class constructor SHOIN syntax
Thing >
Nothing ⊥
intersectionOf C1 u · · · u Cn
unionOf C1 t · · · t Cn
complementOf ¬C
oneOf {x1} t · · · t {xn}
allValuesFrom ∀r.C
someValuesFrom ∃r.C
maxCardinality ≤ n r
minCardinality ≥ n r
cardinality ≤ n r u ≥ n r

Table 3: class constructors in OWL-DL

language. We can see from its name that SHOIN (D) also allows for different statements
about roles. The set of all role statements is sometimes called RBox in analogy to TBox
and ABox.

2.5 The OWL Ontology Language

OWL is an acronym for Web Ontology Language. The specification of OWL is maintained
by the World Wide Web Consoritum (W3C). It allows the construction of ontologies
and currently comes in three flavors: OWL-Lite, OWL-DL, and OWL-Full. OWL-DL
is currently based on the description language SHOIN (D) and OWL-Lite is based
on SHIF(D). In the OWL 1.1 specification OWL-DL may be based on SROIQ(D),
which is more expressive than SHOIN (D). OWL-Lite is less expressive than OWL-DL.
OWL-Full is more expressive, but undecidable (see e.g. Horrocks et al., 2003). This is
not hard to show, because there are restrictions, which were necessary to keep OWL-DL
decidable, and do not apply to OWL Full. OWL-DL is of great importance within the
Semantic Web, because it has been established as a standard for creating ontologies.
Many ontology editors like Protegé (Gennari et al., 2003) and reasoners like KAON2
(see Motik, 2006), Racer (Haarslev and Möller, 2003), Pellet (Sirin and Parsia, 2004),
and many more exist for OWL-DL.

OWL-DL classes correspond to concepts in Description Logics and properties corre-
spond to roles. OWL-DL offers more convenience constructs than SHOIN (D), but does
not extend its expressivity. It should be noted that OWL-DL does not make the unique
name assumption, so different individuals can be mapped to the same domain element.
However, it allows to express equality and inequality between individuals (a = b, a 6= b).
This is not a real extension of SHOIN (D), because there are reasoning algorithms,
which do not make the unique name assumption, and also allow for expressing equality
and inequality between individuals (actually most algorithms support this). Tables 3
and 4 show how constructs in OWL can be mapped to Description Logics. Description
Logics are a well understood formalism. By basing OWL-DL on Description Logics,

17

2 Description Logics and Ontology Languages

axiom SHOIN syntax
subClassOf C1 v C2

equivalentClass C1 ≡ C2

disjointWith C1 ≡ ¬C2

sameIndividualAs {x1} ≡ {x2}
differentFrom {x1} v ¬{x2}
domain ∀r.> v C
range > v ∀r.C
subPropertyOf r1 v r2
equivalentProperty r1 ≡ r2
inverseOf r1 ≡ r−2
transitiveProperty r+ v r
functionalProperty > v ≤ 1 r
inverseFunctionalProperty > v ≤ 1 r−

Table 4: axioms in OWL-DL

it can make use of the theory developed for DLs in particular sophisticated reasoning
algorithms.

The most important reason for mentioning OWL-DL as ontology language for the
Semantic Web in this thesis and showing that its foundation is the Description Logic
SHOIN (D), is that all of the learning methods for Description Logics can also be used
for OWL-DL. As a consequence the methods presented in the following sections are
strongly linked to ontologies in the Semantic Web. One application of learning concepts
in Description Logics is to use it as a helper method for building new classes in an
existing ontology.

18

3 The Learning Problem

In this section we will briefly describe the learning problem in Description Logics. The
process of learning in logics, i.e. finding logical explanations for given data, is also
called inductive reasoning. In a very general setting this means that we have a logical
formulation of background knowledge and some observations. We are then looking for
ways to extend the background knowledge such that we can explain the observations,
i.e. they can be deduced from the modified knowledge. More formally we are given
background knowledge B, positive examples E+, negative examples E− and want to
find a hypothesis H such that from H together with B the positive examples follow and
the negative examples do not follow. It is not required that the same logical formalism
is used for background knowledge, examples, and hypothesis, but often this is the case.

The most prominent research area within inductive reasoning is the induction of logic
programs (Nienhuys-Cheng and de Wolf, 1997). In many cases Prolog (a popular logic
programming language) programs are induced. In this thesis we are not concerned with
inducing logic programs, but instead we want to find concept definitions in Description
Logics.

For learning in Description Logics we can give a more specific description of the
learning problem. The background knowledge is a knowledge base K. The goal is to
find a definition for a concept we want to call Target. Hence the examples are of the
form Target(a) where a ∈ NI is an individual. We are then looking for an acyclic
concept definition of the form Target ≡ C such that we can extend our knowledge
base by this definition. Let K ′ = K ∪ {Target ≡ C} be this extended knowledge base.
Then we want that the positive examples follow from it, i.e. K′ |= E+, and the negative
examples do not follow, i.e. K′ 6|= E−. Please note that the description language of the
background knowledge can be more expressive than the language of the concept C we
want to learn. Later on we will focus on learning ALC concepts, but language of the
background knowledge can be e.g. SHIQ or SHOIN (D).

Definition 3.1 (learning problem in Description Logics)
Let a concept name Target, a knowledge base K, and sets E+ and E− with elements
of the form Target(a) (a ∈ NI) be given. The learning problem is to find a concept C
such that Target ≡ C is an acyclic definition and for K′ = K ∪ {Target ≡ C} we have
K′ |= E+ and K′ 6|= E−. �

Some remarks about the learning problem are in order. First of all there are slightly
different formulations of the learning problem in the literature. A possible different
setting is that the negative examples are of the form ¬Target(a) (a ∈ NI) and also
have to follow, i.e. K′ |= E−. Due to the open world assumption in Description Logics
there is a difference between facts logically following from a knowledge base and the
negation of a fact following from the knowledge base. Both ways of formulating the
learning problem are meaningful and actually most of the content of this thesis can be
used for both formulations of the problem. We decided to focus on one formulation of
the learning problem to keep the presentation of the solution methods more compact.

19

3 The Learning Problem

The acyclicity restriction in the definition of the learning problem is mostly made for
reasons of efficiency. If the definition is acyclic, then we check whether a concept C
is a solution of the learning problem by posing C as a (retrieval or instance) query to
the knowledge base, i.e. we do not need to modify the knowledge base. For an example
Target(a) instead of checking K′ |= Target(a) we check K |= C(a). This allows the
use of more efficient algorithms and in particular an extensive pre-processing of the
knowledge base (see Section 6).

background knowledge
(OWL-DL, DL-KB)

positive and negative
examples

preprocessed background
knowledge

concept quality
measure

retrieval or instance
algorithm

concept generator e.g.
brute force, random, GP,
refinement operator based

optional preprocessor

queries

retu
rn resu

lts test concept return qualityuse

use

Figure 1: overview of the learning framework

Figure 1 gives an overview how the learning problem can be solved. In this section we
do not want to focus on a particular solution method, but introduce a general framework.
Concept learning can be seen as a search process, so we need to have a method to generate
concepts (see bottom right in Figure 1). This can for instance be an algorithm, which
randomly creates concepts or an algorithm which generates the set of all concepts, e.g.
from smaller to larger concepts, until a solution is found. However, it should be clear
that such approaches are not very efficient. Instead we want to look at other approaches
like Genetic Programming (GP) and combinations of refinement operators (to be defined
in Section 4) and heuristics.

After a concept is generated we measure its quality. In the simplest case we could
just measure whether it is a solution. Often we will use the number of positive and
negative examples, which are covered by the generated concept. (We say that a concept
covers an example e if K ′ |= e, where K ′ is defined as above.) To see if an example
is covered we have to call a Description Logic reasoner, which works on the (possibly
pre-processed) background knowledge. While the main topic of this thesis is to create
an efficient concept generator we will also briefly look at reasoning in Section 6. This
is useful since there are special requirements for reasoning algorithms in the learning
framework: We make a large number of queries on the same knowledge base (so we
should perform extensive pre-processing) and all the queries are instance or retrieval
queries, i.e. we need assertional reasoning.

20

In the remainder of this section we will introduce some necessary notions. The main
purpose of this section is to define a common problem description for the solution meth-
ods presented in Section 4 and 5.

When we speak about concepts as possible problem solutions it is useful to introduce
some shortcuts for the two main criteria: covering all positive examples and not covering
negative examples.

Definition 3.2 (complete, consistent, correct)
Let C be a concept, K the background knowledge base, Target the target concept,
K′ = K∪{Target ≡ C} the extended knowledge base, and E+ and E− the positive and
negative examples.
C is complete with respect to E+ if for any e ∈ E+ we have K′ |= e. C is consistent

with respect to E− if for any e ∈ E− we have K′ 6|= e. C is correct with respect to E+

and E− if C is complete with respect to E+ and consistent with respect to E−. �

Definition 3.3 (too strong, too weak, overly general, overly special)
Let C be a concept, K the background knowledge base, Target the target concept,
K′ = K∪{Target ≡ C} the extended knowledge base, and E+ and E− the positive and
negative examples.
C is too strong with respect to E− if C is not consistent with respect to E−. C is too

weak with respect to E+ if C is not complete with respect to E+.
C is overly general with respect to E+ and E− if C is complete with respect to E+,

but not consistent with respect to E−. C is overly specific with respect to E+ and E−

if C is consistent with respect to E− but not complete with respect to E+. �

So far we have only looked at how a possible solution classifies the examples. Another
important criteria is the length of a concept. By the well-known Occam’s razor principle
(Blumer et al., 1990), we should choose the simplest hypothesis for explaining the data.
For our learning problem this means that from two concepts we should prefer the simpler
one if both classify the examples equally good. The reason is that smaller concepts
usually generalise better to unseen examples, i.e. their predictive quality is better. If
smaller concepts classify the examples correctly this is less likely to be a coincidence.

We measure simplicity as the length of a concept, which is defined below in a straight-
forward way.

Definition 3.4 (length of a concept)
The length |C| of a concept C is defined inductively (A stands for an atomic concept):

|A| = |>| = |⊥| = 1

|¬D| = |D| + 1

|D u E| = |D t E| = 1 + |D| + |E|

|∃r.D| = |∀r.D| = 2 + |D| �

21

4 Refinement Operators for ALC Concepts

4 Refinement Operators for ALC Concepts

4.1 Introduction

The goal of learning as defined in Section 3 is to find a correct concept with respect to the
examples. This can be seen as a search process in the space of concepts. A natural idea
is to impose an ordering on this search space and use operators to traverse it. This idea
is well-known in Inductive Logic Programming (Nienhuys-Cheng and de Wolf, 1997),
where refinement operators are widely used to find hypotheses. Intuitively downward
(upward) refinement operators construct specialisations (generalisations) of hypotheses.

Definition 4.1 (refinement operator)
A quasi-ordering is a reflexive and transitive relation. In a quasi-ordered space (S,�) a
downward (upward) refinement operator ρ is a mapping from S to 2S, such that for any
C ∈ S we have that C ′ ∈ ρ(C) implies C ′ � C (C � C ′). C ′ is called a specialisation
(generalisation) of C. �

This idea can be used for searching in the space of concepts. As ordering we can use
subsumption. (Note that the subsumption relation vT is a quasi-ordering.) Often it
makes sense to take the TBox of our background knowledge base into account. So we
will, unless explicitly mentioned otherwise, consider subsumption with respect to this
TBox.

If a concept C subsumes a concept D (D vT C), then C will cover all examples, which
are covered by D. This makes subsumption a suitable order for searching in concepts.
In this section we will analyse refinement operators for ALC concepts with respect to
subsumption, which we will call ALC refinement operators in the sequel.

Definition 4.2 (ALC refinement operator)
A refinement operator in the quasi-ordered space (ALC,vT) is called an ALC refinement
operator. �

We need to introduce some notions for refinement operators.

Definition 4.3 (refinement chain)
A refinement chain of an ALC refinement operator ρ of length n from a concept C to
a concept D is a finite sequence C0, C1, . . . , Cn of concepts, such that C = C0, C1 ∈
ρ(C0), C2 ∈ ρ(C1), . . . , Cn ∈ ρ(Cn−1), D = Cn. This refinement chain goes through E iff
there is an i (1 ≤ i ≤ n) such that E = Ci. We say that D can be reached from C by
ρ if there exists a refinement chain from C to D. ρ∗(C) denotes the set of all concepts,
which can be reached from C by ρ. ρm(C) denotes the set of all concepts, which can be
reached from C by a refinement chain of ρ of length m. �

Definition 4.4 (downward and upward cover)
A concept C is a downward cover of a concept D iff C @T D and there does not exist
a concept E with C @T E @T D. A concept C is an upward cover of a concept D iff
D @T C and there does not exist a concept E with D @T E @T C. �

22

If we look at refinements of an operator ρ we will often write C ρ D instead of
D ∈ ρ(C). If the used operator is clear from the context it is usually omitted, i.e. we
write C D.

We will introduce the concept of weak equality of concepts, which is similar to equal-
ity of concepts, but takes into account that the order of elements in conjunctions and
disjunctions is not important. By equality of two concepts we mean that the concepts
are syntactically equal. Equivalence of two concepts mean that the concepts have the
same meaning (see Definition 2.16 on page 12). Weak equality of concepts is coarser
than equality and finer than equivalence (viewing the equivalence, equality, and weak
equality of concepts as equivalence classes).

Definition 4.5 (weak syntactic equality)
We say that the concepts C and D are weakly (syntactically) equal, denoted by C ' D
iff one of the following conditions hold:

• C = > and D = >

• C = ⊥ and D = ⊥

• C = A and D = A (A ∈ NC)

• C = ¬C ′ and D = ¬D′ and C ′ ' D′

• C = ∃r.C ′ and D = ∃r.D′ and C ′ ' D′

• C = ∀r.C ′ and D = ∀r.D′ and C ′ ' D′

• C = C1 u · · · u Cn and D = D1 u · · · uDn and there is a permutation ψ : N 7→ N
with N = {1, . . . , n} such that for all i ∈ N we have Ci ' Dψ(i)

• C = C1 t · · · t Cn and D = D1 t · · · tDn and there is a permutation ψ : N 7→ N
with N = {1, . . . , n} such that for all i ∈ N we have Ci ' Dψ(i)

Two sets S1 and S2 of concepts are weakly equal if for any C1 ∈ S1 there is a C ′
1 ∈ S2

such that C1 ' C ′
1 and vice versa. �

Refinement operators can have certain properties, which can be used to evaluate their
usefulness for learning hypothesis.

Definition 4.6 (properties of ALC refinement operators)
An ALC refinement operator ρ is called

• (locally) finite iff ρ(C) is finite for any concept C.

23

4 Refinement Operators for ALC Concepts

• (syntactically) redundant iff there exists a refinement chain from a concept C to a
concept D, which does not go through a concept E and a refinement chain from
C to a concept weakly equal to D, which does go through E.1

• proper iff for any concepts C and D, D ∈ ρ(C) implies C 6≡T D.

• ideal iff it is finite, complete, and proper.

An ALC downward refinement operator ρ is called

• complete iff for any concepts C and D with C @T D we can reach a concept E
with E ≡T C from D by ρ.

• weakly complete iff for any concept C with C @T > we can reach a concept E with
E ≡T C from > by ρ.

• minimal iff for any C, ρ(C) contains only downward covers and all its elements
are incomparable with respect to vT .

An ALC upward refinement operator ρ is called

• complete iff for any concepts C and D with D @T C we can reach a concept E
with E ≡T C from D by ρ.

• weakly complete iff for any concept C with ⊥ @T C we can reach a concept E with
E ≡T C from ⊥ by ρ.

• minimal iff for any C, ρ(C) contains only upward covers and all its elements are
incomparable with respect to vT .

All statements must hold for all TBoxes, i.e. an ALC refinement operator has one of
the mentioned properties only if the prerequisite is satisfied for all TBoxes. �

For technical reasons we will also assume that for a complete downward (upward)
operator we always have ⊥ ∈ ρ∗(C) for any C 6≡ ⊥ (> ∈ ρ∗(C) for any C 6≡ >).
Analogously for a weakly complete downward (upward) refinement operator we assume
⊥ ∈ ρ∗(>) (> ∈ ρ∗(⊥)). This does not follow from the definition, e.g. for a weakly com-
plete downard refinement operator if ⊥u⊥ ∈ ρ∗(>) then we do not require ⊥ ∈ ρ∗(>).
It will become clear why we make these assumptions when we analyse the combination
of completeness and non-redundancy.

1Another way to define redundancy is to consider equivalence (≡T) instead of weak equality. This
is a stronger condition, but in description logics like ALC, for which no structural subsumption
algorithms exist (see Chapter 2 in Baader et al., 2003), such a semantic non-redundancy is very
hard to achieve. Structural subsumption algorithms decide subsumption between two concepts by
comparing their syntatictic structure. Since refinement operators usually provide syntactic rewriting
rules, the non-existance of such an algorithm is problematic if we want to achieve semantic non-
redundancy.

24

4.2 Analysing the Properties of ALC Refinement Operators

In this section we will analyse the properties of ALC refinement operators. The need for
such an analysis was expressed in (Esposito et al., 2004, section 5). In particular we are
interested in seeing which desired properties can be combined in a refinement operator
and which properties are impossible to combine. This is interesting for two reasons:
The first one is that this gives us a good impression of how hard (or easy) it is to learn
ALC concepts. The second reason is that this can also serve as a practical guide for
designing ALC refinement operators. Knowing the theoretical limits allows the designer
of an ALC refinement operator to focus on achieving the best possible properties.
ALC refinement operators have been designed in (Esposito et al., 2004; Iannone and

Palmisano, 2005). However, a full theoretical analysis for ALC has not been done to the
best of our knowledge. Therefore all propositions in this section are new unless explicitly
mentioned otherwise. Some properties for ALER refinement operators were shown in
(Badea and Nienhuys-Cheng, 2000). ALER is not closed under boolean operations, so
ALC is usually more difficult to handle in this context.

As a first property we will briefly analyse minimality of ALC refinement operators, in
particular the existence of upward and downward covers in ALC. It is not immediately
obvious that e.g. downward covers exist in ALC, because it could be the case that for any
concept C and D with C @ D one can always construct a concept E with C @ E @ D.
However, the next proposition shows that downward covers do exist.

Proposition 4.7 (existence of covers in ALC)
Downward (upward) covers exist in ALC.

Proof Let NR = {r} and NC = {A}. We look at subsumption with respect to an
empty TBox. We want to show that C = ∃r.> t A is a downward cover of >. We have
to show that there is no concept D with C @ D @ >. We will prove that such a concept
cannot exist from a semantical point of view. By contradiction, we assume that we have
found such a concept D.

Since C is strictly subsumed by D, there is an interpretation I1 and an object a1

such that aI1
1 6∈ CI and aI1

1 ∈ DI1. a1 cannot have an r-filler, because then we would
immediately get aI1

1 ∈ CI (due to the ∃r.> in C). Similarly we get that aI1
1 6∈ AI1 .

Since D is strictly subsumed by >, there is an interpretation I2 and an object a2 such
that aI2

2 6∈ DI2 . Because of C @ D, we know aI2
2 6∈ CI2. By the same arguments as

above we can deduce that a2 does not have an r-filler in I2 and aI2
2 6∈ AI2.

In both interpretations Ij (j ∈ {1, 2}), the associated objects aj do not have an r-filler
and do not belong to A. Additionally there are no other concept names and roles, so
both interpretations have to interpret concepts - in particular D - in the same way with
respect to the associated objects, i.e. we either have (aI1

1 ∈ DI1 and aI2
2 ∈ DI2) or we

have (aI1
1 6∈ DI1 and aI2

2 6∈ DI2). (The reason is that to determine, whether aI ∈ EI

holds for an arbitrary ALC concept E and an interpretation I, such that a does not

25

4 Refinement Operators for ALC Concepts

have a role filler in I and does not belong to any atomic concept, it is not important
how objects different from a are interpreted by I.) This is a contradiction, because we
assumed aI1

1 ∈ DI1 and aI2
2 6∈ DI2.

Upward covers can be handled analogously, i.e. ∀r.⊥ u A is an upward cover of ⊥. �

The idea in the proof Proposition 4.7 can be extended to situations with more than
one role and concept name. In this case we obtain the following concept as a downward
cover of > (we do not prove this explicitly, because we do not use this result later on):

⊔

r∈NR

∃r.> t
⊔

A∈NC

A

The observations show that non-trivial minimal operators, i.e. operators which do
not map every concept to the empty set, can be constructed. However, minimality of
refinement steps is not a directly desired goal in general. Minimal operators are in some
languages more likely to lead to overfitting, because they may not produce sufficient
generalisation leaps. This is true in a language like ALC, which is closed under boolean
operations.

In the sequel we will analyse desired properties of ALC refinement operators: com-
pleteness, properness, finiteness, and non-redundancy. We will show several positive and
negative results, which together yield a full analysis of these properties.

Proposition 4.8 (complete and finite ALC refinement operators)
There exists a complete and finite ALC refinement operator.

Proof Consider the downward refinement operator ρ defined by:

ρ(C) = {C u >} ∪ {D | |D| ≤ (number of > occurences in C) and D @T C}

The operator can do one of two things:

• add a > symbol

• generate the set of all concepts up to a certain length, which are subsumed by C

The operator is finite, because the set of all concepts up to a given length is finite
(and the singleton set {C u >} is finite).

The operator is complete, because given a concept C we can reach an arbitrary concept
D with D @T C. This is obvious, because we only need to add >-symbols until there
are |D| occurences of >. Within the next step we can then be sure to reach D.

For upward refinement operators we can use an analogous operator ϕ, which is also
complete and finite:

ϕ(C) = {C u >} ∪ {D | |D| ≤ (number of > occurences in C) and C @T D}
�

26

Remark 4.9 (complete and finite refinement operators)
In (Badea and Nienhuys-Cheng, 2000) it was stated that there can be no complete and
finite ALER refinement operator. However, this is not correct, because by using the
same technique as in the proof of Proposition 4.8 one can construct a finite and complete
ALER refinement operator. �

Of course, it is obvious that the operator used to prove Proposition 4.8 is not useful
in practice, since it merely generates concepts without paying attention to efficiency.
However, in this section we are interested in theoretical limits of refinement operators,
so it is a valid method to define impractical operators. It is indeed difficult to design a
good complete and finite refinement operator. The reason is that finiteness can only be
achieved by using non-proper refinement steps (in the operator this was done by adding
> symbols). In Section 5 we will define a complete and finite operator in the context of
the Genetic Programming framework. We will now show that it is impossible to define
a complete, finite, and proper refinement operator. Such operators are known as ideal
and their non-existance indiciates that learning ALC concepts is not easy.

Proposition 4.10 (ideal ALC refinement operators)
There exists no ideal ALC refinement operator.

Proof By contradiction, we assume that there exists an ideal downward refinement
operator ρ. We further assume an empty TBox, NC = ∅, and NR = {r}. Let ρ(>) =
{C1, . . . , Cn} be a set of refinements of the > concept. (This set has to be finite.) Let
m be a natural number larger than the maximum of the quantor depths (depth of the
nesting of quantifications) of the concepts in ρ(>). We construct a concept D as follows:

D = ∀r.∀r
︸ ︷︷ ︸

m−times

.⊥ t ∃r.∃r
︸ ︷︷ ︸

(m+1)−times

.>

What is the meaning of D? As we can see, the semantics of ∀r.⊥ is that an object
must not have an r-filler and the semantics of ∃r.> is that an object must have an
r-filler. We say that an object a ∈ NI has an r-successor at distance n in I if there is
a set of objects {a0, . . . , an} ⊆ NI with a = a0, (a

I
0 , a

I
1) ∈ rI, . . . , (aIn−1, a

I
n) ∈ rI. The

meaning of D is that an object does not have an r-successor at distance m in I or it
has an r-successor at distance m + 1 in I. Formally for an arbitrary object a and an
interpretation I we have aI ∈ DI iff a does not have an r-successor at distance m in I
or a has an r-successor at distance m+ 1 in I.
D is not equivalent to >. For the interpretation I with rI = {r(a, b) | a = ai, b =

ai+1, 0 ≤ i < m}, illustrated by

a0
r
−→ a1

r
−→ . . .

r
−→ am

we have aI0 6∈ DI.

