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Abstract OBDDs have been applied (e.g. CTL (Huth & Ryan 2000))
are closely related to modal logics which in turn are known
to have strong structural similarities to DLs (Schild 1991)

Web Ontology Language OWL. The algorithm is based on Hence it seems aImQSt natural to apply OBDD-based tech-
ordered binary decision diagrams (OBDDs) as a datastreictur niques for DL reasoning as well. The results f“’”ﬁ (Pan,_ Sat-
for storing and operating on large model representatiores. W tler, & Vardi 2006), however, are still rather restrictedce
thus draw on the success and the proven scalability of OBDD-  they encompass only terminological reasoning in the basic
based systems. To the best of our knowledge, we present DL ALC without general Thoxes.
the very first agorithm for using OBDDs for reasoning with In essence, OBDDs can be used to represent arbitrary
general Thoxes. Boolean functions. These Boolean functions are then inter-
preted as a kind of compressed encoding of — usually very
| ducti large sets of — process states. Model checking and certain
ntroduction manipulations of the state space can then be done directly
In order to leverage intelligent applications for the Setitan ~ on this compressed version without unfolding it. In our ap-
Web, scalable reasoning systems for the standardised Webproach, we employ OBDDs in a very similar way for encod-
Ontology Language OWA_are required. OWL is essen-  ing DL interpretations. However, as DL reasoning is con-
tially based on description logics (DLs), with the DL known cerned with all possible models, we will show by model-
asSHIQ currently being among its most prominent frag- theoretic arguments that for our purposes it iffisient to
ments. State-of-the art OWL reasoners, such as Pellet, Rac-work only with certain representative models.
erPro or KAONZ2 already achieve affieiency which makes A birds eyes’ perspective on our results is as follows:
them suitable for practical use, however they still falldho  SH7ZQ knowledge bases can be reduced equisatisfiably to
of the scalability requirements needed for large-scaldi-app ALCIb knowledge bases. A sound and complete decision
cations. New ideas and approaches are therefore needed tqrocedure based on so-callddmino interpretationgro-
further push the performance of OWL reasoning. vides the next step. This procedure can in turn be realised by
In this paper, we present a promising new algorithm for manipulating Boolean functions, which establishes thle lin
reasoning withSH7Q, which is based on ordered binary  with OBDD-algorithms. We will present our results in this
decision diagrams (OBDDs) as a datastructure for storing sequence, after introducing some notation.
and operating on large model representations (Bryant 1986; Proofs were omitted due to lack of space, but can be found
Huth & Ryan 2000). The rationale behind the approach is in (Rudolph, Krotzsch, & Hitzler 2008).
the fact that OBDD-based systems feature impresdive e
ciency on large amounts of data, e.g. for model checking for Preliminaries

hard- and software verification (Bure al. 1990). Oural- \we first recall some basic definitions of DLs (see (Baader
gorithm is indeed based on a reductiondf JQreasoning gt 41, 2007) for a comprehensive treatment of DLs) and in-

to standard OBDD-algorithms, and thus allows to draw on  {rq4yce our notation. Next we define a rather expressive de-

available algorithms and standard implementations for OB- scription logicSH 7 @b that extendsSH 7Q with restricted

DDs, such as quaBDZD . ) , Boolean role expressions (Tobies 2001). We will not con-
The general idea of using OBDDs for reasoning with  gjgerS#17Qb knowledge bases, but the DL serves as a con-

DLs is not entirely new, and some related results have al- \epjent umbrella logic for the DLs used in this paper. Also,

ready been presented in (Pan, Sattler, & Vardi 2006). A \ye 4o not consider assertional knowledge, and hence will
closer look also reveals that certain temporal logics taWhi 4y introduce terminological axioms here.

We present a new algorithm for reasoning in the description
logic SHIQ, which is the most prominent fragment of the
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Nr U {R" | R € Ng}. In addition, we set InK) := R~ and
Inv(R™) := R, and we will extend this notation also to sets of
atomic roles. In the sequel, we will use the symiRlS to
denote atomic roles, if not specified otherwise.

