

DATABASE THEORY

Lecture 14: Datalog Implementation

Markus Krötzsch Knowledge-Based Systems

TU Dresden, 19th June 2018

Implementing Datalog

FO queries (and thus also CQs and UCQs) are supported by almost all DBMS → many specific implementation and optimisation techniques

How can Datalog queries be answered in practice?

→ techniques for dealing with recursion in DBMS query answering

There are two major paradigms for answering recursive queries:

- Bottom-up: derive conclusions by applying rules to given facts
- Top-down: search for proofs to infer results given query

Review: Datalog

A rule-based recursive query language

```
\begin{aligned} & \text{father(alice, bob)} \\ & \text{mother(alice, carla)} \\ & & \text{Parent}(x,y) \leftarrow \text{father}(x,y) \\ & \text{Parent}(x,y) \leftarrow \text{mother}(x,y) \\ & \text{SameGeneration}(x,x) \\ & \text{SameGeneration}(x,y) \leftarrow \text{Parent}(x,v) \land \text{Parent}(y,w) \land \text{SameGeneration}(v,w) \end{aligned}
```

- · Datalog is more complex than FO query answering
- · Datalog is more expressive than FO query answering
- Semipositive Datalog with a successor ordering captures P
- Datalog containment is undecidable

Remaining question: How can Datalog query answering be implemented?

Markus Krötzsch, 19th June 2018

Database Theory

slide 2 of 13

Computing Datalog Query Answers Bottom-Up

We already saw a way to compute Datalog answers bottom-up: the step-wise computation of the consequence operator T_P

Bottom-up computation is known under many names:

- Forward-chaining since rules are "chained" from premise to conclusion (common in logic programming)
- Materialisation since inferred facts are stored ("materialised") (common in databases)
- Saturation since the input database is "saturated" with inferences (common in theorem proving)
- Deductive closure since we "close" the input under entailments (common in formal logic)

Markus Krötzsch, 19th June 2018 Database Theory slide 3 of 13 Markus Krötzsch, 19th June 2018 Database Theory slide 4 of 13

Naive Evaluation of Datalog Queries

A direct approach for computing T_p^{∞}

```
01 T_P^0 := \emptyset
02
       i := 0
03
        repeat:
04
05
                for H \leftarrow B_1 \wedge \ldots \wedge B_\ell \in P:
06
                        for \theta \in B_1 \wedge \ldots \wedge B_{\ell}(T_p^i):
                               T_{p}^{i+1} := T_{p}^{i+1} \cup \{H\theta\}
07
08
               i := i + 1
        until T_p^{i-1} = T_p^i
09
       return T_p^i
```

Notation for line 06/07:

- a substitution θ is a mapping from variables to database elements
- for a formula F, we write Fθ for the formula obtained by replacing each free variable x in F by θ(x)
- for a CQ Q and database I, we write $\theta \in Q(I)$ if $I \models Q\theta$

Markus Krötzsch, 19th June 2018 Database Theory slide 5 of 13

Less Naive Evaluation Strategies

Does it really matter how often we consider a rule match? After all, each fact is added only once ...

In practice, finding applicable rules takes significant time, even if the conclusion does not need to be added – iteration takes time!

→ huge potential for optimisation

Observation:

we derive the same conclusions over and over again in each step

Idea: apply rules only to newly derived facts

→ semi-naive evaluation

What's Wrong with Naive Evaluation?

An example Datalog program:

$$e(1,2) \quad e(2,3) \quad e(3,4) \quad e(4,5)$$
 $(R1) \quad T(x,y) \leftarrow e(x,y)$
 $(R2) \quad T(x,z) \leftarrow T(x,y) \wedge T(y,z)$

How many body matches do we need to iterate over?

$$\begin{split} T_P^0 &= \emptyset & \text{initialisation} \\ T_P^1 &= \{\mathsf{T}(1,2),\mathsf{T}(2,3),\mathsf{T}(3,4),\mathsf{T}(4,5)\} & 4 \text{ matches for } (R1) \\ T_P^2 &= T_P^1 \cup \{\mathsf{T}(1,3),\mathsf{T}(2,4),\mathsf{T}(3,5)\} & 4 \times (R1) + 3 \times (R2) \\ T_P^3 &= T_P^2 \cup \{\mathsf{T}(1,4),\mathsf{T}(2,5),\mathsf{T}(1,5)\} & 4 \times (R1) + 8 \times (R2) \\ T_P^4 &= T_P^3 &= T_P^\infty & 4 \times (R1) + 10 \times (R2) \end{split}$$