27

4 Refinement Operators for ALC Concepts

As a prerequisite for proving the proposition, we want to show that there exists no
concept with a quantifier depth smaller than m, which strictly subsumes D and is not
equivalent to >. By contradiction, we assume such a concept E with D @ E @ >
exists. Since we have E 6≡ >, there exists an interpretation I and an object a such that
aI 6∈ EI. By D @ E, this also implies aI 6∈ DI. We do a case distinction on a and I:

1. a does not have an r-successor at distance m in I: By the semantics of D, as
discussed above, this means aI ∈ DI, which contradicts aI 6∈ DI.

2. a has an r-successor at distance m in I:

We can view the interpretation I as a directed graph in a straightforward way.
The set of nodes is {bI | b ∈ NI} and the edges are defined by {(b, c) | (b, c) ∈ rI}.
This graph does not contain a cycle, which is reachable from aI , because then we
would have aI ∈ DI due to the ∃r.∃r.> part of D (if we have a reachable
cycle, there always exists a successor). Hence, aI spans an acyclic graph, i.e. a
tree, of successors in I.

Because of aI 6∈ DI, we know that there is a path of length m starting from aI in
this tree (due to the ∀r.∀r.⊥ part of D). This means we have pairwise different
objects a0, . . . , am such that a = a0 and (aI0 , a

I
1) ∈ rI , . . . , (aIm−1, a

I
m) ∈ rI.

We create a new interpretation I ′ from I by adding a new object am+1 and changing
rI to rI

′
= rI ∪ {(aIm, a

I
m+1)}. Since E has a quantifier depth smaller than m,

we know that am+1 is out of the scope of these quantifiers, so we can deduce
aI

′
6∈ EI′

from aI 6∈ EI. However, a has a successor at distance m in I ′, so by the
semantics of D we have aI

′
∈ DI′

. This implies aI
′
∈ EI′

due to D @ E, which is
contradiction to aI

′
6∈ EI′

.

Hence we have shown that there does not exist a more general concept than D, which
is not equal to >, with a quantifier depth smaller than m. This means that C1, . . . , Cn do
not subsume D (note that the properness of ρ implies that C1, . . . , Cn are not equivalent
to >), so D cannot be reached by further refinements from any of these concepts. Since
C1, . . . , Cn are the only refinements of >, it is impossible to reach D from >. Thus ρ is
not complete. �

Proposition 4.11 (complete and proper ALC refinement operators)
There exists a complete and proper ALC refinement operator.

Proof The proof is trivial, because we can just use ρ(C) = {D | D @ C} as downward
refinement operator, which is obviously complete and proper. For upward refinement we
can analogously consider ρ(C) = {D | C @ D}. �

28

We have shown that the combination of completeness and properness is possible.
Propositions 4.8, 4.10, and 4.11 state that for complete refinement operators, which are
usually desirable, one has to sacrifice properness or finiteness. We will now look at
non-redundancy.

Proposition 4.12 (compelete, non-redundant ALC refinement operators)
There exists no complete and non-redundant ALC refinement operator.

Proof Again, we look at subsumption with respect to an empty TBox. Let A1 and
A2 (A1, A2 6≡ > and A1, A2 6≡ ⊥) be two atomic concepts and ρ a complete downward
refinement operator. By completeness of ρ, we know there exists a concept C1 with
C1 ≡ A1 and C1 ∈ ρ∗(>). Analogously there exists a concept C2 with C2 ≡ A2 and
C2 ∈ ρ∗(>). As a requirement on complete operators we stated before on page 24, that
for a complete downward refinement operator ⊥ ∈ ρ∗(C) for any C 6≡ ⊥ must hold. In
particular we have ⊥ ∈ ρ∗(C1) and ⊥ ∈ ρ∗(C2). Because of C1 6v C2 and C2 6v C1 we
know C1 6∈ ρ∗(C2) and C2 6∈ ρ∗(C1).

Hence there exists a refinement chain from > to ⊥ through C1 and a refinement chain
from > to ⊥, which goes through C2 and not through C1. Thus ρ is redundant.

Note that without the assumption ⊥ ∈ ρ∗(C) for C 6≡ ⊥, the result does not nec-
essarily hold. However, it would require that for incomparable concepts D1, D2, and
a concept D3 with D3 @ D1 and D3 @ D2 we would have to reach different syntactic
representations of D3 (i.e. concepts, which are equivalent to D3 but not weakly equal
to D3). This means that the only way to avoid redundancy is to encode the (usually
infinitely many) possible paths to a concept in syntactic constructs, e.g. from A1 we can
reach ⊥ u ⊥, but from A2 we reach ⊥ u ⊥ u ⊥ and not ⊥ u ⊥ etc. This is clearly not
desirable and the resulting operator would not be meaningful. For this reason we have
chosen to make the additional assumption ⊥ ∈ ρ(C) for any C 6≡ ⊥ in ALC downward
refinement operators.

Again, the proof for upward refinement operators is analogous. �

As a consequence, completeness and non-redundancy cannot be combined. Usually it
is desirable to have (weakly) complete operators, but in order to have a full analysis of
ALC refinement operators we will now also investigate incomplete operators.

Proposition 4.13 (incomplete ALC refinement operators)
There exists a finite, proper, and non-redundant ALC refinement operator.

Proof The following operator has the desired properties:

ρ(C) =

{
{⊥} if C 6≡ ⊥
∅ otherwise

29

4 Refinement Operators for ALC Concepts

It is obviously finite, because it maps concepts to sets of cardinality at most 1. It is non-
redundant, because it only reaches the bottom concept and there exists no refinement
chain of length greater than 2. It is proper, because all concepts, which are not equivalent
to the bottom concept strictly subsume the bottom concept.

The corresponding upward operator is:

ϕ(C) =

{
{>} if C 6≡ >
∅ otherwise

The arguments for its finiteness, properness, and non-redundancy are analogous to the
downward case. �

We can now summarise the results we have obtained so far.

Theorem 4.14 (properties of ALC refinement operators (I))
Considering the properties completeness, properness, finiteness, and non-redundancy
the following are maximal sets of properties (in the sense that no other of the men-
tioned properties can be added) of ALC refinement operators:

1. {complete, finite}

2. {complete, proper}

3. {non-redundant, finite, proper}

Proof The theorem is a consequence of the previous results. We have seen that down-
ward and upward operators allow the same combinations of properties, so it is not nec-
essary to distinguish between them. To be sure to cover all combinations of properties
we make a case distinction.

1. The operator is complete. In this case we cannot add non-redundancy (Proposition
4.12). Finiteness (Proposition 4.8) and properness (Proposition 4.11) can be added,
but not both (Proposition 4.10).

2. The operator is not complete. In this case we can add all other properties (Propo-
sition 4.13). �

A property we have not yet considered is weak completeness. Usually weak com-
pleteness is sufficient, because it allows to search for a good concept starting from >
downwards (top-down approach) or from ⊥ upwards (bottom-up approach).

We will see that we get different results when considering weak completeness instead of
completeness. As a first observation we see that the arguments in the proof of Proposition
4.12, which have shown that an ALC refinement operator cannot be complete and non-
redundant, do no longer apply if we consider weak completeness and non-redundancy.

30

The reason is that there is no longer a guarantee that ⊥ can be reached from both, A1

and A2. Indeed it turns out that there are weakly complete and non-redundant operators
and this set of properties is not even maximal.

Proposition 4.15 (weakly complete, non-redundant, and proper operators)
There exists a weakly complete, non-redundant, and proper ALC refinement operator.

Proof The following operator is weakly complete, non-redundant, and proper:
Let S be a maximal subset of {C | C 6≡T >} with C1, C2 ∈ S =⇒ C1 6' C2.

ρ(C) =

{

S if C = >

∅ otherwise

Such a set S as used in the definition of the operator indeed exists. It contains one
representative of each equivalence class with respect to weak equality of the set {C |
C 6≡ >}. The operator is proper, since it contains only mappings of the top concept
to concepts, which are not equivalent to top. It is non-redundant, because there is no
refinement chain of length greater than 1 and all concepts we reach are pairwise not
weakly equal. It is weakly complete, because for every concept, which is not equivalent
to >, we can reach an equivalent concept from > by ρ.

The corresponding upward refinement operator is: Let S be a maximal subset of
{C | C 6≡T ⊥} with C1, C2 ∈ S =⇒ C1 6' C2.

ρ(C) =

{

S if C = ⊥

∅ otherwise
�

Proposition 4.16 (weakly complete, non-redundant, and finite operators)
There exists a weakly complete, non-redundant, and finite ALC refinement operator.

Proof The following operator is weakly complete, non-redundant, and finite: For
an arbitrary concept C, let SC be a maximal subset of {D | D @T > and |D| =
number of > occurences in C} with C1, C2 ∈ SC =⇒ C1 6' C2.

ρ(C) =

{> u · · · u >
︸ ︷︷ ︸

n+1 times >

} ∪ SC if C = > u · · · u >
︸ ︷︷ ︸

n times >

∅ otherwise

The operator is finite, because SC is finite for any concept C (the number of concepts
with a fixed length is finite). It is weakly complete, because every concept C with C @ >

31

4 Refinement Operators for ALC Concepts

can be reached from >. This is done by accumulating > symbols until we have |C| such
symbols and then generate C.

We will show the non-redundany of the operator by a simple case distinction. By
contradiction, we assume that ρ is redundant, i.e. there exist concepts C, D, and E
with C 6= D, such that there is a refinement chain from C to D through E and a
different refinement chain from C to D, which does not go through E.

1. C 6≡ >: In this case a refinement chain to D cannot exist. (D vT C so D 6≡T >,
but there is only one element not equivalent to > in each refinement chain.)

2. C ≡ > and D ≡ >: In this case there is exactly one refinement chain from C to
D of the form:

> u · · · u >
︸ ︷︷ ︸

=C

 ρ . . . ρ > u · · · u >
︸ ︷︷ ︸

=D

This contradicts the redundancy of ρ in this case, because for ρ to be redundant
at least two different refinement chains from C to D must exist.

3. C ≡ > and D 6≡ >: Again, there is exactly one refinement chain:

> u · · · u >
︸ ︷︷ ︸

=C

 ρ . . . ρ > u · · · u >
︸ ︷︷ ︸

|D| times

→ D

Note that we ensured that there cannot be a weakly equal concept of D in other
refinement chains by definition of SC .

The corresponding upward operator is analogous. It works by accumulating ⊥ symbols
instead of > symbols and generates concepts, which are strictly more general than ⊥.�

Corollary 4.17 (weakly complete, proper, and finite operators)
There exists a weakly complete, finite, and proper ALC refinement operator.

Proof To show this we can use the proof of Proposition 4.10. There we have shown
that in a finite and proper ALC refinement operator there exists a concept, which cannot
be reached from the > concept. This means that such an operator cannot be weakly
complete. �

The result of the previous observations is that, when requiring only weak completeness
instead of completeness, non-redundant operators are possible. The following theorem
is the result of the full analysis of the desired properties of ALC refinement operators.

32

Theorem 4.18 (properties of ALC refinement operators (II))
Considering the properties completeness, weak completeness, properness, finiteness,
and non-redundancy the following are maximal sets of properties (in the sense that
no other of the mentioned properties can be added) of ALC refinement operators:

1. {weakly complete, complete, finite}

2. {weakly complete, complete, proper}

3. {weakly complete, non-redundant, finite}

4. {weakly complete, non-redundant, proper}

5. {non-redundant, finite, proper}

Proof We can do a similar case distinction like in Theorem 4.14. The first case (com-
plete operator) is analogous except that obviously a complete operator is also weakly
complete. For the second case (operator is not complete) we can make a simple case
distinction again:

1. The operator is weakly complete. Propositions 4.15 and 4.16 have shown that
weakly complete operators can be non-redundant and proper as well as non-
redundant and finite. Proposition 4.17 shows that finiteness and properness cannot
be combined, so these sets of properties are maximal.

2. The operator is not weakly complete. In this case we can add all remaining prop-
erties (Proposition 4.13), i.e. non-redundany, finiteness, and properness. �

Theorem 4.18 summarizes the analysis of ALC refinement operators and is an impor-
tant theoretical result of this thesis. As the reader has probably noticed the operators
used as positive examples are very odd. It still remains to define a useful ALC refinement
operator, which we will do in the next section.

4.3 A Refinement Operator for ALC Concepts

In the sequel we will analyse the refinement operator ρ↓ given by:

ρ↓(C) =

{

{⊥} ∪ ρ′↓(C) if C = ⊥

ρ′↓(C) otherwise

33

4 Refinement Operators for ALC Concepts

ρ′↓(C) =

{C1 u · · · u Ci−1 uD u Ci+1 u · · · u Cn if C = C1 u · · · u Cn (n ≥ 2)

| D ∈ ρ′↓(Ci), 1 ≤ i ≤ n}

{C1 t · · · t Ci−1 tD t Ci+1 t · · · t Cn if C = C1 t · · · t Cn (n ≥ 2)

| D ∈ ρ′↓(Ci), 1 ≤ i ≤ n}

∪ {C uD | D ∈ ρ′↓(>)}

{A′ | A′
@T A,A′ ∈ NC , if C = A (A ∈ NC)

there is no A′′ ∈ NC with A′
@T A′′

@T A}

∪ {C uD | D ∈ ρ′↓(>)}

{¬A′ | A @T A′, A′ ∈ NC , if C = ¬A (A ∈ NC)

there is no A′′ ∈ NC with A @T A′′
@T A′}

∪ {C uD | D ∈ ρ′↓(>)}

{∃r.E | E ∈ ρ′↓(D)} ∪ {C uD | D ∈ ρ′↓(>)} if C = ∃r.D

{∀r.E | E ∈ ρ′↓(D)} ∪ {C uD | D ∈ ρ′↓(>)} if C = ∀r.D

∪ {∀r.⊥ | D = A ∈ NC

and there is no A′ ∈ NC with ⊥ @ A′
@ A}

∅ if C = ⊥

{D | D ∈M} if C = >

∪ {D t E | D ∈M,E ∈ ρ′↓(>)}

The set M used in the definition of ρ′↓ is defined as:

M = {A | A ∈ NC , there is no A′ ∈ NC with A @T A′
@T >}

∪ {¬A | A ∈ NC , there is no A′ ∈ NC with ⊥ @T A′
@T A}

∪ {∃r.> | r ∈ NR}

∪ {∀r.C | r ∈ NR, C ∈ ρ′↓(>)}

Proposition 4.19 (downward refinement of ρ↓)
ρ↓ is an ALC downward refinement operator.

Proof We have to show that D ∈ ρ↓(C) implies D vT C. We do this by structural
induction of ALC concepts in negation normal form. Obviously in all cases where D =
C uC ′, i.e. C is extended conjunctively by a concept C ′ we have D v C, so these cases
can be ignored.

• C = ⊥: D ∈ ρ↓(C) is impossible, because ρ↓(⊥) = ∅.

• C = >: D vT C is trivially true.

34

• C = A (A ∈ NC): D ∈ ρ↓(C) implies that D is also an atomic concept and
D @T C.

• C = ¬A: D ∈ ρ↓(C) implies that D is of the form ¬A′ with A @T A′. A @T A′

implies ¬A′
@T ¬A by the semantics of negation.

• C = ∃r.C ′: D ∈ ρ↓(C) implies that D is of the form ∃r.D′. We have D′ vT C ′ by
induction. For existential restrictions ∃r.E vT ∃r.E ′ if E @T E ′ holds in general
(Badea and Nienhuys-Cheng, 2000). Thus we also have ∃r.D′ vT ∃r.C ′.

• C = ∀r.C ′: This case is analogous to the previous one. For universal restrictions
∀r.E vT ∀r.E ′ if E @T E ′ holds in general (Badea and Nienhuys-Cheng, 2000).

• C = C1u· · ·uCn: In this case one element of the conjunction is refined, so D vT C
follows by induction.

• C = C1t· · ·tCn: In this case one element of the disjunction is refined, so D vT C
follows by induction. �

We have shown that ρ↓ is an ALC downward refinement operator. The most important
property for an ALC refinement operator to be useful is weak completeness, which we
will investigate next, but first we want to discuss other characteristics of ρ↓.
ρ↓ is infinite. There are two sources of infinity: First of all a refinement of the top

concept can have an infinite number of universal quantifications. The reason is the
equality ∀r.> ≡ >. This refinement (i.e. > ∀r.>) is not useful, so in refinements of
the form > ∀r.C we require C to be a refinement of the top concept, which can again
contain a universal quantification etc. The second source of infinity is that we allow
to create a disjunction with an arbitrary number of elements as a refinement of the
top concept. In fact refining the top concept is the only way to introduce disjunctions,
whereas in all other cases we allow to add concepts conjunctively.

One of the nice properties of ρ↓ compared to other refinement operators for learning
concepts in Description Logics (Badea and Nienhuys-Cheng, 2000; Esposito et al., 2004)
is that it makes use of the subsumption hierarchy of concepts in the knowledge base.
Other operators usually select an atomic concept, but do not allow to refine it. Allowing
the traversal of the subsumption hierarchy by a refinement operator does not directly
affect its theoretical properties, but is useful since it makes use of knowledge contained
in the TBox.

When observing ρ↓ we see that there are four possible syntactic changes, which it can

perform. These changes are the replacement of a top symbol, denoted by
>
 , adding a

concept conjunctively, denoted by
u
 , replacing an atomic concept by a more general

one, denoted by
A
 , and replacing a negated atomic concept by a negated more special

atomic concept, denoted by
¬A
 .

35

4 Refinement Operators for ALC Concepts

4.4 Weak Completeness of the Operator

In the sequel we will show the weak completeness of ρ↓. We will do this stepwise. First
we define a set S↓ of ALC concepts. For these concepts we show that every ALC concept,
which is not equivalent to >, is equivalent to an element of S↓. Then we show that all
concepts in S↓ can be reached from > by ρ↓.

Definition 4.20 (S↓)
The set S ′

↓ is defined as follows:

1. If A ∈ NC then A ∈ S ′
↓ and ¬A ∈ S ′

↓.

2. If r ∈ NR then ∀r.⊥ ∈ S ′
↓, ∃r.> ∈ S ′

↓.

3. If C,C1, . . . , Cm are in S ′
↓ then the following concepts are also elements of S ′

↓:

• ∃r.C

• ∀r.C

• C1 u · · · u Cm

• C1t· · ·tCm if for all i (1 ≤ i ≤ m) Ci is not of the form D1u· · ·uDn where
all Dj (1 ≤ j ≤ n) are of the form E1 t · · · t Ep

The set S↓ is defined as S↓ = S ′
↓ ∪ {⊥}. �

The set S↓ is obviously a set of concepts in negation normal form. However, we do
not use the > and ⊥ symbols directly and we give a restriction on disjunctions, i.e. we
do not allow that elements of a disjunction are conjunctions, which in turn only consist
of disjunctions.

For technical reasons we will always assume that disjunctions are not nested in disjunc-
tions and conjunctions are not nested in conjunctions, e.g. we do not write (C1uC2)uC3,
but C1 u C2 u C3.

Lemma 4.21 (S↓)
For any ALC concept C there exists a concept D ∈ S↓ such that D ≡ C.

Proof We first transform C to negation normal form (see Section 2.3). The proof
consists of three steps: First we will eliminate > symbols unless they occur in existential
restrictions (because in Definition 4.20 ∃r.> is used in the induction base opposed to
using > directly as in Definition 2.25). After that we do something similar with the
bottom symbol. In a third step we will eliminate disjunctions violating the criterion in
Definition 4.20. After these three steps we obviously obtain a concept, which is in S↓.

36

We eliminate >-symbols by applying the following rewrite rules:

C1 u · · · u Ci−1 u > u Ci+1 u · · · u Cn → C1 u · · · u Ci−1 u Ci+1 u · · · u Cn

C1 t · · · t Ci−1 t > t Ci+1 t · · · t Cn → >

∀r.> → >

Obviously these >-elimination steps preserve equivalence. We exhaustively apply these
steps (since every step reduces the length of the concept there can be only finitely many
such steps) to get a concept C ′. Note that C ′ 6= > (otherwise C ′ ≡ C ≡ >) and in C ′

the top concept only appears in existential restrictions, i.e. in the form ∃r.>.
⊥ symbols are eliminated by the following rewrite rules:

C1 u · · · u Ci−1 u ⊥ u Ci+1 u · · · u Cn → ⊥

C1 t · · · t Ci−1 t ⊥ t Ci+1 t · · · t Cn → C1 t · · · t Ci−1 t Ci+1 t · · · t Cn

∃r.⊥ → ⊥

These steps also preserve equivalence. After exhaustively applying these steps we either
get the ⊥ symbol itself (which is in S↓) or the ⊥ symbol only appears in universal
restrictions, i.e. in the form ∀r.⊥.

Next we have to eliminate disjunctions, which do not satisfy Definition 4.20. Say
we have such a disjunction C1 t · · · t Cm. Then there is a Ci (1 ≤ i ≤ m), which
is a conjunction consisting only of disjunctions. Without loss of generality we assume
i = 1 (the order of elements in a disjunction is not important), i.e. we can write
C1 = D1 u · · · u Dn and D1 = E1 t · · · t Ep. This means we can apply the following
equivelance preserving rewriting rule:

((E1 t · · · t Ep) uD2 u · · · uDn) t C2 t · · · t Cm →

(E1 uD2 u · · · uDn) t · · · t (Ep uD2 u · · · uDn) t C2 · · · t Cm

Note that Ei (1 ≤ i ≤ p) cannot be a disjunction. Let C ′
1 be the replacement of C1 after

applying the rewriting rule. Obviously C ′
1 is no more a disjunction where an element is a

conjunction of disjunctions (because any Ei is not a disjunction). If we apply this rule to
all applicable Ci (1 ≤ i ≤ m), then we obtain a concept C ′′ equivalent to C1 t · · · tCm,
which is in S↓.

Hence we have shown that we can construct a concept C ′′ ≡ C ′ ≡ C with C ′′ ∈ S↓,
which completes the proof. �

Proposition 4.22 (weak completeness of ρ↓)
ρ↓ is weakly complete.

37

4 Refinement Operators for ALC Concepts

Proof We have to show that for any concept C with C @T > a concept E with E ≡ C
can be reached from > by ρ↓. Due to Lemma 4.21 it is sufficient to show that all concepts
in S↓ can be reached from > by ρ↓.

We claim that ρ∗↓(>) = S↓ and prove this by induction over the structure of concepts
in S↓ (see Definition 4.20). The bottom concept itself can be reached by a one-step
refinement of the > symbol, so we just have to analyze the elements in S ′

↓.

• Induction Base: An atomic concept A can be reached from > by a refinement
chain of the following form:

>
>
 A1

A
 . . .

A
 An

A
 A

The operator descends the subsumption hierarchy and reaches A in a finite number
of steps (there are only finitely many atomic concepts). Negated atomic concepts
can be handled analogously.

∀r.⊥ can also be reached by descending the subsumption hierarchy:

>
>
 ∀r.A1

A
 . . .

A
 ∀r.An

A
 ∀r.⊥

∃r.> can be reached by a one step refinement from >.

• Induction Step:

– ∃r.C: We have >
>
 ∃r.> and by induction we can reach C from > by ρ↓.

– ∀r.C: We have ∀r.C ∈ ρ∗↓(>) if C ∈ ρ∗↓(>), which is true by induction.

– C1 t · · · t Cm: We will look at the elements of the disjunction separately.
We have to show that for any i we have Ci ∈ ρ∗(m) for an m ∈ M (where
M is defined as in the definition of ρ↓). Without loss of generality we show
this for C1, i.e. i = 1. We do a case distinction based on the structure of C1

(obviously C1 is not a disjunction).

∗ C1 is an atomic concept A: In this case we pick a most general atomic
concept A1 ∈ S and refine it:

A1
A
 . . .

A
 An

A
 A

∗ C1 is a negated atomic concept ¬A: We pick a most special atomic
concept A1 ∈ S and refine it:

A1
¬A
 . . .

¬A
 An

¬A
 A

∗ C1 = ∀r.⊥: We refine to ∀r.A1, where A1 is itself a refinement of the top
concept. Then we can refine to ∀r.⊥:

∀r.A1
A
 . . .

A
 ∀r.An

A
 ∀r.⊥

38

∗ C1 = ∃r.>: ∃r.> is in M .

∗ C1 = ∀r.D: By induction, D ∈ ρ∗↓(>), so there is a concept ∀r.E1 ∈ S,
which we can refine to ∀r.D:

∀r.E1 . . . ∀r.En ∀r.D

∗ C1 = ∃r.D: We choose ∃r.> ∈M and by induction D ∈ ρ∗↓(>).

∗ C1 = D1 u · · · uDn: By Definition of S↓ (Definition 4.20), we know that
there exists a j, such that Dj is not a disjunction (and obviously also not
a conjunction). So there is one Dj of the form ∃r.>, ⊥, A, ¬A, ∃r.C or
∀r.C. These can be produced exactly as we have shown in the previous
cases. For any of these constructs ρ↓ allows to extend these constructs
to a conjunction with elements in ρ↓(>). By induction, we know for all i
(1 ≤ i ≤ n) that Di ∈ ρ∗↓(>). So we can produce a concept weakly equal
to C1 by first creating Dj and then extending this to a conjunction by
generating all D′

is (1 ≤ i ≤ n, i 6= j).

– C1 u · · · u Cm: By induction, we know C1 ∈ ρ∗(>), so we first create C1 and
then add all other elements to the conjunction:

>
>
 D1 . . . C1

u
 C1 uD2 . . . C1 u C2 . . . C1 u · · · u Cm �

It turns out that ρ↓ is even complete:

Proposition 4.23 (completeness of ρ↓)
ρ↓ is complete.

Proof Let C and D be arbitrary ALC concepts in S↓ with C @ D. To prove complete-
ness of ρ↓ we have to show that there exists a concept E with E ≡ C and E ∈ ρ∗↓(D).
E = D u C satisfies this property. We obviously have E = D u C ≡ C, because of
C @ D. We know that ρ↓ allows to extend concepts conjunctively by refinements of the
top concept. Hence we know that D u C can be reached from D for any concept C by
the weak completeness result for ρ↓. Thus ρ↓ is complete. �

The completeness of ρ↓ is a by-product and not a design decision, i.e. we automat-
ically can derive completeness from weak completeness if we allow to extend concepts
conjunctively (which is usually a good idea). For instance we cannot reach A1 from
A1 t A2 (because we cannot drop elements of disjunctions), but instead we can only
reach (A1 t A2) u A1. So ρ↓ is complete, but it is not always possible to reach the
shortest concepts. (This is intentional since we will later see that we need the property
that applications of ρ↓ cannot produce shorter concepts.) The important property with
respect to the top-down learning algorithm we will design later is weak completeness.

39

4 Refinement Operators for ALC Concepts

4.5 Achieving Properness

The operator ρ↓ is not proper, for instance it allows the refinement (A1 is a most general
atomic concept):

>
>
 ∃r.> t ∀r.A1 (≡ >) (1)

There is no structural subsumption algorithm for ALC, which indicates that it is hard
to define a proper operator just by syntactic rewriting rules. One could try to modify
ρ↓, such that it becomes a proper operator. Unfortunately this is likely to lead to the
weak incompleteness of the operator. Say we disallow refinement step (1). Consider the
following refinement chain (A2 is a most general atomic concept):

>
>
 ∃r.> t ∀r.A1

>
 ∃r.A2 t ∀r.A1 (2)

If we disallow the first step we have to ensure that we can reach ∃r.A2 t ∀r.A1 from
>, otherwise the operator is weakly incomplete. This is just one example case we have
to take care of. In particular there can be infinite chains of improper refinements:

>
>
 ∃r.> t ∀r.A1

>
 ∃r.(∃r.> t ∀r.A1) t ∀r.A1

>
 . . . (3)

This example illustrates that one would have to allow very complex concepts to be
generated as refinements of the top concept, if one wants to achieve weak completeness
and properness.

There is a way to solve the problem: Instead of modifying ρ↓ directly we allow it to be
improper, but consider the closure ρcl↓ of ρ↓ (see also Badea and Nienhuys-Cheng, 2000).

Definition 4.24 (ρcl
↓)

ρcl↓ is defined as follows: D ∈ ρcl↓ (C) iff there exists a refinement chain

C ρ↓ C1 ρ↓ . . . ρ↓ Cn = D

such that C 6≡ D and Ci ≡ C for i ∈ {1, . . . , n− 1}. �

ρcl↓ is proper by definition. It also inherits the weak completeness of ρ↓ since we do
not disallow any refinement steps, but only check if they are improper.

However, it is necessary to show that ρcl↓ is a meaningful operator, which we will do in
the sequel. We know that ρ↓ is an infinite operator, so it is clear that we cannot consider
all refinements of a concept at a time. The refinement operator spans a search tree of
ALC concepts, which has an infinite branching factor. Therefore in practice we will
always compute all refinements of a concept up to a fixed length. A flexible algorithm
will allow this length limit to be increased if necessary. In this sense an infinite operator
is not a big problem, since we are more interested in smaller concepts anyway (they
generalize better to unseen examples, i.e. they are less likely to overfit the given data).
However, we have to make sure that all refinements up to a given length are computable
in finite time. To show this we need the following lemma.

40

Lemma 4.25 (ρ↓ does not reduce length)
1. D ∈ ρ↓(C) =⇒ |D| ≥ |C|

2. There are no infinite refinement chains of the form

C1 ρ↓ C2 ρ↓ . . .

with |C1| = |C2| = (Or equivalently: After a finite number of steps we will
reach a longer concept.)

Proof To show the first statement we need to observe the steps, which are performed
by ρ↓. We can see that ρ↓ does one of four things in each refinement step:

1. add an element conjunctively (
u
)

2. refine the top concept (
>
)

3. generalize an atomic concept (
A
)

4. generalize a negated atomic concept (
¬A
)

Steps 1 and 2 obviously result in a concept with greater length. Step 3 and 4 result in
a concept with the same length. This proves claim 1.

Claim 2 follows from the fact that there is just a finite number of atomic concepts
(NC is finite) and there are only finitely many occurences of an atomic concept within
any ALC concept. Hence there are no infinite refinement chains using only steps 3 or
4. Thus after a finite number of refinements step 1 or 2 is used, which produce a longer
concept. �

Proposition 4.26 (usefulness of ρcl
↓)

For any concept C in negation normal form and any natural number n the set

{D | D ∈ ρcl↓ (C), |D| ≤ n}

can be computed in finite time.

Proof Because of Lemma 4.25 we know that for any concept D in the set there exists
an m such that |D| > |C| with D ∈ ρm↓ (C). Obviously a concept has only finitely many
refinements up to a fixed length. If we consider all refinement chains of a concept C by
ρ↓ up to length n as a tree, then this tree is finite (there are only finitely many concepts

41

4 Refinement Operators for ALC Concepts

of length ≤ n and any such concept can be reached by a finite refinement chain). The
set {D | D ∈ ρcl↓ (C), |D| ≤ n} is a subset of the nodes of this tree. Hence it can be
computed in finite time. �

Proposition 4.26 essentially states that using the closure of ρ↓ as an operator is useful,
i.e. there is no risk to run in an infinite loop when computing it up to a certain length
of the refinements. Hence we can use ρcl↓ in a learning algorithm.

4.6 Removing Redundancies

So far we have created a weakly complete and proper refinement operator. The next
goal is to remove redundancies. The next example shows that ρ↓ and ρcl↓ are redundant.
(This already follows from Proposition 4.12, but we show an example explicitly.)

Example 4.27 (redundancy of ρ↓ and ρcl
↓)

These are two refinement chains of ρ↓ and ρcl↓ (both operators can produce these chains):

>
>
 A1

u
 A1 u A2

>
>
 A2

u
 A2 u A1

A1 u A2 and A2 u A1 are weakly equal (A1 uA2 ' A2 u A1). So there is a refinement
chain from > to A1 uA2, which does go through A1 and another refinement chain from
> to a concept weakly syntactically equivalent to A1 u A2, which does not go through
A1. This satisfies the definition of redundancy (Definition 4.6, page 23). �

In the proof of Proposition 4.15 (page 31) we have seen that it is possible to define a
weakly complete, non-redundant, and proper refinement operator as follows:

Let S be a maximal subset of {C | C 6≡T >} with C1, C2 ∈ S =⇒ C1 6' C2.

ρ(C) =

{

S if C = >

∅ otherwise

This operator is clearly impractical since it generates arbitrarily complex concepts
from a single concept instead of using syntactic rewriting rules to modify the input
concept.

This rises the question whether there exists a weakly complete, proper, and non-
redundant ALC refinement operator, which can be considered practically useful. One
idea is to modify ρcl↓ by disallowing refinement steps, which cause redundancies. The
following example illustrates that this is problematic.

Example 4.28 (problems with non-redundant operators)
The following two refinement chains can be produced by ρcl↓ :

> ∀r1.A1 t ∀r2.A1 ∀r1.(A1 u A2) t ∀r2.A1 ∀r1.(A1 u A2) t ∀r2.(A1 u A2)

> ∀r1.A1 t ∀r2.A1 ∀r1.A1 t ∀r2.(A1 u A2) ∀r1.(A1 u A2) t ∀r2.(A1 u A2)

42

Again, we see that ρcl↓ is redundant. However, the interesting aspect of this example
is that to avoid redundancies we may consider disallowing one of the refinement steps:

∀r1.(A1 u A2) t ∀r2.A1 ∀r1.(A1 u A2) t ∀r2.(A1 u A2)

∀r1.A1 t ∀r2.(A1 u A2) ∀r1.(A1 u A2) t ∀r2.(A1 u A2)

Both steps result in the same concept and thereby lead to the redundancy of ρcl↓ . We
cannot disallow both steps since this would lead to the incompleteness of ρcl↓ . Looking
closer at both refinement steps, we see that both refine an element of a disjunction by
rewriting A1 to A1 uA2. This means that if we want to disallow one of both refinement
steps, we need to modify the way the operator handles disjunctions. Instead of dele-
gating the operator to elements of a disjunction like ρcl↓ (ρcl↓ can refine disjunctions by
refining elements of the disjunction) we need to take the structure of each element of
the disjunction into account. However, this is impractical, because ALC concepts can
have an arbitrarily deeply nested structure. �

Example 4.28 gives an intuition why a weakly complete, proper, and non-redundant
ALC refinement operator cannot handle disjunctions by refining elements of a disjunction
(which can be considered the natural way to handle disjunctions).

Another reason why weakly complete, proper, and non-redundant ALC refinement
operators are problematic in practice can be found in the proof of Proposition 4.23 on
page 39: If a downward refinement operator ρ allows to extend a concept conjunctively,
i.e. for all ALC concepts C we have C u > ∈ ρ(C) or C u ρ(>) ∈ ρ(C), then complete-
ness is automatically derived from weak completeness. By Propositon 4.12 a complete
operator is always redundant. Hence a weakly complete, proper, and non-redundant
operator cannot extend concepts conjunctively in the way described above.

As a conclusion there are two ways to handle redundancy: The first one is to modify ρcl↓
in such a way that redundancy is reduced – but it is problematic to remove redundancy
completely in a practical way. The second way is to let ρcl↓ be redundant, but remove
or mark all occuring redundant concepts by choosing an appropriate search strategy for
the learning algorithm. A combination of both approaches is also possible.

We will describe the second approach in more detail: A learning algorithm can be
constructed as a combination of a refinement operator, which defines how the search
tree can be build, and a search algorithm, which controls how the tree is traversed. The
search algorithm specifies which nodes have to be expanded. (Expanding a node roughly
corresponds to applying the refinement operator to the ALC concept represented by this
node.) Whenever the search algorithm encounters a node in the search tree, i.e. an ALC
concept, it can check whether a weakly equal concept already exists in the search tree.
If yes, then this node is ignored, i.e. it will not be expanded further and it will not be
evaluated.

The first observation is that this approach obviously completely removes redundan-
cies. Each concept exists at most once in the search tree. (More exactly: For each
concept there is at most representative of the equivalence class of weakly syntactical
equal concepts in the search tree which is evaluated.)

43

4 Refinement Operators for ALC Concepts

The second observation is that we can still reach any potential solution. ρcl↓ handles
weakly equal concepts in the same way, i.e. ρcl↓ (C) ' ρcl↓ (D) if C ' D. This means that
ignoring a concept if a weakly equal concept already exists in the search tree does not
influence the set of concepts we can reach in the search tree (up to weak equivalence).

The third observation is that this approach is computationally expensive. Hence we
considered it worthwhile to investigate how it can be handled as efficient as possible.

Summary: We gave reasons why weakly complete and non-redundant ALC refinement
operators are impractical. We have then shown that a way to avoid redundancy is to
have a search strategy, which checks for every newly created node whether a weakly
equal concept already exists in the search tree.

The next step is to analyse how this can be done. We first need to define an algorithm,
which decides C ' D given two concepts C and D.

Algorithm 4.29 (checking weak equality)
Function Name: checkEquality

Input: ALC concepts C and D in negation normal form
Output: yes or no
We make a case distinction on the structure of C:

• C = ⊥: return yes iff D = ⊥

• C = >: return yes iff D = >

• C = A (A ∈ NC): return yes iff D = A

• C = ¬A (A ∈ NC): return yes iff D = ¬A

• C = ∃r.C ′: return yes iff D = ∃r.D′ and checkEquality(C ′, D′)

• C = ∀r.C ′: return yes iff D = ∀r.D′ and checkEquality(C ′, D′)

• C = C1u· · ·uCn: if D is not of the form D1u· · ·uDn then return no otherwise:

– call checkEquality(C1, Di) starting from i = 1 to i = n until yes is re-
turned; if none of the tests return yes then return no as result

– set C ′ = C2 u · · · u Cn and D′ = D1 u · · · u Di−1 u Di+1 u · · · uDn; call
checkEquality(C ′, D′)

• C = C1 t · · · t Cn: analogously to the previous case

The equality check algorithm is rather simple. However, it is not efficient since in
conjunctions and disjunctions we have the problem that we have to guess which pairs
of elements are equal (case C = C1 u · · · u Cn in the algorithm). One way to solve this
problem is to define an ordering over concepts and require the elements of disjunctions

44

and conjunctions to be ordered. This would eliminate the guessing step and allow to
check weak equality in linear time.

Definition 4.30 (ordering concepts)
We define a relation � over ALC concepts in negation normal form as follows:

We assume that roles are ordered in a list [r1, . . . , rt] and atomic concepts in a list
[A1, . . . , Au] such that for i < j we have Ai v Aj.

Let A,A1, A2 ∈ NC ∪{>,⊥}, r ∈ NR, and C,D,C1, . . . , Cn, D1, . . . , Dn (m,n > 1) be
arbitrary ALC concepts in negation normal form. Then we have:

• ⊥ � A � > � ¬A � C1 u · · · u Cn � D1 t · · · t Dn � ∃r.C � ∀r.D and
∀r.D 6� ∃r.C 6� D1 t · · · tDn 6� C1 u · · · u Cn 6� ¬A 6� > 6� A 6� ⊥ (This defines
the ordering over different syntactic structures.)

• Ai � Aj iff i ≤ j

• ¬Ai � ¬Aj iff Ai � Aj

• C1 u · · · u Cm � D1 u · · · uDn iff m < n or m = n and ((C1 6= D1 and C1 � D1)
or (C1 = D1 and C2 u · · · u Cm � D2 u · · · uDn))

• C1 t · · · t Cm � D1 t · · · tDn iff m < n or m = n and ((C1 6= D1 and C1 � D1)
or (C1 = D1 and C2 t · · · t Cm � D2 t · · · tDn))

• ∃ri.C � ∃rj.D iff i < j or (i = j and C � D)

• ∀ri.C � ∀rj.D iff i < j or (i = j and C � D) �

Proposition 4.31 (properties of �)
1. C � D and D � C implies C = D.

2. � is a linear order.

Proof The proof will not be presented in full detail, but rather as a proof sketch.

1. C � D ∧ D � C =⇒ C = D: From the definition of � it is clear that the
premise C � D ∧ D � C can only be true if C and D are equal with respect to
their outmost syntactic structure (e.g. they are both disjunctions). If C and D
are atomic concepts, then the equality is obvious (i ≤ j ∧ j ≤ i =⇒ i = j).
If C = D = ⊥ or C = D = >, then the claim obviously also holds. For other
syntactic constructs the equality of C and D can easily be shown by induction.

2. • � is total: This holds since for two aribtrary concepts C and D in any rule in
Definition 4.30 either the condition for C � D or D � C is satisfied. This is
obvious for atomic concepts, > and ⊥, and can easily be shown by induction
for other concepts.

45

4 Refinement Operators for ALC Concepts

• � is reflexive: For any concept C of any syntactic structure C � C is satisfied
(which can be verified by looking at all cases in the definition).

• � is antisymmetric: C � D and D � C implies C = D according to (1).
Hence there are no concepts C, D with C 6= D, C � D, and D � C.

• � is transitive: Assume for three concepts C, D, and E we have C � D and
D � E. If C, D, and E do not have the same outmost syntactic structure,
then it is clear that we have C � E (by definition of the ordering over differ-
ent syntactic structures). However, if C, D, and E have the same outmost
syntactic structure, then C � E is not hard to show, because in the rules in
Definition 4.30 the relations ≤, = (transitive), and � (transitive by induction)
are used. �

Lemma 4.32 (deciding C � D)
C � D can be decided in polynomial time.

Proof An algorithm for deciding C � D can be defined by simply following the rules
in Definition 4.30. The input size of the problem C � D is |C|+ |D| = s. We refer to one
time step as the comparision of two symbols (e.g. u and t). If C and D have different
outmost syntactic structures, then the problem is decided in exactly one time step. If
C = D = >, C = D = ⊥ or C and D are atomic concepts, then the problem is also
decided in a single step. If C and D are of the form ¬A, ∃r.E or ∀r.E, then we need one
time step plus the time for deciding the smaller problems for the subconcepts, which can
be solved in polynomial time by induction. If C and D are conjunctions or negations,
then we may additionally also have to decide whether C1 = D1 holds for elements C1 of
C and D1 of D. This check can be done in linear time (in less than s time steps). The
other checks (in the cases C1 u · · · u Cn, C1 t · · · t Cn, ∃r.C, ∀r.C) are polynomial by
induction. Hence the overall complexity of the decision is polynomial. �

We have introduced a linear order � over concepts in negation normal form and have
shown that C � D is decidable in polynomial time. We can use this linear order to
sort the elements of disjunctions and conjunctions. We say that the resulting concept is
ordered.

Definition 4.33 (ordered negation normal form)
A concept C is in ordered negation normal form iff it is in negation normal form and
the following conditions hold:

• If C is of the form ∃r.D, then D is in ordered negation normal form.

• If C is of the form ∀r.D, then D is in ordered negation normal form.

46

• If C is of the form C1u· · ·uCn, then C1 � · · · � Cn and C1, . . . , Cn are in ordered
negation normal form.

• If C is of the form C1t· · ·tCn, then C1 � · · · � Cn and C1, . . . , Cn are in ordered
negation normal form. �

Proposition 4.34 (transformation to ordered negation normal form)
A concept in negation normal form can be transformed to a concept in ordered nega-
tion normal form in polynomial time.

Proof We will first define an algorithm for the transformation to an ordered concept.
The function transform, which takes as input a concept in negation normal form and
returns a concept in ordered negation normal form is defined as follows:

Algorithm 4.35 (transformation to ordered negation normal form)
Function Name: transform

Input: an ALC concept in negation normal form
Output: a weakly equal ALC concept in ordered negation normal form

We do a case distinction on the structure of C:

• C ∈ {⊥,>, A,¬A} (A ∈ NC): return C

• C = ∃r.C ′: return ∃r.transform(C ′)

• C = ∀r.C ′: return ∀r.transform(C ′)

• C = C1 u · · · u Cn: transform all elements of the disjunction and then sort
them (e.g. by Quicksort) according to �

• C = C1 t · · · t Cn: analogously to the previous case

Obviously this algorithm is correct, i.e. the resulting concept is weakly equal to the
input concept and ordered.

Let C with |C| = n be the input of the algorithm. The transform function is called less
than n-times. From a complexity point of view the only interesting case is the handling
of disjunctions and conjunctions (all other cases are trivial).
C does not contain more than n disjunctions (concjunctions) and each disjunction

(conjunction) has a length less than n. Sorting a disjunction (conjunction) by e.g.
Quicksort is done with O(n2) comparision operations (comparing means to decide C � D
for concepts C and D). In Lemma 4.32, we have shown that such a comparision can

47

4 Refinement Operators for ALC Concepts

be done in polynomial time. Hence the overall complexity of the algorithm is also
polynomial. �

We have shown that ordering concepts greatly increases the efficiency of redundancy
elimination. By ordering concepts, it is possible to check weak equality in linear time,
because we can avoid the guessing step in Algorithm 4.29 (page 44). This is because
for concepts in ordered negation normal form checking weak equality is the same like
checking equality. Note that the transformation of a concept to an ordered concept has
to be done only once when inserting it into the search tree. After that it will speed up
all weak equality checks.

The most important question to ask is whether it is worth to check for redundancies.
We have shown that, given a concept and a search tree, we can decide if a weakly equal
concepts exists in the search tree in polynomial time. However, the search tree can grow
exponentially with the size of concepts. It is still worth to eliminate redundancy, because
for measuring whether a concept is good or not we need to determine instances of the
concept. Depending on the description language used for the background knowledge
this problem is at least in PSPACE (for ALC), but can be in higher complexity classes
(NEXPTIME for SHOIN (D) and OWL-DL). Redundancy elimination can avoid many
instance checks. Also note that when we do not eliminate redundancies the search tree
may contain large subtrees of weakly equal concepts, i.e. we have different subtrees
in the search tree which are identical up to weak equality. In this sense redundancy
elimination also avoids the creation of further redundant concepts.

In practice we would not perform the weak equality check on all concepts of the search
tree, but rather only on those with the same length, depth etc. One might think that
an even better method is to start from the root of the search tree and only search those
paths, which can lead to a weakly equal concept. For a concept C and a node in the
search tree, which represents a concept D this means we have to check whether there
can be a concept E with E ' C and E ∈ ρ∗(D). However, such a check is not efficient
since the transformation to ordered concepts can change the ordering of elements in
conjunctions and disjunctions (not performing the transformation does not help since
then the necessary weak equality check is not efficient). A solution for this problem would
be to modify the operator such that changes in the order of elements in conjunctions
and disjunctions never occur, i.e. applying the operator to a concept in ordered negation
normal form results in concepts in ordered negation normal form. This is possible, but
not desirable, for instance we would have to disallow the traversal of the subsumption
hierarchy. We will illustrate this in a simple example. Let NC = {A1, A2, A3}, where
the ordering of concept names is [A1, A2, A3] with A3 @ A1, A2 6v A1 and A1 6v A2.
Consider the refinement chain:

> A1 t A2 A3 t A2

We can reach A3 by refining A1, but not by refining A2. So in this case we get a
concept, which is not in ordered negation normal form (A3 t A2).