In total, we considered 37 matches to derive 11 facts

Markus Krötzsch, 19th June 2018 Database Theory slide 6 of 13

Semi-Naive Evaluation

The computation yields sets $T_P^0 \subseteq T_P^1 \subseteq T_P^2 \subseteq \ldots \subseteq T_P^\infty$

- For an IDB predicate R, let R^i be the "predicate" that contains exactly the R-facts in T^i_P
- For $i \le 1$, let Δ_{R}^i be the collection of facts $\mathsf{R}^i \setminus \mathsf{R}^{i-1}$

We can restrict rules to use only some computations.

Some options for the computation in step i + 1:

$$\begin{split} \mathsf{T}(x,z) &\leftarrow \mathsf{T}^i(x,y) \wedge \mathsf{T}^i(y,z) & \text{same as original rule} \\ \mathsf{T}(x,z) &\leftarrow \Delta_\mathsf{T}^i(x,y) \wedge \Delta_\mathsf{T}^i(y,z) & \text{restrict to new facts} \\ \mathsf{T}(x,z) &\leftarrow \Delta_\mathsf{T}^i(x,y) \wedge \mathsf{T}^i(y,z) & \text{partially restrict to new facts} \\ \mathsf{T}(x,z) &\leftarrow \mathsf{T}^i(x,y) \wedge \Delta_\mathsf{T}^i(y,z) & \text{partially restrict to new facts} \end{split}$$

What to choose?

 Markus Krötzsch, 19th June 2018
 Database Theory
 slide 7 of 13
 Markus Krötzsch, 19th June 2018
 Database Theory
 slide 8 of 13

Semi-Naive Evaluation (2)

Inferences that involve new and old facts are necessary:

$$e(1,2)$$
 $e(2,3)$ $e(3,4)$ $e(4,5)$

(R1)
$$T(x, y) \leftarrow e(x, y)$$

(R2)
$$T(x, z) \leftarrow T(x, y) \wedge T(y, z)$$

$$T_{p}^{0} = 0$$

$$\Delta_{\mathsf{T}}^1 = \{\mathsf{T}(1,2), \mathsf{T}(2,3), \mathsf{T}(3,4), \mathsf{T}(3,4), \mathsf{T}(4,5)\} \quad T_P^1 = \Delta_{\mathsf{T}}^1$$

$$\Delta_{\mathsf{T}}^2 = \{\mathsf{T}(1,3), \mathsf{T}(2,4), \mathsf{T}(3,5)\}\$$
 $T_P^2 = T_P^1 \cup \Delta_{\mathsf{T}}^2$

$$\Delta_{\mathsf{T}}^3 = \{\mathsf{T}(1,4), \mathsf{T}(2,5), \mathsf{T}(1,5)\}\$$
 $T_P^3 = T_P^2 \cup \Delta_{\mathsf{T}}^3$

$$\Delta_{\mathsf{T}}^4 = \emptyset \qquad \qquad T_P^4 = T_P^3 = T_P^\infty$$

To derive T(1,4) in Δ_T^3 , we need to combine

 $T(1,3) \in \Delta_T^2 \text{ with } T(3,4) \in \Delta_T^1 \text{ or } T(1,2) \in \Delta_T^1 \text{ with } T(2,4) \in \Delta_T^2$

 \rightarrow rule $\mathsf{T}(x,z) \leftarrow \Delta^i_\mathsf{T}(x,y) \wedge \Delta^i_\mathsf{T}(y,z)$ is not enough

Markus Krötzsch, 19th June 2018

Database Theory

slide 9 of 13

Semi-Naive Evaluation: Example

$$e(1,2)$$
 $e(2,3)$ $e(3,4)$ $e(4,5)$

(R1)
$$T(x, y) \leftarrow e(x, y)$$

$$(R2.1) \qquad \mathsf{T}(x,z) \leftarrow \Delta_{\mathsf{T}}^{i}(x,y) \wedge \mathsf{T}^{i}(y,z)$$

$$(R2.2')$$
 $\mathsf{T}(x,z) \leftarrow \mathsf{T}^{i-1}(x,y) \wedge \Delta^i_{\mathsf{T}}(y,z)$

How many body matches do we need to iterate over?