48

4.7 Further Optimisations

In this section ρ↓ and thereby ρcl↓ will be improved while preserving their basic properties.

Improving the Traversal of the Subsumption Hierarchy

The operator ρcl↓ allows to traverse the subsumption hierarchy of atomic concepts. This
is done by refining an atomic concept A to an atomic concept A′ such that A′

@ A and
there is no A′′ ∈ NC with A′

@ A′′
@ A. A drawback of this approach is that there

can be several ways to reach a concept. As an example let the following subsumption
hierarchy be given:

>

A1 A2 A3

A4 A5 A6

⊥

@

We can reach A5 by two refinement chains in ρcl↓ :

>
>
 A1

A
 A5

>
>
 A2

A
 A5

However, it is not necessary that we reach A5 by more than one chain and indeed the
redundancy elimination algorithms we have presented would mark one of both results as
redundant. There is an easy way to avoid this problem by transforming the subsumption
graph into two trees: one tree for downward refinement of atomic concepts and one tree
for upward refinement of atomic concepts in negated atomic concepts. In the tree for
downward refinement for each atomic concept, which has more than one more general
neighbour we just pick one neighbour and erase all others. Additionally we can remove
the ⊥ symbol, because ρ↓ never refines an atomic concept to the ⊥ symbol. The resulting
tree has the property that there is exactly one path from each node to the > symbol.
(There way at least one path from each node to > before the transformation and we
erased all paths except one.)

The tree for upward refinement can be constructed analogously. In this case we need
to look at more special neighbours and we can remove the > concept.

The algorithm is not deterministic, so there can be more than one solution. These are
two possible resulting trees:

49

4 Refinement Operators for ALC Concepts

>

A1 A2 A3

A4 A5 A6

A1 A2 A3

A4 A5 A6

⊥

Now we can modify ρcl↓ such that it uses these trees instead of a direct use of the
subsumption hierarchy. If an atomic concept A as a subconcept of a concept C is
refined, then we use the first tree for downward refinement and if a negated atomic
concept A is refined we use the second tree for upward refinement. This reduces the
number of refinements and therefore the number of redundancy checks. The resulting
operator is still weakly complete, since we only removed redundant refinement chains.

Using ∃r.(C tD) ≡ ∃r.C t ∃r.D and ∀r.(C uD) ≡ ∀r.C u ∀r.D

The equivalences ∃r.(C tD) ≡ ∃r.C t ∃r.D and ∀r.(C uD) ≡ ∀r.C u ∀r.D can be used
to modify ρ↓ without losing weak completeness.

Disjunctions in ρ↓ are only introduced in refinements of the top concept. The only
existential value restrictions in these disjunctions are of the form ∃r.> for r ∈ NR. The
equivalence ∃r.(C t D) ≡ ∃r.C t ∃r.D says that it is not necessary to allow several
disjuncts of the form ∃r.> for a fixed role r, because we can always reach an equivalent
concept by only introducing it once. Therefore we can restrict ρ↓ to produce ∃r.> only
at most once per role as element of the disjunction in the refinement of the top concept,
without losing weak completeness.
ρ↓ allows to refine a concept C by extending it conjunctively. If C is of the form ∀r.D

or of the form C1 u · · · u ∀r.D u · · · u Cn, then we can restrict ρ↓ to disallow adding
an element of the form ∀r.E (E is an arbitrary ALC concept). Again, the resulting
operator is still weakly complete.

By using the equalities ∃r.(C t D) ≡ ∃r.C t ∃r.D and ∀r.(C u D) ≡ ∀r.C u ∀r.D
as described above, we have reduced the number of possible refinements, but preserved
(weak) completeness.

4.8 Creating a Full Learning Algorithm

A learning algorithm can be created by combining a refinement operator with a search
algorithm. In this section we will show how to combine the refinement operator ρcl↓ with
a redundancy-eliminating heuristic search algorithm.

Learning concepts in Description Logics is a search process. The refinement operator
ρcl↓ is used for building the search tree, while a heuristic decides which nodes to expand.

50

Major decision criteria are obviously the examples covered by a concept. We will make
this more explicit by definining the notion of quality.

Definition 4.36 (quality)
Let K be a knowledge base, E− the set of negative examples, and E+ the set of positive
examples of a learning problem. The quality of a concept C is a function, which maps a
concept to an element of Q with Q = {0, . . . ,−|E−|} ∪ {tw}, defined by:

quality(C) =

tw if there is an e ∈ E+

with K ∪ {C} 6|= e

−|{e | e ∈ E− and K ∪ {C} |= e}| otherwise
�

The quality of a concept is "tw" if it is too weak, i.e. it does not cover all positive
examples. In all other cases we assign a number n with n ≥ 0 to a concept, which is the
number of negative examples covered.

One of the problems we have to solve in the learning algorithm is that there can
be infinitely many refinements of a given concept. This means that a node can have
infinitely many children. Hence it is not possible to expand all of these children. Instead
we will only consider children representing concepts up to a fixed length n. We say that
n is the horizontal expansion of a node.

We will now define a node in the search tree explicitly.

Definition 4.37 (node)
A node is a quadrupel (C, n, q, b), where C is an ALC concept, n ∈ N is the horizontal
expansion, q ∈ Q ∪ {-} is the quality, and b ∈ {true, false} is a boolean marker for the
redundancy of a node. �

The marker "-" stands for undefined. This allows us to have nodes with an undefined
quality. This is useful since we do not need to evaluate the quality (which is the most
expensive operation) of redundant nodes. A concept with quality 0 is correct, i.e. it
covers all positives and none of the negatives.

In the learning algorithm we need to be able to find the fittest node in the search tree.
We define the fitness of a node as a lexicographical order over quality, concept length
and horizontal expansion.

Definition 4.38 (fitness)
Let N1 = (C1, n1, q1, b1) and N2 = (C2, n2, q2, b2) be two nodes with defined quality
(q1, q2 6= −, tw). N1 is fitter than N2, denoted by N2 ≤f N1 iff one of the following
conditions hold:

• q2 < q1

• q1 = q2 and |C1| < |C2|

• q1 = q2 and |C1| = |C2| and n1 ≤ n2 �

51

4 Refinement Operators for ALC Concepts

We have now introduced all necessary notions to specify the complete learning algo-
rithm.

Algorithm 4.39 (learning algorithm)
• Initialize:

– ST (search tree) is set to the tree consisting only the root node
(>, 0, quality(>), false)

– minHorizontalExpansion is set to 0

– set horizontalExpansionFactor to a number higher than 0 and at most 1

• while ST does not contain a correct concept, do:

– choose a node N = (C, n, q, b) with the highest fitness in ST

– expand N horizontally up to length n + 1, i.e. add all nodes (D, n +
1,−, checkRedundancy(ST,D)) with D ∈ transform(ρcl↓ (C)) and |D| =
n+ 1 as children of N

– change N to (C, n+ 1, q, b)

– set minHorizontalExpansion to max(minHorizontalExpansion,
dhorizontalExpansionFactor ∗ (n+ 1))e)

– expand all nodes, which are neither redundant nor too weak, to at least
minHorizontalExpansion and change their horizontal expansion values
accordingly

– evaluate the quality of all concepts in non-redundant nodes

We see that the usual expansion in a search algorithm is replaced by a one step
horizontal expansion. If we only expand the fittest node we may not explore large parts
of the search space. In order to avoid this, a minimum horizontal expansion is used,
which specifies that all nodes have to be expanded at least up to this length. This is a
tradeoff between expanding only the fittest node and exploring other parts of the search
space. For instance if we explore nodes with concepts of length 7 we may want to be
sure that we explore at least all concepts of length 3. This tradeoff is controlled by the
horizontal expansion factor.

Note that in the algorithm we do not remove overly special or redundant nodes.
We do not remove these nodes, because they can be used to make it more efficient to
compute the closure of ρ↓. There are (at least) two strategies for implementing the
closure efficently: The first one is to store a tree (up to a maximal length of concepts) of
refinements of ρ↓ for each node in the search tree. Whenever we increase the horizontal
expansion of this node, we expand this tree by applying ρ↓ to its leafs. The second
strategy is not to store any additional information in a node in the search tree, but

52

recompute the refinements every time a node is expanded horizontally (in some sense
this corresponds to iterative deepening search). In this case it is useful not to delete
overly special or redundant nodes, since we can stop computing further refinements of
ρ↓ whenever such a node is reached.

Proposition 4.40 (correctness)
If a learning problem has a solution, then Algorithm 4.39 eventually terminates and
computes a correct solution of the learning problem.

Proof Assume there is a solution C (which is an ALC concept) of a learning problem.
By the weak completeness of ρcl↓ , we know that there is a concept D with D ≡ C and
D ∈ ρ∗↓(>). Because the horizontal expansion factor in Algorithm 4.39 is higher than 0
we will eventually explore D unless another solution is found before. In both cases the
proposition is satisfied. �

Characteristics of the Algorithm

In this section we will summarize the characteristics of the learning algorithm we have
created and describe how it integrates with other research.

First we have shown that the refinement operator ρ↓ is weakly complete. An important
aspect related to weak completeness is the difference in length between the best reachable
concept, i.e. the smallest concept C with C ∈ ρcl∗↓ (>), and the shortest solution. In our
approach the operator ρ↓ uses the negation normal form of ALC concepts. It can reach
any concept in S↓, which contains most of the formulas in negation normal form. In
practice this means that for many learning problems a possible solution of the learning
algorithm is close (with respect to length) to the shortest solution. Of course, it cannot
always find the shortest solution, e.g. if all solutions are equivalent to ¬(A1uA2) then the
algorithm finds the solution ¬A1t¬A2 (which is longer). Other learning algorithms work
on ALC normal form (Esposito et al., 2004), which is a restricted version of negation
normal form (see Section 2.3). In this case the algorithm is more likely to produce a
longer solution. So on the one hand it is desirable not to restrict the structure of concepts
too much, but on the other hand removing such restrictions makes the refinement process
more complex and increases the search space.

Note that our learning algorithm avoids difficulties, which arise in other approaches.
Some bottom-up approaches compute the most specific concept (MSC) (Cohen and
Hirsh, 1994) of the examples or consider approximations of the MSC, since in some
description languages like ALC it need not exist (Brandt et al., 2002). Then least com-
mon subsumers (LCS) (Cohen et al., 1993) of these concepts are computed to generalize
the most specific concepts. However, this usually leads to overly specific concept defini-
tions, which are long and overfit the data. Some approaches use most specific concepts,
but avoid to use least common subsumers (Iannone and Palmisano, 2005). However,

53

4 Refinement Operators for ALC Concepts

they still tend to produce very long solutions. These problems do not occur in our learn-
ing algorithm, since it is a top down approach, which was designed not only to produce
a correct solution, but also to carefully take the length of a solution into account. As
explained above we also avoided to impose too many restrictions on the structure of
concepts.

Another nice feature of the learning algorithm is that it makes use of the subumption
hierarchy of atomic concepts in the knowlege base. Often this allows to ignore large
parts of the search space, e.g. if the concept Male is already overly special then we do
not need to check Man, Father, and Uncle (assuming a meaningful knowledge base with
these concepts is given).

To avoid improper refinement steps we have considered the closure ρcl↓ of ρ↓. We
have also shown how the problem of infinite operators can be handled by not fully
expanding nodes, but just compute the refinements up to a specified length of concepts.
In Proposition 4.26 we have shown that for ρcl↓ this can always be done in finite time.

Further we have shown that meaningful weakly complete operators are usually redun-
dant. For this reason the problem of redundancy was handled by creating a redundancy
eliminating heuristic (instead of trying to define a non-redundant operator). We de-
scribed exactly how the redundancy elimination works. In particular we presented a
polynomial time check for weak equality, which relies on an ordered negation normal
form of ALC concepts.

Related Work

Some links to related work have already been given above in the discussion of the char-
acteristics of the developed learning algorithm. However, we want to make the two main
influences of our research more explicit.

An interesting paper, which is closest to our work, is (Badea and Nienhuys-Cheng,
2000). It suggests a refinement operator for the ALER description logic. They also
investigate some theoretical properties of refinement operators. However, unlike in this
thesis, this is not a full analysis. As we have done with the design of ρ↓, they also favour
the use of a downward refinement operator to enable a top-down search. They use ALER
normal form (see the paper for a detailed description), which is easier to handle than
ALC negation normal form, because ALER is not closed under boolean operations. As
a consequence, they obtain a simpler refinement operator. Although they took a similar
strategy for solving the learning problem, our work is more comprehensive, for instance
we investigate the theoretical properties of refinement operators in more depth, propose
a different way to deal with infinite operators, show how the subsumption hierarchy of
atomic concepts can be used efficiently, and describe how redundancy can be avoided.

The second area of ongoing related work, is the research at the University of Bari
in Italy, described in (Esposito et al., 2004; Iannone and Palmisano, 2005). They take
a different approach for solving the learning problem by using approximated MSCs.
As described above, when we discussed the characteristics of our learning algorithm,
the main problem of their algorithms is that, like other approaches using MSCs, they
tend to produce correct, but often unnecessarily long solutions of learning problems.

54

One problem is that MSCs for the description language ALC and more expressive lan-
guages do not exist and hence can only be approximated. Previous work (Cohen et al.,
1993; Cohen and Hirsh, 1994) in the research area of learning in Description Logics was
mostly focused on approaches using MSCs and LCSs, which face this problem to an
even greater extend than the algorithms developed in Bari. In our approach we also
cannot guarantee that we obtain the shortest possible solution of a learning problem.
However, as described above, the learning algorithm was carefully designed to produce
short solutions. The solution we produce, will be close to the shortest existing solution
in negation normal form. In fact, we can handle this by varying the horizontal expansion
factor in the learning algorithm (see page 52). In their algorithms they also make use of
refinement operators, but do not focus on theoretical properties.

An Example Run

In this section we show an example run of the algorithm for the problem of learning the
concept Father. Let the following knowledge base be given:

Male ≡ ¬Female Male(MARC)
Male(STEPHEN)

hasChild(STEPHEN,MARC) Male(JASON)
hasChild(MARC,ANNA) Male(JOHN)
hasChild(JOHN,MARIA) Female(ANNA)
hasChild(ANNA,JASON) Female(MARIA)

Female(MICHELLE)

The positive examples in this case are STEPHEN, MARC, and JOHN. The negative ex-
amples are JASON, ANNA, MARIA, and MICHELLE. The concept Male u ∃hasChild.> is a
solution, so by Proposition 4.40 the algorithm will solve the learning problem.

Figure 2 shows the search tree in each step of the algorithm. In this case we have
chosen 0.4 as horizontal expansion factor. The role hasChild is abbreviated by h. Male
is abbreviated by Ma, and Female by Fe. The selected fittest node is gray. We do not
show nodes, which were classified as overly special in previous steps. On the left of each
node we see the quality of the concept represented by the node. On the right of the
node is its horizontal expansion. The example is too small to highlight all features of
the learning algorithm, but is sufficient to get a general overview of the workings of the
algorithm.

What we have presented in this section is a deterministic learning algorithm, which
uses a search tree to find a solution of a learning problem. In the next section we will
look at a stochastic approach as an alternative learning algorithm. Both methods have
different properties and their relative performance is likely to be problem specific.

55

4 Refinement Operators for ALC Concepts

Initialisation (minimum horizontal expansion = 0):

-4 > (0)

Step 1 (minimum horizontal expansion = 1):

-4 > (1)

tw ⊥ (1) -1 Ma (1) tw Fe (1)

Step 2 (minimum horizontal expansion = 1):

-4 > (1)

-1 Ma (2)

Step 3 (minimum horizontal expansion = 2):

-4 > (2)

-1 Ma (3)

tw Ma u Fe (3)

tw ¬Ma (2) -1 ¬Fe (2)

Step 4 (minimum horizontal expansion = 2):

-4 > (2)

-1 Ma (4)

tw Ma u ¬Ma (4) -1 Ma u ¬Fe (4)

-1 ¬Fe (2)

Step 5 (minimum horizontal expansion = 2):

-4 > (2)

-1 Ma (5)

-1 Ma u ¬Fe (4) 0 Ma u ∃h.> (5) tw Ma u ∀h.Ma (5) tw Ma u ∀h.Fe (5)

-1 ¬Fe (2)

Figure 2: learning the concept Father (horizontal expansion factor is 0.4)

56

5 Concept Learning and Genetic Programming

In this section we first briefly introduce Evolutionary Programming (EP) and then focus
on Genetic Programming (GP) as a special kind of evolutionary programming. Later we
show how to apply Genetic Programming to the learning problem for Description Logics.
After that we will unite Genetic Programming and refinement operators to improve the
performance of the learner. Finally, interesting extensions like learning from uncertain
data and concept invention are presented.

5.1 Basics of Evolutionary Computing

Genetic Programming is an evolutionary algorithm and more general a Machine Learn-
ing technique. Evolutionary algorithms are inspired by the observation and computer
simulation of biological evolution in the real world. One of the main sources of inspira-
tion is Darwin’s theory of evolution. In nature traits found in parents can be passed to
their offspring. Usually both parents influence the new offspring and additionally mu-
tations can produce new traits. In evolution there is a process called natural selection,
which gives individuals, which are better adapted to their environment, i.e. have a high
fitness, a better chance to survive and produce new offspring.

These concepts in nature are mapped to computers as shown in Table 5. The given
problem, which we want to solve, is seen as an environment in which a population
of individuals evolves. Each individual corresponds a solution of the problem. In every
generation natural selection is used to select the fittest individuals among the population,
which can then reproduce and form a new generation.

From a more technical point of view evolutionary computing is a search algorithm.
It takes a set of possible solutions (the population), chooses some of them (selection),
modifies these using genetic operators and forms a new set of solutions (the next gener-
ation of the population). The aim of the search algorithm is to find a good solution, i.e.
an individual having a high fitness. This is how the algorithm in its general form looks
like:

Algorithm 5.1 (generic evolutionary algorithm)
- create population
- while the termination criterion is not met:

- select a subset of the population based on their fitness
- produce offspring using genetic operators on selected individuals
- create a new population from the old one and the offspring

Of course, this algorithm is very abstract. Many questions are still open: How do we
represent individuals? How do we create a population of individuals? Which termination
criteria exist? What selection methods are used? Which genetic operators can be used

57

5 Concept Learning and Genetic Programming

nature evolutionary computing
individual problem solution
fitness quality of a solution
chromosome encoding of a solution
crossover, mutation genetic search operators
natural selection reuse of good solutions

Table 5: mapping concepts in nature to evolutionary computing

and how do they work? These questions will be answered in the Section 5.2 for the
special case of Genetic Programming.

Before we will briefly give an overview of existing evolutionary computing algorithms
and their distinctive features:

Genetic Algorithms This is a very popular evolutionary algorithm. The solutions of a
problem are usually represented as a fixed length string of numbers (in most cases
binary). It is the predecessor of Genetic Programming.

Genetic Programming Genetic Programming is the evolutionary algorithm which we
focus on in this thesis. In contrast to Genetic Algorithms solutions are represented
as variable length programs. A tree representation is very common, but linear
Genetic Programming is also used.

Evolutionary Programming Evolutionary Programming makes no assumptions on the
structure of the representation of an individuals. An individual could be repre-
sented as a neural network or a finite state machine. Usually operators do not
change the structure of the solution itself, but its numerical parameters. Such
an operator could for instance change the weights of a neural network or state
transitions in a finite state machine.

Evolutionary Strategy Evolutionary Strategies are similar to evolutionary program-
ming. It works on vectors of real numbers as representations of solutions. A
difference between evolutionary strategies and evolutionary programming is that
the latter does not use any kind of recombination between different individuals,
but uses mutation style operators, which only change a single individual. In this
way Evolutionary Strategies can be seen as an evolutionary process on the basis
of individuals and Evolutionary Programming as a process on the basis of species
(different species do not combine).

Learning Classifier Systems Learning Classifier Systems are a combination of Genetic
Algorithms and Reinforcement Learning techniques. They are used for learning
IF-THEN-rules.

All approaches have in common that they are population based and inspired by bi-
ological evolution and natural selection. They mainly differ in the way solutions are
represented. After this general overview we will now deal with the specifics of Genetic
Programming.

58

5.2 Introduction to Genetic Programming

Genetic Programming is one way to automatically solve problems. It is a systematic
method to evolve programs and has been shown to deliver human-competitive machine
intelligence in many applications (Koza et al., 2003).

The distinctive feature of Genetic Programming within the area of Evolutionary Com-
puting is to represent individuals as variable length programs. It is an extension of
Genetic Algorithms, which use fixed length strings (corresponding to the DNA of an in-
dividual). We will introduce Genetic Programming directly without covering the special
case of Genetic Algorithms.

The primary use of Genetic Programming is to automatically find a program for
solving a given task. Programs can have a tree (e.g. LISP) or linear (e.g. impera-
tive languages) structure. Systems for the latter case fall under the category of Linear
Genetic Programming. Although both cases are similar, Linear Genetic Programming
faces different problems (i.e. syntactic correctness). In this thesis only tree based Ge-
netic Programming will be introduced as it is the approach, which we will use to learn
Description Logics.

Tree Representation and Alphabet

We will now look at the tree representation of programs in more detail. Let us assume we
want to construct a GP algorithm for finding a function of two variables approximating
given data i.e. in an interpolation task. Figure 3 shows a tree representation of the
arithmetic expression (2− y) ∗ (3+ (x ∗ 2)), which is a potential solution of our problem.
The actual individual or solution is called the phenotype whereas the encoding of the
solution is the genotype.

*

-

2 y

+

3 *

x 2

Figure 3: simple program in tree structure

The function set is the set of all internal nodes, which can occur in a tree, and the
terminal set is the set of all leaf nodes, which can occur in a tree. The union of both is
called the alphabet.

All elements in the alphabet can be assigned a data type (their return type). In our
examples this would be the natural numbers. An alphabet is said to have the closure

59

5 Concept Learning and Genetic Programming

property if any function symbol can handle as an argument any data type and value
returned by an alphabet symbol. In particular an alphabet has the closure property if all
nodes have the same argument and data type. An alphabet having the closure property
is called closed. We need the closure property, because later on we want to modifiy trees
using genetic operators, e.g. replacing subtrees by other subtrees. Without the closure
property we would need additional methods to make sure that the obtained program is
meaningful. There are approaches to handle different data types in the area of Strongly
Typed Genetic Programming (Montana, 1995). In this approach data types are specified
explicitly and in all modifications of trees it is ensured that no illegal trees (with respect
to data types) are produced.

Example 5.2 (closure property)
The following alphabet is closed:

T = {x, y, T rue, False}, F = {AND,OR,NOT}

For this example to be closed we assume that x and y are boolean variables and all other
symbols have the obvious meaning.

Another closed alphabet is ("−" is subtraction):

T = {x, y, ERC[0, 1]}, F = {∗,+,−}

Note that ERC[0, 1] stands for "ephemeral random constant between 0 and 1". This
means that when creating an individual a random number between 0 and 1 is chosen,
which remains fixed after creation (so when evaluating the tree it is actually a constant).
Here and in the following examples x and y are variables of type integer.

The following alphabet is not closed, because division (/) by zero is not defined:

T = {x, y, 0, 1}, F = {∗,+,−, /}

It can be closed by using a protected division. This involves explicitly defining the
behaviour in case of a division by 0, e.g. return a value of 1 in this case.

Another non-closed alphabet:

T = {x, y}, F = {+,−, sin, log}

It is not closed, because the logarithm is only defined for positive numbers. Again, we
can protect it by e.g. returning 0 if the argument is a negative number. �

Note that although boolean and arithmetical examples are shown here, GP’s are by
no means limited to such tasks. They can also be applied to a variety of other tasks like
robot control, electrical circuit design, neural network construction and many more.

Another property of an alphabet is sufficiency. Sufficiency means that the alphabet
symbols are sufficient to express the solution of a problem.

Example 5.3 (sufficiency)
The alphabet T = {x, y}, F = {AND,OR,NOT} is sufficient to learn any boolean
function of two variables x and y, e.g. XOR.

The alphabet T = {x, 0, 1}, F = {∗,+,−} is not sufficient to learn the function ex,
because ex cannot be expressed (only approximated) using only polynomials. �

60

Note that in many cases it is very complicated or impossible to determine whether or
not an alphabet is sufficient. For some tasks even the choice of the alphabet is difficult.
Including many symbols in the alphabet increases the search space, but not including
certain symbols can greatly degrade performance. It depends on the specific problem,
which alphabet is suitable.

Creating an Initial Population

Before the evolutionary progress of a GP algorithm can start, an initial population has to
be created. There are traditonally three main methods to do this, which we will introduce
briefly. Finally, a slightly modified creation method is presented, we considered useful
for possible future experiments.

The Grow Method The grow method creates one individual at a time. As parameter
it takes the maximum depth d of the tree to be created. If d = 0, the grow method just
returns a terminal symbol. If d > 0, the method randomly selects a symbol from the
alphabet. If this symbol is a terminal, we return it. If it is a function symbol of arity n,
we (recursively) call the grow method with depth parameter d− 1 n-times to generate
all children.

This way a tree of maximum depth d is created. However, it does not necessarily need
to have depth d nor does it have to be a complete tree. (A complete tree is a tree where
all leaf nodes have equal depth.)

The Full Method The full method works like the grow method, but we just gener-
ate function symbols until the maximum depth d is reached, when we will generate a
terminal. This method creates complete trees.

Ramped-Half-and-Half The ramped-half-and-half method is a combination of the
grow and full method. It is very popular, because it increases the variation in the
structure of the generated trees. Again, a maximum depth parameter d is used. The
population, which we want to generate, is divided in d − 1 parts. In the first part all
trees have a maximum depth of 2. Half of them are generated by the grow and the other
half by the full method. In the second part the maximum depth is 3, in the third part
the maximum depth is 4 etc. In part d − 1 the maximum depth is d. This way it is
ensured that there is a variety of different tree depths of complete as well as (possibly)
incomplete trees within the population.

Function-Based-Half-and-Half This is a more flexible extension of the ramped-half-
and-half method. (We do not know if it is already mentioned in literature.) A disad-
vantage of the ramped-half-and-half method is that it generates the same number of
individuals for each depth between 2 and the maximum depth d. However, the number
of different trees increases (exponentially) with increasing tree depth. It seems to be

61

5 Concept Learning and Genetic Programming

sensible to generate more trees with higher tree depths. This is done by the function-
based-half-and-half method. It generates one tree at a time. First it decides wether
to use the full or the grow tree method (both with equal probability). Then it decides
which maximum tree depth to use. To do this one has to specify a function f : D → R+

with D = {2 . . . d} (the set of all possible maximum tree depths). Then a tree with
maximum depth i is generated with probability prob(i):

prob(i) =
f(i)
d∑

i=2

f(i)

The sum of all possible tree depths obviously adds up to 1. The ramped-half-and-half
method can be approximated by using f(i) = 1. A useful function could be f(i) = i or
even f(i) = i2 to generate more trees with high maximum depth.

Genetic Operators

The creation of the initial population is already a search for a possible solution, but it is
blind and random. For complex problems it is unlikely that any reasonable solution will
be produced in the initialisation phase. However, some of the individuals may contain
parts of a useful solution. It is the role of the evolutionary process (selection and genetic
operators) to find and combine the pieces to a good solution. In this section we will give
an overview over the operators used in GP. All operators use one or two individuals and
modify them. The main operators are reproduction and crossover. Mutation can be used
as a secondary operator and we will also briefly mention other operators, which can be
useful. Last bot not least it should be mentioned that one can also define own operators
for a specific problem, which is a way of adding knowledge to the search process. We will
later do this to incorporate refinement operators in the Genetic Programming framework.

Reproduction Reproduction is a very simple operator. It selects one individual and
leaves it unchanged. The effect is that the individual is copied over in the next genera-
tion. The selection function in a GP is designed to select fitter individuals with a higher
probability, so reproduction is one way to ensure that fitter individuals survive.

Crossover The crossover operator selects two individuals (parents) and produces two
offspring. In both parents one node is randomly selected. These are the crossover
points. The subtrees rooted by the two points are then swapped, which produces two
new individuals. The next example illustrates this process.

Example 5.4 (crossover)
Parents (crossover points highlighted):

62

+

1 x

*

2 *

x 1

Offspring:

+

*

x 1

x

*

2 1

The closure property ensures that we obtain legal trees. Note that if both crossover
points are roots of the parent trees then crossover is equivalent to reproduction. Another
interesting observation is that identical parents are likely to produce different offspring.
This means that even in a population with many identical individuals we can still produce
new solutions. (Remark: This property does not hold for Genetic Algorithms, where
the genotypes are strings of numbers.)

A technical issue is that crossover can produce trees of considerable depth. This is the
case when one crossover point is close to the root and the other one has a high depth.
For this reason a depth limit or a depth penalty can be used. Crossover is the main
operator in Genetic Programming. It is typically used with a probability of around 85
to 90 percent. However, we will later see that the probability of the use of an operator
is higly problem specific. In some Genetic Programming systems crossover is not used
at all.

Mutation Mutation selects one individual from the population and randomly chooses
a node in the corresponding tree (the mutation point). The subtree rooted by this
mutation point is removed and replaced by a randomly generated subtree. If this subtree
consists only of a single node (a terminal) this is called a point mutation. Usually to
generate the subtree the grow method is used with the same maximum depth like in the
initialisation. Mutation is used sparingly. Typically its probability is around 1 percent.

Example 5.5 (mutation)
The selected individual is shown on the left and the resulting individual after mutation
on the right (mutation point highlighted):

63

5 Concept Learning and Genetic Programming

+

1 x

+

*

x 1

x

Permutation Permutation produces a random change in the order of the arguments
of a function. It selects one individual and randomly chooses a non-terminal node in the
corresponding tree (the permutation point). After that a random permutation of the
function arguments is generated and the children of the permutation point are ordered
according to this permutation.

Example 5.6 (permutation)
The selected individual is shown on the left and the resulting individual after permuta-
tion on the right (permutation point highlighted):

-

1 x

-

x 1

Permutation only makes sense if the order of the arguments is relevant for the selected
function. Therefore one may restrict permutation to select only such functions, e.g. "-"
can be selected, but not "+".

Editing A GP tree can be highly redundant, because the GP does not have any knowl-
edge about the structure it is working on. Naturally one idea is to remove redundancies
in the tree representation. This is often done by recursively applying simplification rules
to a tree, which are problem specific. As a simple example True AND True can be
replaced by True and x + 0 can be replaced by x.

Example 5.7 (editing)
The selected individual is shown on the left and the edited individual on the right:

*

1 -

x 0

x

Although editing seems to be a useful genetic operator its effects are unclear. Extra-
neous parts of the tree, which when removed do not alter the result, are called introns.

64

They emerge when variable length structures are modified. In early generations of a
GP run introns make up a small part of the code, whereas towards the end of a run
they tend to make up almost all of the code (if one does nothing to prevent introns).
This process is called bloat. At first glance it seems to be beneficial to remove introns
completely, however, they can be useful, because they increase the effective fitness of an
individual. Effective fitness is the likelihood that an individual’s descendants survive. It
is determined by the fitness of the individual (because selection prefers fitter individuals)
and how fit the offspring is likely to be. Introns can shield a tree from the destructive
effects of crossover, so they increase the surivivability of the offspring and therefore the
effective fitness. Of course, introns can also be problematic. If introns make up almost
all of the code, then crossover does not efficiently produce new solutions (it just swaps
introns). Too many introns can also negatively affect runtime. A common means to
avoid this is to introduce a fitness penalty for the size of the generated tree. This way
individuals without introns are slightly fitter.

Selection

Selection methods in GP algorithms are used to simulate natural selection in nature,
sometimes also refered to as survival of the fittest. Technically this means that individ-
uals with high fitness are selected with higher probability compared to individuals with
low fitness.

How do we actually measure fitness? Of course, this is highly problem dependant, but
most approaches have in common that the fitness of an individual is decoded as a single
number. A higher number denotes higher fitness of the individual. Although the fitness
value is a single number the measuring process can be quite complex. It could involve
letting a robot act on a problem for some time or to test the performance of a neural
network. It can also be as easy as the evaluation of a simple formula.

In many cases one has to encode multiple objectives into a single fitness function. For
instance if we want to find a function approximating a given data set, one criterion is
usually how close the function is to the given data. Another criterion is the length of
the function we find. A short function usually generalizes better to unseen data. In such
cases the fitness function can also be used to bias the search process (correctness vs. low
complexity). The choice of the fitness function can greatly influence the result of a GP
algorithm.

Assuming an appropriate fitness function a single fitness value can be assigned to each
individual. Usually one individual is selected at a time. A selection can be viewed as
a probability distribution of the individuals in a population and a population can be
viewed as a list of fitness values. There are a variety of different selection methods and
only some of these will be described here.

Fitness Proportionate Selection (FPS) FPS is a popular selection method. Its
foundation is that the probability of an individual being selected is proportional to its
fitness. If we denote fi as the fitness of individual i and s =

∑n
k=1 fk as the sum of

all fitness values in a population of n individuals, then the probability of individual i

65

5 Concept Learning and Genetic Programming

being selected is fi

s
, denoted by prob(fi). There are several algorithms for computing

this efficiently, which will not be described here.
FPS is a very straightforward way to implement natural selection. In practical appli-

cations it has been shown that it can be used to quickly converge to a good solution. A
drawback of FPS is stagnation. At the end of a GP run the population often consists
mostly of individuals with similar fitness and some low fitness individuals. In this case
all individuals have almost the same probability of being selected and there is virtually
no selective pressure. This can be avoided by using a fitness scaling technique. One
such scaling technique is sigma truncation. It replaces the fitness function f by f ′ with
f ′ = max

(
0, f − f + cσ

)
where f = s

N
is the average fitness within the population, σ is

the standard deviation of the population and c is a factor (usually 1 ≤ c ≤ 3). Whether
or not sigma truncation is necessary depends on the fitness measure.

Example 5.8 (sigma truncation)
Assume we have 5 individuals in our population and the following fitness list:

[123, 121, 122, 123, 108]

We can compute the following values:

N = 5, s = 597, f = 119.4, σ =

√
√
√
√ 1

N

N∑

i=1

(fi − f)2 = 5.748 . . .

With standard FPS we get this probability list:

[20.6%, 20.3%, 20.4%, 20.6%, 18, 1%]

Using sigma-truncation with c = 2 we get the following list for f ′:

[15.1, 13.1, 14.1, 15.1, 0.1]

This results in this probability list:

[26.2%, 22.8%, 24.5%, 26.2%, 0.2%]

The variance in the probability list has been increased, so the GP actually distinguishes
between individuals of similar fitness (here: 121-123). This shows that sigma-truncation
can increase selective pressure. �

Rank Selection Another way to solve the stagnation problem is rank selection. In this
method individuals are sorted by their fitness, i.e. each individual gets a rank within the
population. The probability of being selected in rank selection only depends on the rank
of the individual and not directly on its fitness value. The probability is then a function
of the rank (this can be any sensible function). Rank selection usually converges slower
than FPS, because even less fit individuals can be selected. Note that for rank selection
a fitness function is not strictly necessary, but one just needs an ordering on individuals.
It is also not necessary for the fitness values to be positive.

66

Tournament Selection Tournament selection is similar to rank selection, but does
not require the individuals to be sorted by their fitness. It takes m (m ≥ 2) individuals
from the population and selects the best one (all others are discarded). Tournament
selection is more naturally inspired than rank selection.

In all the selection methods one can use a flag called elitism. It means that the best
individual always surives, i.e. it is automatically passed on to the next generation.

Termination

An issue we have not yet discussed is the termination of the GP algorithm. In some
cases it is possible to detect whether or not an optimal solution has been found. In
such cases one can simply terminate after such an individual has been found. Often an
optimal individual does not exist (or it is unknown whether it exists). In these cases
one can terminate if the fitness of the best individual has exceeded a certain threshold,
which means that it is sufficiently close to an optimal solution. Another more complex
termination criterion is to verify whether the genetic diversity of the population is high
enough to produce better solutions. If all individuals are equal or very similar this usually
means that the GP has converged and is unlikely to produce new better solutions. In a
lot of applications a much simpler criterion for termination is used: a fixed number of
generations or a manual abort by the user.

We defined another simple method to test for convergence. (We did not find an
explicit mention of it in the literature, but it is straightforward.) The user can specify
a number of post convergence generations. If the GP algorithm does not find a fitter
individual within this number of generations, it stops. This is a very natural targeted
criterion, because the task of the GP algorithm is to find the fittest individual possible.
If it does not find any better solution for a sufficiently large number of generations, it
has converged with a high probability.

Overall Algorithm

We have introduced all necessary ingredients of a GP algorithm and now want to show
how to combine them.

We can distinguish two types of GP algorithms: generational and steady-state. They
are, of course, both specialisations of the general evolutionary computing algorithm
(Algorithm 5.1). In a generational algorithm the new generation completely replaces
the old generation, i.e. the new generation is build completely from individuals, which
have been produced by genetic operators. In contrast in a steady-state algorithm only a
subset of the old generation is replaced by the offspring. Usually the weakest individuals
are replaced, while the fitter individuals survive. (The exact percentage of individuals
which have to be replaced is a parameter of the GP algorithm.)

There are four steps to define a standard GP problem:

1. Define the alphabet.

67

5 Concept Learning and Genetic Programming

2. Define the fitness measure.

3. Choose a termination criterion.

4. Fix all parameters of the GP.

Parameters of a GP algorithm include population size, algorithm type, initialisation
method, selection method, and the probabilities of the genetic operators used. The
population size allows the GP to be adjusted to the computational resources available.
A higher population size usually means that the probability of finding a good solution
is higher.

Algorithm 5.9 (Genetic Programming)
- create initial population (section 5.2)
- while the termination criterion (section 5.2) is not met:

- evaluate the fitness of all individuals in the population
- while the number of individuals to generate is not reached:

- choose a genetic operator (section 5.2)
- select (section 5.2) the appropriate numbers of individuals

for this operator and generate new individuals
- copy these individuals into the new population

This algorithm also applies to other areas of Evolutionary Computing. This distinctive
feature of Genetic Programming is the use of variable length programs to represent
possible solutions.

5.3 Application to Description Logics

In this thesis we are concerned with learning ALC concepts. So far, we have shown how
Genetic Programming works and we now want to apply it to the learning problem for
Description Logics. The way we do it is natural and straightforward.

We can represent each ALC concept as a tree. There are the following types of nodes:
concept names, >, ⊥, t, u, ¬, ∀r, and ∃r. The leaf nodes are, of course, the concept
names, >, and ⊥. All other node types are function symbols of arity one or two.

Example 5.10 (representing ALC concepts as trees)
The ALC concept Male t ∃hasChild.Female can be represented as the following tree:

t

Male ∃hasChild

Female

�

68

More formally the alphabet we use is T = NC ∪ {>,⊥} and F = {t,u,¬} ∪ {∀r |
r ∈ NR} ∪ {∃r | r ∈ NR}. An important question we have to ask is whether this
way of representing ALC concepts satisfies the closure property. Indeed it is satisfied,
because the way trees are build exactly corresponds to the way ALC concepts are defined
recursively. This means that all nodes are of type concept, so closure is satisfied. This
ensures that crossover and mutation cannot construct illegal trees.

Please note that the tree representation we have shown is just one way to encode
ALC concepts. Another possibility would be to consider u and t as nodes of arbitrary
arity (≥ 2), e.g. a conjunction Male t ∃hasChild.Female t ∀hasChild.Male can be
represented as:

t

Male ∃hasChild

Female

∀hasChild

Male

When using Genetic Programming we could, of course, also learn in more expressive
description logics than ALC , which allow the use of role constructors in concepts. The
following remark explains how we could learn in such logics.

Remark 5.11 (role constructors)
Some description languages (for instance ALCIreg) also allow role constructors to appear
within concepts. If such description languages should be learned by Genetic Program-
ming the closure property no longer holds, because we now have two different node
types: concepts and roles. (Note than in ALC we also have roles, but they are hidden
within the ∀r and ∃r nodes.) We can still use Genetic Programming by now extending it
to strongly typed Genetic Programming (STGP). In STGP we have to explicitly assign
argument- and return-types of each operator (if we allow e.g. disjunction for concepts
and roles, then this would be two separate operators). Additionally we have to assign
a type to our learning task: Either concept for concept learning or role for learning
roles. When generating trees we have to take care that we only generate valid trees,
which respect the type restrictions (this is not difficult). Additionally all used genetic
operators have to be modified to be type aware. For crossover this means that we still
randomly select a node in the first parent, but we have to select a node of the same type
in the second parent. For mutation this means that the node at the mutation point has
to be replaced by a tree of the same type. This brief description shows that Genetic
Programming can be applied to various description languages. �

Fitness Measurement

Apart from being able to represent an ALC concept we also need to define a fitness
measure. Of course, this measurement is derived from the background knowledge and the

69

5 Concept Learning and Genetic Programming

positive and negative examples. The fitness measurement may take several things into
account (efficiency of measurement, correct classification, avoiding overfitting, learning
from uncertain information etc.). We introduce some shortcuts to be able to define the
fitness function in a more compact way.

Definition 5.12 (covered examples)
Let Target be the target concept, K a knowledge base, and C an arbitrary ALC concept.
The set of positive examples covered by C, denoted by posK(C), is defined as:

posK(C) = {Target(a) | a ∈ NI , K ∪ {Target ≡ C} |= Target(a)} ∩ E+

Analogously the set of negative examples covered by C, denoty by negK(C), is defined
as:

negK(C) = {Target(a) | a ∈ NI , K ∪ {Target ≡ C} 6|= Target(a)} ∩ E−
�

Of course, the fitness measurement should give credit to covered positive examples
and penalize covered negative examples. In addition to these classification criteria it
is also useful to bias the GP algorithm towards shorter solutions. A possible fitness
functions is:

fK(C) = |posK(C)| − |negK(C)| −
1

a
|C| (a > 0)

a is a parameter, which specifies the importance of simplicity compared to correct
classification. (Intuitively a is the increase in length of a possible solution which justifies
that one more example is not classified correctly.) The parameter a is also used to handle
noise. If we know that the data is noisy, then a should have a low value. In this way
GP algorithms can handle noise easily.

Often a weighted version of a fitness function is more appropriate to be more inde-
pendant of the number of examples given:

fK(C) =
|posK(C)|

|E+|
−

|negK(C)|

|E−|
−

1

b
|C| (b > 0)

For the approaches we consider in this section both fitness functions are suitable. We
will later slightly extend the fitness function to learn from uncertain data.

Being able to represent solutions and measuring their fitness is already sufficient to
apply Genetic Programming to a problem. However, we may also ask if it is a good idea
to use it. We present some advantages and problems of the introduced approach.

Advantages of Genetic Programming

One of the reasons why GP is tried as a method to learn in Description Logics is its
flexibility. As explained above, it can be used to learn in several description languages,
because it is a very general learning method. Genetic Programming has shown very
promising results in practice (Koza et al., 2003), so we considered it worh investigating.

70

GP is especially suited in situations, where it is difficult to directly obtain good solutions
and approximate solutions are acceptable (Koza and Poli, 2003). An advantage of GP
in general is that it can make use of computational resources, i.e. if more resources
(time and memory) exist its parameters can be changed to increase the probability of
finding good solutions. This may seem obvious, but in fact this does not hold for all
(deterministic) solution methods. Genetic Programming also allows for a variety of
extensions and is able to handle noise and can learn from uncertain and inconsistent
examples. A GP algorithm is also highly configurable (initialisation method, genetic
operators and their probabilities, population size, selection method etc.). This allows to
encode knowledge in a GP algorithm and biasing its search process.

Problems of the Standard Approach

With the standard approach we have introduced we can solve the learning problem
using Genetic Programming. However, despite the advantages of GP, there are also
drawbacks. One problem is that the crossover operator is too destructive. For GP to
work in a meaningful way we need to have the property that applying genetic operators
to individuals having a high fitness is likely to produce offspring with a high fitness.
This is the reason why the selection methods we have shown work better than merely
selecting individuals at random. For crossover on ALC concepts it is problematic that
small changes in a concept can drastically change its meaning. Similar problems arise
when using GP in ILP and indeed a lot of systems use non-standard operators (Divina,
2006).

Another problem of the standard approach is that we do not use all knowledge we have.
An essential insight in Machine Learning (Mitchell, 1997) is that the approaches, which
use most knowledge about the learning problem they want to solve usually perform best.
The standard GP algorithm does not exploit the subsumption hierarchy of concepts.
In Section 4 the main goal of the learning algorithm we created was to traverse the
subumption hierarchy of concepts in an efficient way by using refinement operators.
Using subsumption as ordering over concepts can increase the performance of a learning
algorithm significantly. Thus a natural idea is to enhance the standard GP algorithm
by operators, which exploit the subsumption order.

Usage of Evolutionary Techniques in Inductive Logic Programming

To the best of our knowledge there has been no attempt to apply Genetic Programming
to the learning problem in Description Logics. However, there have been several ap-
proaches to use evolutionary techniques in Inductive Logic Programming. We will give
some pointers to such approaches since they may be of interest for readers, who want
to have a look at the role of evolutionary approaches in logical induction in general.
We will not explain them, but instead refer to a recent article (Divina, 2006), which
describes and compares most of the systems, which are mentioned below. An experi-
mental comparision of evolutionary and standard approaches for learning recursive list
functions can be found in (Tang et al., 1998).

71

5 Concept Learning and Genetic Programming

The ILP systems, which use evolutionary algorithms, usually use variants of Genetic
Algorithms or Genetic Programming. The target is to learn a set of clauses for a target
predicate. EVIL_1 (Reiser and Riddle, 1999) is a system based on Progol (Muggle-
ton, 1995b, 1996), where an indivual represents a set of clauses (called the Pittsburgh
approach) and crossover operators are used. REGAL (Neri and Saitta, 1995; Giordana
and Neri, 1996) is a system, which consists of a network of genetic nodes to achieve
high parallelism. Each individual encodes a partial solution (called the Michigan ap-
proach). It uses classic mutation and several crossover operators. GNET is a descendant
of REGAL. It also uses a network of genetic nodes, but takes a co-evolutionary approach
(Anglano et al., 1998), i.e. two algorithms are used to converge to a solution. DOGMA
(Hekanaho, 1996, 1998) is a system, which uses a combination of the Pittsburgh and
Michigan approach on different levels of abstraction. All these systems use a simple bit
string representation. This is possible by requiring a fixed template, which the solution
must fit in. We did not consider this approach when learning in Description Logics due
to its restricted flexibility. The systems mentioned in the sequel use a high level represen-
tation of individuals. SIA01 (Augier et al., 1995) is a bottom-up approach, which starts
with a positive example as seed and grows a population until it reaches a bound (so the
population size is not fixed as in the standard approach). ECL (Divina and Marchiori,
2002) is a system using only mutation style operators for finding a solution. In contrast
GLPS (Wong and Leung, 1995) uses only crossover style operators and a tree (more
exactly forest) representation of individuals. In (Tamaddoni-Nezhad and Muggleton,
2000) a binary representation of clauses is introduced, which is shown to be processable
by genetic operators in a meaningful way. (Tamaddoni-Nezhad and Muggleton, 2003)
extends this framework by a fast fitness evaluation algorithm.