$$T_P^0 = \emptyset$$
 initialisation

$$T_P^1 = \{\mathsf{T}(1,2), \mathsf{T}(2,3), \mathsf{T}(3,4), \mathsf{T}(4,5)\} \quad 4 \times (R1)$$

$$T_p^2 = T_p^1 \cup \{\mathsf{T}(1,3), \mathsf{T}(2,4), \mathsf{T}(3,5)\}$$
 $3 \times (R2.1)$

$$T_p^3 = T_p^2 \cup \{T(1,4), T(2,5), T(1,5)\}$$
 $3 \times (R2.1), 2 \times (R2.2')$

In total, we considered 14 matches to derive 11 facts

Semi-Naive Evaluation (3)

Correct approach: consider only rule application that use at least one newly derived IDB atom

For example program:

$$e(1,2)$$
 $e(2,3)$ $e(3,4)$ $e(4,5)$

(R1)
$$T(x, y) \leftarrow e(x, y)$$

$$(R2.1) \mathsf{T}(x,z) \leftarrow \Delta^{i}_{\mathsf{T}}(x,y) \wedge \mathsf{T}^{i}(y,z)$$

$$(R2.2) \qquad \mathsf{T}(x,z) \leftarrow \mathsf{T}^i(x,y) \wedge \Delta^i_\mathsf{T}(y,z)$$

There is still redundancy here: the matches for $T(x,z) \leftarrow \Delta_T^i(x,y) \wedge \Delta_T^i(y,z)$ are covered by both (R2.1) and (R2.2)

 \rightarrow replace (R2.2) by the following rule:

$$(R2.2')$$
 $\mathsf{T}(x,z) \leftarrow \mathsf{T}^{i-1}(x,y) \wedge \Delta^i_{\mathsf{T}}(y,z)$

EDB atoms do not change, so their Δ would be \emptyset

→ ignore such rules after the first iteration

Markus Krötzsch, 19th June 2018 Database Theory

slide 10 of 13

Semi-Naive Evaluation: Full Definition

In general, a rule of the form

$$H(\vec{x}) \leftarrow e_1(\vec{y}_1) \wedge \ldots \wedge e_n(\vec{y}_n) \wedge |_1(\vec{z}_1) \wedge |_2(\vec{z}_2) \wedge \ldots \wedge |_m(\vec{z}_m)$$

is transformed into m rules

$$\mathsf{H}(\vec{x}) \leftarrow \mathsf{e}_1(\vec{y}_1) \wedge \ldots \wedge \mathsf{e}_n(\vec{y}_n) \wedge \Delta^i_{\mathsf{L}}(\vec{z}_1) \wedge \mathsf{L}^i_{\mathsf{D}}(\vec{z}_2) \wedge \ldots \wedge \mathsf{L}^i_{\mathsf{m}}(\vec{z}_{\mathsf{m}})$$

$$\mathsf{H}(\vec{x}) \leftarrow \mathsf{e}_1(\vec{y}_1) \wedge \ldots \wedge \mathsf{e}_n(\vec{y}_n) \wedge \mathsf{I}_1^{i-1}(\vec{z}_1) \wedge \Delta^i_{\mathsf{I}_2}(\vec{z}_2) \wedge \ldots \wedge \mathsf{I}_m^i(\vec{z}_m)$$

. . .

$$\mathsf{H}(\vec{x}) \leftarrow \mathsf{e}_1(\vec{y}_1) \wedge \ldots \wedge \mathsf{e}_n(\vec{y}_n) \wedge \mathsf{I}_1^{i-1}(\vec{z}_1) \wedge \mathsf{I}_2^{i-1}(\vec{z}_2) \wedge \ldots \wedge \Delta_{\mathsf{I}_m}^{i}(\vec{z}_m)$$

Advantages and disadvantages:

- Huge improvement over naive evaluation
- Some redundant computations remain (see example)
- Some overhead for implementation (store level of entailments)

 Markus Krötzsch, 19th June 2018
 Database Theory
 slide 11 of 13
 Markus Krötzsch, 19th June 2018
 Database Theory
 slide 12 of 13

Summary and Outlook

Datalog queries can be evaluated bottom-up or top-down

Simplest practical bottom-up technique: semi-naive evaluation

Next question:

• How can we implement Datalog in practice?

Markus Krötzsch, 19th June 2018

Database Theory

slide 13 of 13