5.4 Refinement Operators in Genetic Programming

Transforming Refinement Operators to Genetic Refinement Operators

As argued before it is useful to modify the standard GP approach to make learning
more efficient. The idea we propose is to combine refinement operators and Genetic
Programming. A disadvantage of Genetic Programming is that it does not make use of
the subsumption hierarchy of concepts, which is exactly what refinement operators are
designed to do (see Section 4). By combining both, we hope to increase the performance
of the learner (compared to the standard GP approach). We show how refinement
operators and Genetic Programming can be combined in general and then present a
concrete refinement operator.

Some steps need to be done in order to be able to use refinement operators as genetic
operators. The first problem is that a refinement operator is a mapping from one concept
to an arbitrary number of concepts. Naturally the idea is to select one of the possible
refinements. In order to be able to do this efficiently we assume that the refinement
operators we are looking at are finite. Then we can randomly select a refinement. Every
refinement can have the same probability of being selected. Of course, it would be
possible to bias the probabilities of refinements being selected towards smaller concepts.

72

However, the bias for smaller concepts is already incorporated in the fitness function,
so a uniform distribution of refinements should perform reasonable. Whether other
distributions are more suitable depends on the specific refinement operator which is
used.

The second problem when using refinement operators in Genetic Programming is that
a concrete refinement operator only performs either specialisation or generalisation, but
not both. However, in Genetic Programming we are likely to find too strong as well as
too weak concepts, so there is a need for upward and downward refinement. A simple
approach is to use two genetic operators: an adapted upward and an adapted downward
refinement operator.

A better way to solve the problem is to use one genetic operator, which stochastically
chooses whether downward or upward refinement is used. This allows to adjust the
probabilites of upward or downward refinement being selected to the classification of
the concept we are looking at. For instance consider an overly general concept, i.e. it
covers all positive examples, but does also cover some negative examples. In this case
we always want to specialize, so the probability for using downward refinement should
be 1. In the opposite case for an overly specific concept, i.e. none of the negatives is
covered, but some positives, the probability of downward refinement should be 0.

For all other concepts, which are neither overly general nor overly specific, we need
to assign appropriate probabilites different from 0 and 1. How do we assign appropriate
probabilites? We came up with some points, which seemed reasonable to us:

1. The probability of downward refinement, denoted by p↓, should depend on the
percentage of covered negative examples. Using α as variable factor we get:

p↓(K, C) = α ·
|negK(C)|

|E−|

In particular for |negK(C)| = 0 (consistent concept) we get p↓(K, C) = 0.

2. The probability of upward refinement, denoted by p↑, should depend on 1 minus
the percentage of covered positive examples. As factor we will use the same factor
as in the first case, so we get:

p↑(K, C) = α ·

(

1 −
|posK(C)|

|E+|

)

In particular for |posK(C)| = |E+| (complete concept) we get p↑(K, C) = 0.

3. For any concept p↓(K, C) + p↑(K, C) = 1.

From these points we can derive the following formulae for the probablities of upward
and downward refinement:

p↓(K, C) =

|negK(C)|
|E−|

1 + |negK(C)|
|E−|

− |posK(C)|
|E+|

73

5 Concept Learning and Genetic Programming

p↑(K, C) =
1 − |posK(C)|

|E+|

1 + |negK(C)|
|E−|

− |posK(C)|
|E+|

Note that the return value of the formula is undefined, because of division by zero, for
cases in which the given concept C is complete and consistent. However, in this case C
is a solution for the learning problem and we can stop the algorithm (it is also possible
to continue the algorithm by just randomly selecting whether upward or downward
refinement is used).

This way we have given a possible solution to both problems: transforming the re-
finement operator to a mapping from a concept to exactly one concept and managing
specialisation and generalisation. Overall for a given finite upward refinement operator
ϕ↑ and a finite downward refinement operator ϕ↓ we can construct a genetic operator ϕ,
which is defined as follows (rand selects an element of a given set uniformly at random):

ϕ(C) =

rand(ϕ↓(C)) with probability
|negK(C)|

|E−|

1+
|negK(C)|

|E−|
−

|posK(C)|

|E+|

rand(ϕ↑(C)) with probability
1−

|posK(C)|

|E+|

1+
|negK(C)|

|E−|
−

|posK(C)|

|E+|

(4)

Note, that we need two refinement operators to construct one genetic refinement
operator. The most straightforward way to do this is to define one of the refinement
operators (for upward or downward refinement) and design the other operator in a dual
fashion.

In the sequel we will call operators like ϕ, which are created from upward and down-
ward refinement operators in this fashion, genetic refinement operators.

A Genetic Refinement Operator

So far, we have shown how to transform a finite refinement operator to a genetic refine-
ment operator. Now we want to define a specific refinement operator, which is suitable
for learning in the GP framework.

Note that the operator ρ↓ presented in Section 4.3 cannot be used, because it is finite.
We will design a finite (and complete) operator. However, by Proposition 4.10 such an
operator has to be improper.

Another reason, why ρ↓ is not suitable, is that it cannot drop elements of a disjunction,
e.g. it is not possible to reach A1 from A1 t A2 (see also the discussion of Proposition
4.23 on page 39). This is no problem for the top down search ρ↓ was designed for, e.g. we
can reach A1 directly from >. However, for the Genetic Programming approach, which
does not use a search tree, it is better if we allow to drop elements of a disjunction.

We will first define a downward refinement operator for the GP framework.

74

ϕ↓(C) =

{C1 u · · · u Ci−1 uD u Ci+1 u · · · u Cn if C = C1 u · · · u Cn(n ≥ 2)

| D ∈ ϕ↓(Ci), 1 ≤ i ≤ n}

∪ {C1 u · · · u Cn u >}

{C1 t · · · t Ci−1 tD t Ci+1 t · · · t Cn if C = C1 t · · · t Cn(n ≥ 2)

| D ∈ ϕ↓(Ci), 1 ≤ i ≤ n}

∪ {C1 t · · · t Ci−1 t Ci+1 t · · · t Cn

| 1 ≤ i ≤ n}

∪ {C u >}

{A′ | A′
@T A,A′ ∈ NC ∪ {⊥}, if C = A (A ∈ NC)

there is no A′′ ∈ NC with A′
@T A′′

@T A}

∪ {C u >}

{¬A′ | A @T A′, A′ ∈ NC , if C = ¬A (A ∈ NC)

there is no A′′ ∈ NC with A @T A′′
@T A′}

∪ {C u >}

{∃r.E | E ∈ ϕ↓(D)} ∪ {C u >} if C = ∃r.D

{∀r.E | E ∈ ϕ↓(D)} ∪ {C u >} if C = ∀r.D

∅ if C = ⊥

{∀r.> | r ∈ NR} ∪ {∃r.> | r ∈ NR} if C = >

∪ {> t >}

∪ {A | A ∈ NC ,

there is no A′ ∈ NC with A @T A′
@T >}

∪ {¬A | A ∈ NC ,

there is no A′ ∈ NC with ⊥ @T A′
@T A}

Proposition 5.13 (ALC refinement operator ϕ↓)
ϕ↓ is an ALC downward refinement operator.

Proof The proof is similar to the proof of Proposition 4.19 (page 34). We have to
show that D ∈ ϕ↓(C) implies D vT C. Again, we can do this by structural induction
over ALC concepts in negation normal form. We can ignore refinements of the form
C C u >, because obviously C vT C u > (C ≡T C u >).

• C = ⊥: D ∈ ϕ↓(C) is impossible, because ϕ↓(⊥) = ∅.

• C = >: D vT C is trivially true for each concept D (and hence also for all
refinements).

75

5 Concept Learning and Genetic Programming

• C = A (A ∈ NC): D ∈ ϕ↓(C) implies that D is also an atomic concept or the
bottom concept and D @ C.

• C = ¬A: D ∈ ϕ↓(C) implies that D is of the form ¬A′ with A @T A′. A @T A′

implies ¬A′
@T ¬A by the semantics of negation.

• C = ∃r.C ′: D ∈ ϕ↓(C) implies that D is of the form ∃r.D′. We have D′ vT C ′ by
induction. For existential restrictions ∃r.E vT ∃r.E ′ if E @T E ′ holds in general
(Badea and Nienhuys-Cheng, 2000). Thus we also have ∃r.D′ v ∃r.C ′.

• C = ∀r.C ′: This case is analogous to the previous one. For universal restrictions
∀r.E vT ∀r.E ′ if E @T E ′ holds in general (Badea and Nienhuys-Cheng, 2000).

• C = C1u· · ·uCn: In this case one element of the conjunction is refined, so D vT C
follows by induction.

• C = C1 t · · · t Cn: One possible refinement is to apply ϕ↓ to one element of
the disjunction, so D vT C follows by induction. Another possible refinement
is to drop an element of the disjunction, when D vT C obviously also holds
(dropping an element of the disjunction cannot generalise a concept in negation
normal form). �

Proposition 5.14 (completeness of ϕ↓)
ϕ↓ is complete.

Proof We will first show weak completeness of ϕ↓. We do this by structural induction
over ALC concepts in negation normal form, i.e. we show that every concept in negation
normal form can be reached by ϕ↓ from >.

• Induction Base:

– >: > can trivially be reached from >.

– ⊥: > A1 . . . An ⊥ (descending the subsumption hierarchy)

– A ∈ NC : > A1 . . . An A (descending the subsumption hierarchy
until A is reached)

– ¬A(A ∈ NC): > ¬A1 . . . ¬An ¬A (ascending the subsumption
hierarchy of atomic concepts within the scope of a negation symbol)

• Induction Step:

– ∃r.C: > ∃r.> ∗ ∃r.C (last step is possible by induction)

– ∀r.C: > ∀r.> ∗ ∀r.C (last step is possible by induction)

76

– C1u· · ·uCn: > ∗ C1 (by induction) C1u> ∗ C1uC2
∗ C1u· · ·uCn

– C1 t · · · t Cn: > > t > ∗ C1 t > (by induction) C1 t > t > ∗

C1 t C2 t > ∗ C1 t · · · t Cn

We have shown that ϕ↓ is weakly complete. The completeness can be derived from weak
completeness by similar arguments as in the proof of Proposition 4.23 (page 39): If we
have two ALC concepts C and D in negation normal form with C vT D, then we can
construct a concept E = D u C for which we have E ≡T C. E can be reached by the
following refinement chain from D:

D D u > ∗ D u C (by weak completeness of ϕ↓)

Thus we have shown that we can reach a concept equivalent to C, which proves the
completeness of ϕ↓. �

Proposition 5.15 (finiteness of ϕ↓)
ϕ↓ is finite.

Proof Some rules in the definition of ϕ↓ apply ϕ↓ recursively to inner structures, e.g.
specialising an element of a conjunction. Overall there are just five transformations
which ϕ↓ applies to a concept (in brackets we write why this results in only finitely
many possible refinements):

• dropping an element of a disjunction (there are only finitely many such elements)

• transforming a subconcept C to C u> (there are only finitely many subconcepts)

• specialising an atomic concept by an atomic concept (or bottom) further down
in the subsumption hierarchy (there are only finitely many occurences of atomic
concepts in a concept)

• specialising a negated atomic concept (see previous case)

• transforming a > symbol (there are only finitely many occurences of the > symbol
in a concept and the set of possible refinements of > is finite)

Hence ϕ↓ is finite. �

We have shown that ϕ↓ is complete and finite, which makes it suitable to be used in a
genetic refinement operator (we will define the dual upward operator below). Avoiding
redundancy is not very important within the GP framework since we only follow one
specific refinement chain anyway. (Also note that due to Proposition 4.12 redundancy
cannot be avoided in a complete ALC refinement operator even if we would consider
this a desired goal.) Properness is more interesting than non-redundancy. However, by

77

5 Concept Learning and Genetic Programming

Proposition 4.10 it is impossible to obtain properness without loosing finiteness (which
we stated as a prerequisite for transforming the refinement into a genetic refinement
operator). In particular note that the closure construct introduced for ρ↓ in Section 4
would lead to an infinite operator.

This is the dual upward refinement operator, which we need to get a genetic refinement
operator:

ϕ↑(C) =

{C1 u · · · u Ci−1 uD u Ci+1 u · · · u Cn if C = C1 u · · · u Cn(n ≥ 2)

| D ∈ ϕ↑(Ci), 1 ≤ i ≤ n}

∪ {C1 u · · · u Ci−1 u Ci+1 u · · · u Cn

| 1 ≤ i ≤ n}

∪ {C t ⊥}

{C1 t · · · t Ci−1 tD t Ci+1 t · · · t Cn if C = C1 t · · · t Cn(n ≥ 2)

| D ∈ ϕ↑(Ci), 1 ≤ i ≤ n}

∪ {C t ⊥}

{A′ | A @T A′, A′ ∈ NC , if C = A (A ∈ NC)

there is no A′′ ∈ NC with A @T A′′
@T A′}

∪ {C t ⊥}

{¬A′ | A′
@T A,A′ ∈ NC ∪ {>}, if C = ¬A (A ∈ NC)

there is no A′′ ∈ NC with A′
@T A′′

@T A}

∪ {C t ⊥}

{∃r.E | E ∈ ϕ↑(D)} ∪ {C t ⊥} if C = ∃r.D

{∀r.E | E ∈ ϕ↑(D)} ∪ {C t ⊥} if C = ∀r.D

∅ if C = >

{∀r.⊥ | r ∈ NR} ∪ {∃r.⊥ | r ∈ NR} if C = ⊥

∪ {⊥ u ⊥}

∪ {A | A ∈ NC ,

there is no A′ ∈ NC with ⊥ @T A′
@T A}

∪ {¬A | A ∈ NC ,

there is no A′ ∈ NC with A @T A′
@T >}

Proposition 5.16 (properties of ϕ↑)
ϕ↑ is a complete and finite ALC upward refinement operator.

We omit the proof of Proposition 5.16 since it is very similar to what we have already
shown in Propositions 5.13, 5.14, 5.15. ϕ↑ is constructed in the same way like ϕ↓ and
has the same the properties.

78

From ϕ↓ and ϕ↑ we can construct a genetic refinement operator as described in Equa-
tion 4 (page 74). This new operator is ready to be used within the GP framework and
combines classical induction with evolutionary approaches. Below we will look at the
features of this approach and compare it with classical induction and standard Genetic
Programming.

Characteristics of the Introduced Approach

In Section 4 we analysed ALC refinement operators and showed how they can be usefully
combined with a heuristic to form a full learning algorithm. In this section we also used
refinement operators, but combined them with Genetic Programming. What are the
differences between both methods? In the heuristic search we have a search tree, whereas
in the GP case there is a fixed number of individuals. In this way we can think of the GP
search as a set of individuals moving in the search space. Their movement is stochastic,
but not completely random (by the design of the genetic refinement operator). We can
see that the two approaches are very different with respect to space complexity. The GP
approach needs constant space if we use the number of stored concepts as a measure. In
contrast the search tree keeps growing (exponentially with the size of concepts). This
is, of course, necessary to traverse the search space in a well structured deterministic
redundancy-free fashion. Another difference is that in the GP approach we do both
upward and downward refinements. In Section 4 we traversed the search space in only
one direction (top-down or bottom-up). Using both directions of refinement allows
to start the search from random points in the search space, which may be beneficial
compared to starting from either > or ⊥.

Compared to the standard GP algorithm we use a mutation style genetic refinement
operator as main operator whereas this is usually crossover in the standard case. We
can, of course, still use crossover (and the other operators presented in the introduction)
as secondary operators. This can be useful to overcome local maxima. The changes of
the operator were necessary, because learning concepts in Description Logics is not a
task GP algorithms can handle naturally in an efficient way. This is mainly due to the
fact that the fitness landscape of concepts is very ragged.

The bias of the learning algorithm is mostly controlled by the fitness function. We
prefer smaller concepts since they generalise better to unseen examples. The represen-
tation language was only restricted in that we limit the search to concepts in negation
normal form. Of course, this is no limitation with respect to the semantics of concepts,
i.e. we can always find a solution if one exists.

Related Work

To the best of our knowledge, there has been no attempt to use evolutionary approaches
for learning concepts in Description Logics. Hence, there is no closely related work
we are aware of. For an overview of research on non-evolutionary approaches see the
description of related work in Section 4 on page 54. Although evolutionary methods
have not been considered for learning in Description Logics before, they have been used

79

5 Concept Learning and Genetic Programming

for inducing logic programs. On page 71 we summarized these approaches and gave
some pointers to interesting papers. Some of these approaches require a fixed template
the solution must fit in. Such approaches are usually based on Genetic Algorithms, i.e.
they do not allow a variable length of the solution. We did not consider this approach
due to its restricted flexibilty. The systems based on Genetic Programming, i.e. SIA01
(Augier et al., 1995), ECL (Divina and Marchiori, 2002), and GLPS (Wong and Leung,
1995) are closer to our approach. Similar to our research, they also concluded that
standard Genetic Programming is not sufficient to solve their learning problem. As
a consequence, they invented new operators. As far as we know, they did not try to
connect refinement operators and Genetic Programming explicitly, which distinguishes
them from our approach. This strategy enables us to make use of the powerful theory
of refinement operators, in particular the full property analyses we performed in Section
4. We cannot directly compare the operators, which are used in their systems, with the
operators we have developed, since the target language (logic programs) is different.

5.5 Other Improvements

In this section we discuss other ways of improving or modifying the standard Genetic
Programing approach besides the use of genetic refinement operators.

Learning From Uncertain Data

When we discussed the fitness measurement in our GP algorithm we have noted that it
is easy to handle noise by including a penalty for the length of a concept in the fitness
function. We will now show that is also possible (albeit a bit more difficult) to learn from
uncertain data. We first have to introduce what we mean by learning from uncertain
data.

An example in this scenario is a tuple (z, Target(a)), where Target is the concept we
want to learn, a ∈ NI is an object, and 0 ≤ z ≤ 1 (z ∈ R) a number expressing the
certainty that the fact is true. z = 0 means that we are certain that the fact is not true.
This is what we classically considered to be a negative example. z = 1 is a classical
positive example. Often this kind of data arises naturally from preprocessing steps like
Bayesian or Neural Network classification, where one can compute the certainty that a
classification is correct.

To incorporate uncertain data into the GP framework we have to modify the fitness
measurement. The idea is, of course, that a positively classified example should have a
high z-value and an example, which is not classified as positive, should have a low z-
value. For z = 0.5 it should not matter whether the corresponding example is classified
positively or not by a concept. (z = 0.5 means that the probability that the fact is true
equals the probability that the fact is false.) The following fitness function can be used
(we designed it such that fitness values are always positive):

fK(C) =
∑

e∈E

sK(C, e)

80

sK(C, (z, Target(a))) =

{

z if K ∪ {Target ≡ C} |= Target(a)

1 − z if K ∪ {Target ≡ C} 6|= Target(a)

The modification of the fitness function is sufficient to be able to apply the standard
GP approach. For the genetic refinement operators we have introduced we need to
do additional work. Remember that we calculated a value which determined whether
upward or downward refinement is used. This value depends on the percentage of covered
examples (see Equation 4 on page 74). When learning from uncertain data we no longer
have this strict separation between positive and negative examples, so we have to modify
this approach.

The idea is to replace the expressions |negK(C)|
|E−|

and |posK(C)|
|E+|

in Equation 4 by cor-
responding expressions, which take the uncertainty into account. We look at examples
with z < 0.5 as negative examples and z ≥ 0.5 corresponds to classical positive examples.
The sum of the fitness values for all examples we consider as negative is:

∑

(z,Target(a))∈E
with z<0.5

sK(C, (z, Target(a)))

To turn this into an expression, which corresponds to |negK(C)|
|E−|

we have to normalize this
value such that a value of 1 is obtained if every negative example is classified correctly
and we get a value of 0 if none of the negative examples is classified correctly. The
resulting expression we get is listed as v below (for better readability the denominator
ist not simplified). Analogously w corresponds to |posK(C)|

|E+|
. To get a better overview we

show the complete definition of a genetic refinement operator with support for reasoning
from uncertain data:

ϕ(C) =

{

rand(ϕ↓(C)) with probability v
1+v−w

rand(ϕ↑(C)) with probability 1−w
1+v−w

(5)

v =

∑

(z,Target(a))∈E
with z<0.5

sK(C, (z, Target(a))) − z

∑

(z,Target(a))∈E
with z<0.5

(1 − z) − z

w =

∑

(z,Target(a))∈E
with z≥0.5

sK(C, (z, Target(a))) − (1 − z)

∑

(z,Target(a))∈E
with z≥0.5

z − (1 − z)

This extension of the presented framework may be very useful since, as we already
mentioned, a lot of data which is preprocessed by other Machine Learning algorithms
(Bayesian Networks, Neural Networks, etc.) produces classification probabilites instead
of only binary classifications (true or false). What we have described above can be used

81

5 Concept Learning and Genetic Programming

u

Male t

ADC ∃married

ADC

∃hasSibling

∃hasChild

>

Figure 4: learning with ADCs - main tree on the left and ADC tree on the right

to model the fact that we do not know exactly whether a fact is true or not. Please
note that the underlying background knowledge base has not changed, so we can use the
same reasoning algorithms as before. The only changes we made were: a) an adaptation
of the fitness function and b) a change in the calculation of the probabilities for upward
and downward refinement in the genetic refinement operator.

Automatically Defined Concepts

One key idea present in Inductive Logic Programming (Nienhuys-Cheng and de Wolf,
1997) is the automatic invention of new predicates, e.g. by the inverse resolution method
(Muggleton, 1995a). For learning in Description Logics this corresponds to the invention
of new concepts, which are then used in the definition of the target concept we want to
learn. This idea is very interesting since people tend to view a machine, which automat-
ically invents something to improve its performance on a given task, as intelligent.

Genetic Programming offers the possibility of inventing new concepts. To do this we
slightly modified an approach already known as Automatically Defined Functions (ADFs)
(Koza, 1993) and called it Automatically Defined Concepts (ADCs). Roughly the idea
in ADFs is to give the tree, which represents an individual, a fixed structure, where one
subtree is the main tree and other parts of the tree are function trees. Function trees
can take arguments and return values similar to functions in imperative programming
languages.

We adapted this approach to the learning problem in Description Logics and simplified
this in order to reach a reasonable performance. Instead of evolving just one tree we now
evolve two trees. One tree is the main tree and the other the ADC tree. The alphabet
of the main tree is extended by a symbol ADC, which represents the concept defined in
the ADC tree. An example for two such trees is shown in Figure 4.

It is not hard to change the standard GP framework to allow ADCs. The genetic op-
erators have to be changed, such that they only work on compatible trees. For crossover
we first select either the main or ADC tree randomly. If the main tree is selected then
we also have to select the main tree of the second parent. Analogously if the ADC tree
of the first parent is selected then we also have to select the ADC tree of the second

82

parent. After that standard crossover can be performed. Other genetic operators have
to be treated in a similar way.

The ADC approach is not completely compatible with the genetic refinement operators
we have introduced. In principle we can first select whether we want to perform upward
or downward refinement as usual. In a second step we select whether the main or the
ADC tree is refined and finally we apply the refinement operator to the corresponding
tree. However, the problem is that if the automically defined concept occurs negated
and non-negated in the definition of the target concept, then the effect of e.g. upward
refinement on the ADC tree may not be an upward refinement of the target concept
definition. This means that changes on the ADC tree would not necessarily have the
desired effect.

Hill Climbing Operators

An interesting idea is to combine hill climbing methods with Genetic Programming.
The idea of hill climbing as a search algorithm is to look at the neighbourhood of a
point in the search space and move to that point in the neighbourhood, which is most
promising according to some measurement. In our case this measurement is fitness and
the neighbourhood of a point in the search space, which is an ALC concept, is a set
of syntactically similar concepts. More exactly for a given concept C we define the
neighbourhood of C as the set:

N(C) = {¬C}∪{CtA | A ∈ NC}∪{CuA | A ∈ nC}∪{∃r.C | r ∈ NR}∪{∀r.C | r ∈ NR}

The genetic hill climbing operator works as follows: It takes one individual, which
represents a concept C, as input. Given C it evaluates the fitness of all concepts in
N(C). Then it computes a subset of individuals with the highest fitness of all individuals
in N(C) and C itself (it is a set and not a single individual, because individuals may
have the same fitness). From this set one element is randomly selected and returned.

This operator makes sense if we are able to evaluate the fitness of concepts in the
neighbourhood very fast. In Section 6 we will introduce an algorithm, which is able to
do this. In particular it can use the fact that we already evaluated C (obviously C is in
the population so we have evaluated its fitness). The algorithm in Section 6 can easily be
extended to compute the (approximate) fitness of all individuals in the neighbourhood
with only a few basic set operations. Summed up the hill climbing operator is a way to
efficiently search a possibly large set of related concepts.

83

6 Concept Quality Measurement

6 Concept Quality Measurement

6.1 Problems in Concept Learning

When learning ALC concepts within the introduced learning framework problems can
arise, which we will describe in the sequel. As we have introduced the goal of learning is
to find a concept C such that when adding the definition Target ≡ C to our background
knowledge base the positve examples follow and the negatives do not follow. Example
6.1 shows, which problems can arise and we will later see how they can be solved.
Example 6.1 (problems in concept learning)
Consider the following knowledge base K with an empty TBox and the following ABox
A :

Male(A).
Female(B).
Male(C).
Male(D).
Female(E).
hasChild(A,C).
hasChild(A,D).
hasChild(B,C).
hasChild(B,D).
hasChild(C,E).

Let E+ = {Target(A), Target(B)} and E− = {Target(C)}.
Clearly the hypothesis ∀hasChild.Male seems to be an intuitive solution. However,

it does not solve the learning problem, because the positive examples A and B are not
covered. The reason is, of course, that we have the Open World Assumption in Descrip-
tion Logics. This means that A and B could have more children than the ones described
in the knowledge base and these children do not necessarily need to be male. �

In general the problem is that for concepts of the form ∀r.C we have that even if all
known r-fillers in A for a positive example a satisfy C we cannot deduce ∀r.C(a). Even
if the used description language allows negative role assertions of the form ¬r(a, b) this
problem cannot be avoided, because it could still be that an unknown object, i.e. it
does not appear in A, is an r-filler of a that does not satisfy C. This is due to the Open
World Assumption (OWA). Although the OWA is usually prefered when reasoning in
Description Logics it is a restriction for concept learning as we have seen above. One
approach to overcome this problem is to fix the domain of the interpretations we allow
(e.g. we only allow objects appearing in the ABox). Together with allowing negated role
assertions this is one way to solve the problem2. To support this kind of reasoning in
learning algorithms in Description Logics we create an efficient retrieval algorithm. The
purpose is not only to solve the mentioned problem, but also to provide a very efficient
method for testing the quality of concepts.

2Another way to solve this problem by epistemic operators is described in (Badea and Nienhuys-Cheng,
2000). See also the report (Motik and Rosati, 2004) about closing Semantic Web ontologies.

84

6.2 A Fast Retrieval Algorithm

As we have seen retrieval is a reasoning service, which can be used for learning concepts.
In this section we will introduce a fast and simple retrieval algorithm, which makes it
possible to reason under a fixed domain. Before we do this, it is necessary to introduce
some notions.

Definition 6.2 (∆-interpretation)
A ∆-interpretation is an interpretation with domain ∆ and aI = a for all objects. A
∆-model is a model, which is a ∆-interpretation. �

Definition 6.3 (instance and retrieval with respect to a fixed domain)
Let A be an Abox, T a TBox, K = (T ,A) a knowledge base, ∆ an interpretation
domain, C a concept, and a ∈ NI .
a is an instance of C with respect to A and ∆, denoted by A |=∆ C(a), iff in any

∆-model I∆ with NI ⊆ ∆ we have aI∆ ∈ CI∆.
a is an instance of C with respect to K and ∆, denoted by K |=∆ C(a), iff in any

∆-model I∆ with NI ⊆ ∆ we have aI∆ ∈ CI∆.
The retrieval RA,∆(C) of a concept C with respect to A and ∆ is defined as RA,∆(C) =

{a | a ∈ NI and A |=∆ C(a)}.
The retrieval RK,∆(C) of a concept C with respect to K and ∆ is defined as RK,∆(C) =

{a | a ∈ NI and K |=∆ C(a)}. �

The algorithms works on a flat ABox, which only consists of positive and negative
assertions about atomic concepts and roles.

Definition 6.4 (flat Abox)
An Abox A is called flat if it contains only assertions of the form A(a), ¬A(a), r(a, b),
and ¬r(a, b) (A ∈ NC , r ∈ NR, a, b ∈ NI). �

It is possible to transform a knowledge base into a flat ABox by executing retrievals
of the form ¬A and A for any atomic concept A and by finding all tuples which fulfill
r(a, b) and ¬r(a, b) for any role r and objects a, b. The latter type of reasoning is
supported by some DL-reasoners e.g. KAON2. Currently many description languages
and in particular the OWL ontology language do not support negated role assertions.
However, they can be emulated by augmenting Description Logics with other Logics
(such as F-Logic (Balaban, 1995)) and the upcoming OWL 1.1 is likely to support
negated role assertions, because it will be based on SROIQ (Horrocks et al., 2006).

It should be noted that eliminating the TBox in this way can cause a loss of informa-
tion. This means that a reduction of a knowledge base to a flat ABox does not preserve
equivalence. If K is a knowledge base and A the flat ABox obtained by transforming K
to A, then it can be the case that for some concept C and object a we have K |= C(a),
but A 6|= C(a). As an example, consider an empty TBox and an ABox consisting only of
the assertion A1tA2(a), where A1, A2 are atomic concepts, and a an object. The trans-
formation to a flat ABox A results in an empty ABox. Hence, we have K |= A1 tA2(a),
but A 6|= A1 t A2(a).

85

6 Concept Quality Measurement

In the other direction, however, the situation is different. If for a flat ABox A we
have A |= C(a), then for the corresponding knowledge base K = (T ′,A′) we also have
K |= C(a). The reason is that Description Logics, as we have presented it in this
thesis, are a monotonic knowledge representation formalism. This means that adding
knowledge never invalidates a deduction. The knowledge base K = (T ′,A′) is equivalent
to the knowledge base K′ = (T ′,A′ ∪ A), because the transformed flat ABox does not
contain any assertions, which we cannot already deduce from K. Hence, A |= C(a)
implies K |= C(a).

Definition 6.5 (C+

A,∆ , C
−
A,∆ , r

+

A , r
−
A)

Let A be a flat Abox, NC the set of concept names, NR the set of role names, NI the
set of individual names appearing in A and ∆ a superset of NI .

• If r ∈ NR, then r+
A = {(a, b) | r(a, b) ∈ A} and r−A = {(a, b) | ¬r(a, b) ∈ A}.

• If C ∈ NC is an atomic concept, then C+
A,∆ = {a | C(a) ∈ A} and C−

A,∆ =

{a | ¬C(a) ∈ A}. Additionally we have >+
A,∆ = ∆, >−

A,∆ = ∅, ⊥+
A,∆ = ∅, and

⊥−
A,∆ = ∆.

• C+
A,∆ and C−

A,∆ are defined inductively over the structure of ALC concepts:

– (¬D)+
A,∆ = D−

A,∆

– (¬D)−A,∆ = D+
A,∆

– (D u E)+
A,∆ = D+

A,∆ ∩ E+
A,∆

– (D u E)−A,∆ = D−
A,∆ ∪ E−

A,∆

– (D t E)+
A,∆ = D+

A,∆ ∪ E+
A,∆

– (D t E)−A,∆ = D−
A,∆ ∩ E−

A,∆

– (∃r.D)+
A,∆ = {a | ∃b.(a, b) ∈ r+

A ∧ b ∈ D+
A,∆}

– (∃r.D)−A,∆ = {a | ∀b.((a, b) ∈ ∆ × ∆ \ r−A) =⇒ b ∈ D−
A,∆}

– (∀r.D)+
A,∆ = {a | ∀b.((a, b) ∈ ∆ × ∆ \ r−A) =⇒ b ∈ D+

A,∆}

– (∀r.D)−A,∆ = {a | ∃b.(a, b) ∈ r+
A ∧ b ∈ D−

A} �

Algorithm 6.6 (retrieval)
We can define a retrieval algorithm for a concept C with respect to a flat ABox A
and a domain ∆ by computing C+

A,∆ . (C−
A,∆ is then the answer of the retrieval for

¬C.) For the execution of the algorithm we assume that the C is stored as a tree (see
Section 5) and the sets D+

A,∆ and D−
A,∆ for each node, which represents a concept D,

are computed from leaf to root.

86

We write A `∆ C(a) iff C(a) is a consequence of the algorithm with respect to the
flat ABox A and domain ∆. This relation is defined in the following way:

A `∆ C(a) iff a ∈ C+
A,∆

We will now analyse the properties of this algorithm.

Proposition 6.7 (soundness)
A `∆ C(a) implies A |=∆ C(a).

Proof To prove the proposition we show that a ∈ C+
A,∆ implies A |=∆ C(a) and

a ∈ C−
A,∆ implies A |=∆ ¬C(a). We do this by an induction over the structure of ALC

concepts.

1. Induction Base:

a) C is >.

a ∈ C+
A,∆: In this case A |=∆ >(a) is trivially true.

a ∈ C−
A,∆: This is never true by Definition 6.5, so the implication is true.

b) C is ⊥.

a ∈ C+
A,∆: This is never true by Definition 6.5, so the implication is true.

a ∈ C−
A,∆: In this case A |=∆ ¬⊥(a) is trivially true.

c) C is an atomic concept.

a ∈ C+
A,∆ means that we have the assertion C(a) in A by definition of C+

A,∆.
So by definition of a model of an ABox (Definition 2.11, page 10) we have
A |=∆ C(a).

a ∈ C−
A,∆ means that the assertion ¬C(a) is in A , so by the same argument

we get A |=∆ ¬C(a).

2. Induction Step:

a) C is of the form ¬D:

i. C+
A,∆:

a ∈ (¬D)+
A,∆

⇐⇒ a ∈ D−
A,∆ (by Definition 6.5)

=⇒ A |=∆ ¬D(a) (by induction)

87

6 Concept Quality Measurement

ii. C−
A,∆:

a ∈ (¬D)−A,∆

⇐⇒ a ∈ D+
A,∆ (by Definition 6.5)

=⇒ A |=∆ D(a) (by induction)

⇐⇒ A |=∆ ¬(¬D(a))

b) C is of the form D u E:

i. C+
A,∆:

a ∈ (D u E)+
A,∆

⇐⇒ a ∈ D+
A,∆ ∧ a ∈ E+

A,∆ (by Definition 6.5)

=⇒ A |=∆ D(a) ∧ A |=∆ E(a) (by induction)

=⇒ ∀I∆.I∆ |=∆ A =⇒ (aI∆ ∈ DI∆ ∧ aI∆ ∈ EI∆) (by Definition 6.3)

⇐⇒ A |=∆ (D u E)(a) (see Table 1 on page 9)

ii. C−
A,∆:

a ∈ (D u E)−A,∆

⇐⇒ a ∈ D−
A,∆ ∨ a ∈ E−

A,∆ (by Definition 6.5)

=⇒ A |=∆ ¬D(a) ∨ A |=∆ ¬E(a) (by induction)

=⇒ ∀I∆.I∆ |=∆ A =⇒ (aI∆ 6∈ DI∆ ∨ aI∆ 6∈ EI∆) (by Definition 6.3)

⇐⇒ ∀I∆.I∆ |=∆ A =⇒ ¬(aI∆ ∈ DI∆ ∧ aI∆ ∈ EI∆)

⇐⇒ ∀I∆.I∆ |=∆ A =⇒ ¬(aI∆ ∈ (D u E)I∆)

⇐⇒ A |=∆ ¬(D u E)(a)

c) C is of the form D t E (similar to the previous case):

i. C+
A,∆:

a ∈ (D t E)+
A,∆

⇐⇒ a ∈ D+
A,∆ ∨ a ∈ E+

A,∆ (by Definition 6.5)

=⇒ A |=∆ D(a) ∨ A |=∆ E(a) (by induction)

=⇒ A |=∆ (D t E)(a) (analogous to 2b)

88

ii. C−
A,∆:

a ∈ (D t E)−A,∆

⇐⇒ a ∈ D−
A,∆ ∧ a ∈ E−

A,∆ (by Definition 6.5)

=⇒ A |=∆ ¬D(a) ∧ A |=∆ ¬E(a) (by induction)

=⇒ ∀I∆.I∆ |=∆ A =⇒ (aI∆ 6∈ DI∆ ∧ aI∆ 6∈ EI∆) (by Definition 6.3)

⇐⇒ ∀I∆.I∆ |=∆ A =⇒ ¬(aI∆ ∈ DI∆ ∨ aI∆ ∈ EI∆)

⇐⇒ ∀I∆.I∆ |=∆ A =⇒ ¬(aI∆ ∈ (D t E)I∆)

⇐⇒ A |=∆ ¬(D t E)(a)

d) C is of the form ∃r.D:

i. C+
A,∆:

a ∈ (∃r.D)+
A,∆

⇐⇒ ∃b.(a, b) ∈ r+
A ∧ b ∈ D+

A,∆ (by Definition 6.5)

=⇒ ∃b.(a, b) ∈ r+
A ∧ A |=∆ D(b) (by induction)

=⇒ ∃b.∀I∆.I∆ |=∆ A =⇒ (a, b) ∈ rI∆ ∧ b ∈ DI∆

=⇒ ∀I∆.I∆ |=∆ A =⇒ ∃b.(a, b) ∈ rI∆ ∧ b ∈ DI∆

⇐⇒ A |=∆ (∃r.D)(a)

ii. C−
A,∆:

a ∈ (∃r.D)−A,∆ (6)

=⇒ ∀b.((a, b) ∈ ∆ × ∆ \ r−A =⇒ b ∈ D−
A,∆) (by Definition 6.5) (7)

Let I∆ be an arbitrary ∆-model of A. To prove A |=∆ ¬(∃r.D)(a)
we have to show ¬(∃b.(a, b) ∈ rI∆ ∧ b ∈ DI∆), which is equivalent to
∀b.(a, b) 6∈ rI∆ ∨ b 6∈ DI∆.
If we have (a, b) 6∈ ∆× ∆ \ r−A, then (a, b) ∈ r−A and an assertion ¬r(a, b)
exists in A . In this case the disjunction is true, because the first disjunct
is true.
If we have (a, b) ∈ ∆ × ∆ \ r−A we get b ∈ D−

A,∆ by (7). So by induction
we have A |=∆ ¬D(b) and b 6∈ DI∆. Thus the disjunction is true, because
the second disjunct is true.

e) C is of the form ∀r.D:

i. C+
A,∆:

a ∈ (∀r.D)+
A,∆ (8)

=⇒ ∀b.((a, b) ∈ ∆ × ∆ \ r−A =⇒ b ∈ D+
A,∆) (by Definition 6.5) (9)

89

6 Concept Quality Measurement

Let I∆ be an arbitrary ∆-model of A. To prove A |=∆ ∀r.D(a) we have
to show ∀b.(a, b) ∈ rI∆ → b ∈ DI∆.
If we have (a, b) 6∈ ∆× ∆ \ r−A, then (a, b) ∈ r−A and an assertion ¬r(a, b)
exists in A . In this case the implication is true, because the premise is
false.
If we have (a, b) ∈ ∆ × ∆ \ r−A we get b ∈ D+

A,∆ by (9). So by induction
we have A |=∆ D(b) and b ∈ DI∆. Thus the implication is true.

ii. C−
A,∆:

a ∈ (∀r.D)−A,∆

⇐⇒ ∃b.(a, b) ∈ r+
A ∧ b ∈ D−

A,∆ (by Definition 6.5)

=⇒ ∃b.(a, b) ∈ r+
A ∧ A |=∆ ¬D(b) (by induction)

=⇒ ∃b.∀I∆.I∆ |=∆ A =⇒ (a, b) ∈ rI∆ ∧ b 6∈ DI∆

=⇒ ∀I∆.I∆ |=∆ A =⇒ ∃b.(a, b) ∈ rI∆ ∧ b 6∈ DI∆

=⇒ ∀I∆.I∆ |=∆ A =⇒ ¬¬(∃b.(a, b) ∈ rI∆ ∧ b 6∈ DI∆)

=⇒ ∀I∆.I∆ |=∆ A =⇒ ¬(∀b.¬((a, b) ∈ rI∆) ∨ b ∈ DI∆)

=⇒ ∀I∆.I∆ |=∆ A =⇒ ¬(∀b.(a, b) ∈ rI∆ =⇒ b ∈ DI∆)

⇐⇒ A |=∆ ¬(∀r.D)(a) �

The Open World Assumption in Description Logics means that we view the informa-
tion provided in a knowledge base as incomplete. What the algorithm essentially does
is to check only two interpretations: One interpretation, which interprets everything as
false unless explicitly stated otherwise (by assertions of the form r(a, b) and A(a)), and
one interpretation, which interprets everything as true unless explicitly stated otherwise
(by assertions of the form ¬r(a, b) and ¬A(a)). This approach is sound, but incomplete.

Proposition 6.8 (incompleteness)
A |=∆ C(a) does not imply A `∆ C(a).

Proof See Example 6.9 below. �

Example 6.9 (Oedipus example)
The following is the Oedipus example which stipulated a lot of research in Description
Logics (Baader et al., 2003, chap. 2). The following flat ABox is given:

hasChild(IOKASTE,OEDIPUS).
hasChild(OEDIPUS,POLYNEIKES).
hasChild(IOKASTE,POLYNEIKES).
hasChild(POLYNEIKES,THERSANDROS).
Patricide(OEDIPUS).
¬ Patricide(THERSANDROS).

90

Assume we want to make the following instance test (where the domain ∆ is assumed
to be the set of all objects in A):

∃hasChild.(Patricide u ∃HasChild.¬Patricide)(IOKASTE)

We will compute the set (∃hasChild.(Patricide u ∃hasChild.¬Patricide))+
A,∆:

Patricide+
A,∆ = {OEDIPUS}

Patricide−A,∆ = {THERSANDROS}

(¬Patricide)+
A,∆ = {THERSANDROS}

(¬Patricide)−A,∆ = {OEDIPUS}

(∃hasChild.¬Patricide)+
A,∆ = {POLYNEIKES}

(∃hasChild.¬Patricide)−A,∆ = {∅}

(Patricide u ∃hasChild.¬Patricide)+
A,∆ = {∅}

(Patricide u ∃hasChild.¬Patricide)−A,∆ = {∅}

(∃hasChild.(Patricide u ∃hasChild.¬Patricide))+
A,∆ = {∅}

(∃hasChild.(Patricide u ∃hasChild.¬Patricide))−A,∆ = {∅}

This means that the algorithm can not deduce that IOKASTE is an instance of the
aforementioned concept. However, it is indeed an instance, by the following arguments:

Let the models of A be divided in two classes. In one class POLYNEIKES is a Patricide

and in the other he is not a Patricide. In the first class IOKASTE has a child POLYNEIKES,
which fulfills Patricideu∃hasChild.¬Patricide (*) as one can easily check. In a model
of the second class OEDIPUS is the child of IOKASTE, which fulfills (*). Thus in all models
IOKASTE is an instance of the concept we wanted to test. �

We have shown that the algorithm is incomplete. However, we will show that it is
complete if there is no uncertain knowledge. The reason is that in this case there can
be at most one model of the ABox.
Definition 6.10 (closed flat ABox)
We say that a flat ABox is closed with respect to ∆ iff the following conditions hold:

1. for all atomic concepts A: a ∈ ∆ implies (A(a) ∈ A or ¬A(a) ∈ A)

2. for all roles r: (a, b) ∈ ∆ × ∆ implies (r(a, b) ∈ A or ¬r(a, b) ∈ A) �

Proposition 6.11 (completeness under closure)
Let A be a closed consistent flat ABox with respect to a domain ∆. Then we have
A |=∆ C(a) implies A `∆ C(a).

91

6 Concept Quality Measurement

Proof For a consistent closed flat ABox the following holds:

1. for all atomic concepts A: a ∈ ∆ implies that either A(a) ∈ A or ¬A(a) ∈ A (but
not both, because of consistency)

2. for all roles r: (a, b) ∈ ∆ × ∆ implies that either r(a, b) ∈ A or ¬r(a, b) ∈ A (but
not both)

By the definition of a ∆-model (Definition 6.2, page 85), the interpretation domain
and the mapping of individuals is fixed. Additionally a consistent closed ABox also
fixes the mapping of atomic concepts to subsets of ∆ and the mapping of roles to
subsets of ∆ × ∆. This interpretation I∆ is defined by: AI∆ = {a | C(a) ∈ A} and
rI∆ = {(a, b) | r(a, b) ∈ A} for atomic concepts A and roles r. It is easy to see that this
is the only model of A.

What we will show is that in this case the retrieval algorithm corresponds exactly to
the semantics of ALC concepts (see Table 1, page 9).

As a prerequisite we need two statements for closed consistent ABoxes:

1. r+
A = ∆ × ∆ \ r−A

This is easy to see, because r(a, b) is in A iff ¬r(a, b) is not in A.

2. C−
A,∆ = ∆ \ C+

A,∆

We can show this by induction over the structure of C:

a) Induction Base:

i. C = >: ⊥−
A,∆ = ∅ = ∆ \ ∆ = ∆ \ >+

A,∆

ii. C = ⊥: ⊥−
A,∆ = ∆ = ∆ \ ∅ = ∆ \ ⊥+

A,∆

iii. C = A: A−
A,∆ = ∆ \ A+

A,∆, because for any object a we have A(a) in A
iff ¬A(a) is not in A.

b) Induction Step:

i. C = ¬D: (¬D)−A,∆ = D+
A,∆ = ∆ \D−

A,∆ (by induction) = ∆ \ (¬D)+
A,∆

ii. C = D u E:

(D u E)−A,∆ =D−
A,∆ ∪ E−

A,∆

=(∆ \D+
A,∆) ∪ (∆ \ E+

A,∆)

=∆ \ (D+
A,∆ ∩ E+

A,∆)

=∆ \ (D u E)+
A,∆

iii. C = D t E:

(D t E)−A,∆ =D−
A,∆ ∩ E−

A,∆

=(∆ \D+
A,∆) ∩ (∆ \ E+

A,∆)

=∆ \ (D+
A,∆ ∪ E+

A,∆)

=∆ \ (D t E)+
A,∆

92

iv. C = ∃r.D:

(∃r.D)−A,∆ = {a | ∀b.((a, b) ∈ ∆ × ∆ \ r−A) =⇒ b ∈ D−
A,∆}

= {a | ∀b.¬((a, b) ∈ r+
A) ∨ b ∈ D−

A,∆}

= {a | ¬(∃b.(a, b) ∈ r+
A ∧ ¬(b ∈ D−

A,∆))}

= {a | ¬(∃b.(a, b) ∈ r+
A ∧ b ∈ D+

A,∆)}

= ∆ \ (∃r.D)+
A,∆

v. C = ∀r.D:

(∀r.D)−A,∆ = {a | ∃b.((a, b) ∈ r+
A) ∧ b ∈ D−

A,∆}

= {a | ∃b.((a, b) ∈ r+
A) ∧ ¬b ∈ D+

A,∆}

= {a | ¬(∀b.¬((a, b) ∈ r+
A) ∨ b ∈ D+

A,∆)}

= {a | ¬(∀b.((a, b) ∈ ∆ × ∆ \ r−A) =⇒ b ∈ D+
A,∆)}

= ∆ \ (∀r.D)+
A,∆

Using these statements we have:

(¬C)+
A,∆ = C−

A,∆ = ∆ \ C+
A,∆

(∀r.C)+
A,∆ = {a | ∀b.((a, b) ∈ ∆ × ∆ \ r−A) =⇒ b ∈ D+

A,∆}

= {a | ∀b.(a, b) ∈ r+
A =⇒ b ∈ D+

A,∆)}

If we use this together with the rules in Definition 6.5 we see that computing C+
A,∆

corresponds exactly to the semantics of ALC (see Table 1, page 9).
Summary: We have shown that there is exactly one model I∆ for A. A |=∆ C(a)

means that we have a ∈ CI∆. We have a ∈ CI∆ ⇐⇒ a ∈ C+
A,∆, because applying the

interpretation function is the same like computing C+
A,∆. a ∈ C+

A,∆ means that we have
A `∆ C(a) by Definition of the retrieval algorithm. �

Below we will show that the algorithm runs in polynomial time.

Proposition 6.12 (complexity of the algorithm)
Let C be a concept with |C| = n and |∆| = m.
The space complexity of Algorithm 6.6 is O(m · n).
The time complexity of Algorithm 6.6 is at most O(n ·m2 · logm).

Proof We assume that we have given A+
A,∆ and A−

A,∆ for all atomic conceps. Addi-
tionally we need r+

A and ∆ × ∆ \ r−A for all roles.
We will first have a look at the space complexity. For each node in the tree (remember

that the query concept is stored as tree in the algorithm) we have to store two lists of

93

6 Concept Quality Measurement

individuals. There are no more than n nodes. The list of individuals has length at most
m. Hence the space complexity is O(m · n).

For time complexity we look at the number of operations we have to perform for each
of at most n nodes. The most expensive operations have to be done for quantifications.
As an example we consider a node of the form ∃r.D, i.e. we have to calculate:

(∃r.D)+
A,∆ = {a | ∃b.(a, b) ∈ r+

A ∧ b ∈ D+
A,∆}

(∃r.D)−A,∆ = {a | ∀b.((a, b) ∈ ∆ × ∆ \ r−A) =⇒ b ∈ D−
A,∆}

To traverse r+
A (or ∆×∆\r−A) we have to look at m·m elements. For each such element

we may have to do a lookup whether an individual belongs to D+
A,∆ (or D−

A,∆). Assuming
that the individuals are ordered this takes O(logm) time steps (binary search). Overall
we get a time complexity of O(n ·m2 · logm). �

Why is the Algorithm Useful for Solving the Learning Problem?

There are reasons why the algorithm we have presented is useful despite its simplicity.
First of all it is very efficient. It has a low polynomial time and space complexity. This
low complexity comes at a price. We have shown that the algorithm is incomplete. For
a more specific case (closed flat ABox) completeness holds. We have shown that the
algorithm is sound under the fixed domain assumption we made. We have also justified
that the fixed domain assumption can be useful when learning in Description Logics (see
Example 6.1 on page 84).

In the learning problem we need to test a large number of concepts against a fixed
knowledge base. For this reason it makes sense to do a large pre-processing step, i.e.
the transformation of a knowledge base to a flat ABox, if the time per query can be
significantly reduced. Especially in algorithms, which do not explicitly avoid redundancy,
e.g. the Genetic Programming approach, it may be a useful idea to use the algorithm
for an approximate fitness measure. This way the use of sound and complete reasoning
algorithms for ALC, which are PSPACE-complete (Baader et al., 2003), can be reduced.
(The complexity of sound and complete reasoning can be even higher than PSPACE if
the background knowledge description language is more expressive than ALC.)

An advantage of the algorithm is that it performs a complete retrieval at once instead
of performing single instance tests (like most tableau algorithms). This is useful, because
we have to do an instance test for each example anyway. Moreover when doing a retrieval
for a concept C it automatically also does a retrieval for ¬C, which can be very useful
if we define the learning problem in such a way that negative examples of the form
¬Target(a) have to be covered (see Section 3 for details).

A drawback of the algorithm is, of course, its incompleteness. While sound and
complete reasoning in Description Logics is usually very hard, it is less difficult to design
incomplete algorithms. However, there is a way to combine the sound and incomplete
retrieval algorithm with sound and complete instance tests: We first try to classify all
examples in the learning problem using the fast incomplete retrieval algorithm. By
the soundness of the algorithm, we know that if it can classify an example then this

94

classification is correct. For the examples, which could not be classified, we can use
sound and complete instance tests.

The goal of this section was to look at ways to measure the quality of a concept
efficiently and see which problems can arise in concept learning in general. In particular
we showed that the Open World Assumption can be a problem in learning in Description
Logics and gave a concrete algorithm as a way to overcome this problem. While the
major focus of this thesis is on creating intelligent learning algorithms we also considered
it worthwhile to devote a section to look deeper at the reasoning algorithms, which form
the basis of these learning algorithms.

95

7 Summary, Outlook, Further Work

7 Summary, Outlook, Further Work

In this section we will briefly summarise the advances we made in learning Description
Logics and look at future work and perspectives.

Summary In the thesis we analysed the learning problem in Description Logics. First
we introduced a general framework for different learning methods. Then we analysed
refinement operators as the main method to travers the space of concepts ordered by
subsumption. We made a full analysis of the properties of refinement operators and
concluded that learning ALC concepts can be considered a hard learning task. Never-
theless we were able to construct a complete and proper refinement operator, which may
be useful in practice. Then we showed how a redundancy-eliminating heuristic can be
implemented efficiently by introducing an ordered normal form of concepts. Finally we
analysed the properties of the resulting algorithm, compared it to other approaches and
outlined its advantages. A new approach was introduced in Section 5. We analysed the
use of Genetic Programming for learning in Description Logics. The standard approach
does not make use of the subsumption order of concepts and the used genetic operators
are too destructive. To overcome these problems we proposed to combine Genetic Pro-
gramming with the usage of refinement operators. We showed how this can be done in
general and then defined concrete refinement operators, which can be used in the Ge-
netic Programming framework. Some other features like noise handling, learning from
uncertain data, and concept invention were briefly described. In Section 6 we looked at
the problems in quality measurement of concepts and developed a simple approximate
retrieval algorithm as a first step to overcome these problems.

Further Work From a practical point of view, a lot of work still needs to be done. The
approaches developed in this thesis need to be implemented in order to evaluate them.
We did not perform an implementation and evaluation of the proposed approaches yet,
since this would have gone beyond the intended scope of this thesis. However, we plan
to do this in the future.

Although learning in Description Logics is currently an interesting research topic,
there are not enough standard benchmark data sets available yet. These need to be
created to make it possible to compare the performance in practice between different
learning approaches. The Semantic Web is a driving force behind the research in concept
learning. So naturally an idea is to embed a concept learning module in an ontology
editor. In this way we would be able to see whether knowledge engineers make use of such
a module and to what extend it helps to build up ontologies. The standard approach
to implement such a module is likely to be close to what we presented in Section 4,
i.e. a refinement operator combined with a heuristic. We consider the usage of Genetic
Programming as a viable alternative for other applications of concept learning, especially
in classical Inductive Logic Programming domains.

The emphasis in this thesis was intentionally on theoretical aspects to build up a
solid foundation for later practical work. However, there is is still a lot of room for

96

future theoretical advances. The refinement operator analysis made for ALC concepts
should be extended to other description languages. This would allow us to gain a better
overview of the hardness of the learning problem for different languages (or more exactly
the concept constructors in these languages). We could also use it to compare them with
other target languages, e.g. logic programs. The major piece of theoretical work will be
to extend the approaches in this thesis to more powerful description languages than ALC.
Ontology languages like OWL DL offer much more constructs than ALC. A desirable
goal is to be able to handle all class constructors in OWL DL, which is a prerequisite
in order to use the learning methods in OWL ontology editors. Another extension is to
develop suitable approaches for learning only from positive data, which has turned out
to be crucial in Inductive Logic Programming (Muggleton, 1996).

Outlook There has been research in the area of learning in Description Logics for more
than ten years. However, we can still consider it to be in an early stage compared to the
induction of logic programs. As of now it is open whether it will gain enough momentum
to develop into a field of research on its own. The success of logic programming languages
like Prolog was crucial for the success of Inductive Logic Programming. In the same
manner the potential future success of Description Logics and ontologies in the Semantic
Web may be an important factor for the further development and implementation of
learning methods in Description Logics. We consider it to be an interesting research
field with high potential.

Due to the close relation to Inductive Logic Programming (in the broadest sense it
can be considered to be part of it) there will be a lot of knowledge transfer from ILP to
learning in Description Logics. However, both target languages face different problems,
so it is by no means trivial to use advances in ILP for learning in DLs.

From our point of view, this thesis constitutes a useful scientific contribution to the
field and many ideas may serve as a basis of future research or influence it.

97

List of Tables

List of Figures

1 overview of the learning framework . 20
2 learning the concept Father (horizontal expansion factor is 0.4) 56
3 simple program in tree structure . 59
4 learning with ADCs - main tree on the left and ADC tree on the right . . 82

List of Tables

1 ALC semantics . 9
2 syntax and semantics for concepts in SHOIN 16
3 class constructors in OWL-DL . 17
4 axioms in OWL-DL . 18
5 mapping concepts in nature to evolutionary computing 58

List of Algorithms

4.29 checking weak equality . 44
4.35 transformation to ordered negation normal form 47
4.39 learning algorithm . 52
5.1 generic evolutionary algorithm . 57
5.9 Genetic Programming . 68
6.6 retrieval . 86

List of Definitions

2.1 syntax of ALC concepts . 8
2.2 interpretation . 9
2.4 terminological axiom . 9
2.5 model of terminological axioms, equivalence 10
2.6 concept definition . 10
2.7 TBox . 10
2.8 (general) TBox . 10
2.9 assertion . 10
2.10 ABox . 10
2.11 model of an ABox . 10
2.12 model of a knowledge base . 10
2.14 satisfiability . 12
2.16 subsumption, equivalence . 12
2.18 consistency . 13
2.20 instance . 13
2.21 retrieval . 13

98

List of Tables

2.23 negation normal form . 13
2.25 inductive definition of negation normal form 14
2.26 ALC normal form . 15
3.1 learning problem in Description Logics . 19
3.2 complete, consistent, correct . 21
3.3 too strong, too weak, overly general, overly special 21
3.4 length of a concept . 21
4.1 refinement operator . 22
4.2 ALC refinement operator . 22
4.3 refinement chain . 22
4.4 downward and upward cover . 22
4.5 weak syntactic equality . 23
4.6 properties of ALC refinement operators . 23
4.20 S↓ . 36
4.24 ρcl↓ . 40
4.30 ordering concepts . 45
4.33 ordered negation normal form . 46
4.36 quality . 51
4.37 node . 51
4.38 fitness . 51
5.12 covered examples . 70
6.2 ∆-interpretation . 85
6.3 instance and retrieval with respect to a fixed domain 85
6.4 flat Abox . 85
6.5 C+

A,∆ , C−
A,∆ , r+

A , r−A . 86
6.10 closed flat ABox . 91

List of Theorems, Propositions, Corollaries, and

Lemmata

4.7 existence of covers in ALC . 25
4.8 complete and finite ALC refinement operators 26
4.10 ideal ALC refinement operators . 27
4.11 complete and proper ALC refinement operators 28
4.12 compelete, non-redundant ALC refinement operators 29
4.13 incomplete ALC refinement operators . 29
4.14 properties of ALC refinement operators (I) 30
4.15 weakly complete, non-redundant, and proper operators 31
4.16 weakly complete, non-redundant, and finite operators 31
4.18 properties of ALC refinement operators (II) 33
4.19 downward refinement of ρ↓ . 34
4.21 S↓ . 36

99

List of Tables

4.22 weak completeness of ρ↓ . 37
4.23 completeness of ρ↓ . 39
4.25 ρ↓ does not reduce length . 41
4.26 usefulness of ρcl↓ . 41
4.31 properties of � . 45
4.32 deciding C � D . 46
4.34 transformation to ordered negation normal form 47
4.40 correctness . 53
5.13 ALC refinement operator ϕ↓ . 75
5.14 completeness of ϕ↓ . 76
5.15 finiteness of ϕ↓ . 77
5.16 properties of ϕ↑ . 78
6.7 soundness . 87
6.8 incompleteness . 90
6.11 completeness under closure . 91
6.12 complexity of the algorithm . 93

List of Examples and Remarks

2.3 interpreting concepts . 9
2.13 models of a knowledgebase . 10
2.15 satisfiability . 12
2.17 subsumption . 12
2.19 consistency . 13
2.22 instance, retrieval . 13
2.24 negation normal form . 14
4.9 complete and finite refinement operators . 27
4.27 redundancy of ρ↓ and ρcl↓ . 42
4.28 problems with non-redundant operators . 42
5.2 closure property . 60
5.3 sufficiency . 60
5.4 crossover . 62
5.5 mutation . 63
5.6 permutation . 64
5.7 editing . 64
5.8 sigma truncation . 66
5.10 representing ALC concepts as trees . 68
5.11 role constructors . 69
6.1 problems in concept learning . 84
6.9 Oedipus example . 90

100

References

References

Anglano, C., Giordana, A., Bello, G. L., and Saitta, L. (1998). An experimental evalu-
ation of coevolutive concept learning. In Proc. 15th International Conf. on Machine
Learning, pages 19–27. Morgan Kaufmann, San Francisco, CA.

Augier, S., Venturini, G., and Kodratoff, Y. (1995). Learning first order logic rules
with a genetic algorithm. In Fayyad, U. M. and Uthurusamy, R., editors, The First
International Conference on Knowledge Discovery and Data Mining, pages 21–26,
Montreal, Canada. AAAI Press.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-Schneider, P. F.,
editors (2003). The Description Logic Handbook: Theory, Implementation, and Ap-
plications. Cambridge University Press.

Badea, L. and Nienhuys-Cheng, S.-H. (2000). A refinement operator for description
logics. In Cussens, J. and Frisch, A., editors, Proceedings of the 10th International
Conference on Inductive Logic Programming, volume 1866 of Lecture Notes in Artifi-
cial Intelligence, pages 40–59. Springer-Verlag.

Balaban, M. (1995). The F-logic approach for description languages. Ann. Math. Artif.
Intell, 15(1):19–60.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic web. Scientific
American, 284(5):34–43.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K. (1990). Occam’s razor.
In Shavlik, J. W. and Dietterich, T. G., editors, Readings in Machine Learning, pages
201–204. Morgan Kaufmann.

Brachman, R. J. (1978). A structural paradigm for representing knowledge. Technical
Report BBN Report 3605, Bolt, Beraneck and Newman, Inc., Cambridge, MA.

Brandt, S., Küsters, R., and Turhan, A.-Y. (2002). Approximation and difference in
description logics. In Fensel, D., Giunchiglia, F., McGuinness, D. L., and Williams,
M.-A., editors, Proceedings of the Eighth International Conference on Principles of
Knowledge Representation and Reasoning (KR-02), Toulouse, France, April 22-25,
2002, pages 203–214. Morgan Kaufmann.

Bratko, I. and Muggleton, S. (1995). Applications of Inductive Logic Programming.
Communications of the ACM, 38(11):65–70.

Cohen, W. W., Borgida, A., and Hirsh, H. (1993). Computing least common subsumers
in description logics. In Rosenbloom, P. and Szolovits, P., editors, Proceedings of
the Tenth National Conference on Artificial Intelligence, pages 754–760, Menlo Park,
California. American Association for Artificial Intelligence, AAAI Press.

101

References

Cohen, W. W. and Hirsh, H. (1994). Learning the CLASSIC description logic: Theo-
retical and experimental results. In Doyle, J., Sandewall, E., and Torasso, P., editors,
Proceedings of the 4th International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR94), pages 121–133. Morgan Kaufmann.

Divina, F. (2006). Evolutionary concept learning in first order logic: An overview. AI
Commun., 19(1):13–33.

Divina, F. and Marchiori, E. (2002). Evolutionary concept learning. In Langdon, W. B.,
Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar,
V., Rudolph, G., Wegener, J., Bull, L., Potter, M. A., Schultz, A. C., Miller, J. F.,
Burke, E., and Jonoska, N., editors, GECCO 2002: Proceedings of the Genetic and
Evolutionary Computation Conference, pages 343–350, New York. Morgan Kaufmann
Publishers.

Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., and Semeraro, G. (2004). nowledge-
intensive induction of terminologies from metadata. In The Semantic Web - ISWC
2004: Third International Semantic Web Conference,Hiroshima, Japan, November
7-11, 2004. Proceedings, pages 441–455. Springer.

Gennari, H., J., Musen, A., M., Fergerson, W., R., Grosso, E., W., Crubezy, M., Eriks-
son, H., Noy, F., N., Tu, and W., S. (2003). The evolution of protege: an environment
for knowledge-based systems development. International Journal of Human-Computer
Studies, 58(1):89–123.

Giordana, A. and Neri, F. (1996). Search-intensive concept induction. Evolutionary
Computation Journal, 3(4):375–416.

Haarslev, V. and Möller, R. (2003). Racer: A core inference engine for the semantic web.
In Sure, Y. and Corcho, Ó., editors, EON2003, Evaluation of Ontology-based Tools,
Proceedings of the 2nd International Workshop on Evaluation of Ontology-based Tools
held at the 2nd International Semantic Web Conference ISWC 2003, 20th October
2003 (Workshop day), Sundial Resort, Sanibel Island, Florida, USA, volume 87 of
CEUR Workshop Proceedings. CEUR-WS.org.

Hekanaho, J. (1996). Background knowledge in GA-based concept learning. In Proc. 13th
International Conference on Machine Learning, pages 234–242. Morgan Kaufmann.

Hekanaho, J. (1998). DOGMA: A GA-based relational learner. In Page, D., editor, Pro-
ceedings of the 8th International Conference on Inductive Logic Programming, volume
1446 of Lecture Notes in Artificial Intelligence, pages 205–214. Springer-Verlag.

Horrocks, I., Kutz, O., and Sattler, U. (2006). The even more irresistible SROIQ. In Do-
herty, P., Mylopoulos, J., and Welty, C. A., editors, Proceedings, Tenth International
Conference on Principles of Knowledge Representation and Reasoning, Lake District
of the United Kingdom, June 2-5, 2006, pages 57–67. AAAI Press.

102

References

Horrocks, I., Patel-Schneider, P., and van Harmelen, F. (2003). From SHIQ and RDF to
OWL: The making of a web ontology language. Journal of Web Semantics, 1(1):7–26.

Iannone, L. and Palmisano, I. (2005). An algorithm based on counterfactuals for con-
cept learning in the semantic web. In Ali, M. and Esposito, F., editors, Innovations
in Applied Artificial Intelligence, pages 370–379, Bari, Italy. Proceedings of the 18th
International Conference on Industrial and Engineering Applications of Artificial In-
telligence and Expert Systems.

Koza, J., Keane, M., Streeter, M., Mydlowec, W., Yu, J., and Lanza, G. (2003). Ge-
netic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer
Academic Publishers.

Koza, J. R. (1993). Hierarchical automatic function definition in genetic programming.
In Whitley, L. D., editor, Foundations of Genetic Algorithms 2, pages 297–318, San
Mateo. Morgan Kaufmann.

Koza, J. R. and Poli, R. (2003). A genetic programming tutorial. In Burke, E., editor,
Introductory Tutorials in Optimization, Search and Decision Support.

Mitchell, T. (1997). Machine Learning. McGraw Hill, New York.

Montana, D. J. (1995). Strongly typed genetic programming. Evolutionary Computation,
3(2):199–230.

Motik, B. (2006). Reasoning in Description Logics using Resolution and Deductive
Databases. PhD thesis, Univesität Karlsruhe (TH), Karlsruhe, Germany.

Motik, B. and Rosati, R. (2004). Closing Semantic Web Ontologies. Technical report,
University of Manchester, UK.

Muggleton, S. (1995a). Inductive logic programming: Inverse resolution and beyond. In
Mellish, C. S., editor, Proceedings of the Fourteenth International Joint Conference
on Artificial Intelligence, pages 997–997, San Mateo. Morgan Kaufmann.

Muggleton, S. (1995b). Inverse entailment and progol. New Generation Computing,
13(3&4):245–286.

Muggleton, S. (1996). Learning from positive data. In Muggleton, S., editor, Proceedings
of the 6th International Workshop on Inductive Logic Programming, volume 1314 of
Lecture Notes in Artificial Intelligence, pages 358–376. Springer-Verlag.

Neri, F. and Saitta, L. (1995). Analysis of genetic algorithms evolution under pure
selection. In Eshelman, L., editor, Proceedings of the Sixth International Conference
on Genetic Algorithms, pages 32–39, San Francisco, CA. Morgan Kaufmann.

Nienhuys-Cheng, S.-H. and de Wolf, R., editors (1997). Foundations of Inductive Logic
Programming, volume 1228 of Lecture Notes in Computer Science. Springer.

103

References

Reiser, P. G. K. and Riddle, P. J. (1999). Evolution of logic programs: Part-of-speech
tagging. In 1999 Congress on Evolutionary Computation, pages 1338–1345, Piscat-
away, NJ. IEEE Service Center.

Russel, S. and Norvig, P. (2003). Artificial Intelligence - A Modern Approach. Prentice
Hall, 2nd edition.

Sirin, E. and Parsia, B. (2004). Pellet: An OWL DL reasoner. In Haarslev, V. and
Möller, R., editors, Proceedings of the 2004 International Workshop on Description
Logics (DL2004), Whistler, British Columbia, Canada, June 6-8, 2004, volume 104
of CEUR Workshop Proceedings. CEUR-WS.org.

Tamaddoni-Nezhad, A. and Muggleton, S. (2000). Searching the subsumption lattice
by a genetic algorithm. In Cussens, J. and Frisch, A., editors, Proceedings of the 10th
International Conference on Inductive Logic Programming, volume 1866 of Lecture
Notes in Artificial Intelligence, pages 243–252. Springer-Verlag.

Tamaddoni-Nezhad, A. and Muggleton, S. (2003). A genetic algorithms approach to
ILP. In Matwin, S. and Sammut, C., editors, Proceedings of the 12th International
Conference on Inductive Logic Programming, volume 2583 of Lecture Notes in Artifi-
cial Intelligence, pages 285–300. Springer-Verlag.

Tang, L. R., Califf, M. E., and Mooney, R. J. (1998). An experimental comparison
of genetic programming and inductive logic programming on learning recursive list
functions. Technical Report AI 98-271, Artificial Intelligence Lab, University of Texas
at Austin.

Wong, M. L. and Leung, K. S. (1995). Inducing logic programs with genetic algorithms:
The genetic logic programming system. IEEE Expert, 10 5:68–76.

104

Statement of Academic Honesty

Hereby, I declare that this is my work and that I did not use any other sources than the
ones cited.

105