The set oBoolean role expressiorizis defined as

B:=R|-B|BmnB|BLuB.
We user to denote standard Boolean entailment between

sets of atomic roles and role expressions. Given &Rseft
atomic roles, we inductively define:

e For atomicroleRR, R+ Rif Re R, andR ¥ R otherwise,

e R+ U if R¥ U, andR ¥ U otherwise,

e RUMVIifRrUandR+ V, andR ¥ U nV otherwise,
e RrUUVIfRrUoOrR+V,andR ¥ U LUV otherwise.

A Boolean role expressiod is restrictedif @ ¥ U. The set
of all restricted role expressions is denofedand the sym-
bolsU andV will be used throughout this paper to denote
restricted role expressions. &H 7 Qb Rboxis a set of ax-
ioms of the formU £ V (role inclusion axiom) offra(R)
(transitivity axiom). The set of non-simple roles (for agjiv
Rbox) is inductively defined as follows:

e If there is an axionTra(R), thenRis non-simple.

o If there is an axionR C S with R non-simple, thers is
non-simple.

¢ If Ris non-simple, then InK) is non-simple.

A role is simpleif it is atomic (simplicity of Boolean role
expressions is not relevant in this paper) and not non-gmpl
Based on &8H 7Qb Rbox, the set ofoncept expressioré

is the smallest set containitg, and all concept expressions
given in Table 1, wher€ D € C,U € T, andR e Ris a
simple role. Throughout this paper, the symb@|sD will

be used to denote concept expressionSFAI Qb Thoxis a
set ofgeneral concept inclusion axionf&Cls) of the form

C C D. A SH1Qb knowledge basKB is the union of a
SHIQb Rbox and an accordin§H 7Qb Thox.

As mentioned above, we will consider only fragments
of SHI@b. In particular, aSHIQ knowledge base is a
SH 1Qb knowledge base without Boolean role expressions,
and anALCIb knowledge base is &H Qb knowledge
base that contains no Rbox axioms and no number restric-
tions (i.e. axioms<nRC or >nRC). The related DL
ALCAIb has been studied in (Tobies 2001).

An interpretation/ consists of a set’ calleddomain(the
elements of it being calleddividualg together with a func-
tion X mapping individual names to elementsdf, concept
names to subsets af , and role names to subsetsAdfxA?.

The function-? is extended to role and concept expressions
as shown in Table 1. An interpretatidnsatisfiesan axiom
¢ if we find thatZ E ¢, where

e TEUCVIfUL V!,
e 7 E Tra(R) if R! is a transitive relation,
e TECLCDIfC! c DL

T satisfiesa knowledge base KB E KB, if it satisfies
all axioms of KB. Satisfiability equivalenceandequisatis-
fiability of knowledge bases are defined as usual.

Name Syntax| Semantics

inverse role |R™ (X y) € AT x AT | (y,x) € Rf}

role negation —U (X y) € AT x AT | (X y) ¢ UT}

role con. unv |Ufnv?

role dis;j. UuVv |ufuv!

top T AT

bottom 1 0

negation -C AT\ CT

conjunction |Cn D |Cf nD?

disjunction |CuD |CfuD?

univ. rest.  |YU.C |{xe AT |(xy) e U? impliesy € C?}
exist. rest. |AU.C |{xe AT |ye Al: (xy) e U? ye C}
qualified <nRC|{xe A’ |#ye ATKx,y)eRlyeC’} < n}
number rest.>nRC | {x e AT | #lye AT|(x,y)e Rl ye C} > n}

Table 1: Semantics of role (top) and concept constructors
(bottom) inSH 7@Qb for an interpretatiod with domainA?.

For convenience of notation, we abbreviate Tbox axioms
of the form T C C by writing justC. Statements such as
I E CandC € KB are interpreted accordingly. Note that
C C D can thus be written asC LI D.

Finally, we will often need to access a particular set of
quantified and atomic subformulae of a DL concept. These
specific parts are provided by the functiBn C — 2°¢:

P(D) if C=-D
P(D)UP(E)IfC=DnEorC=DUE
{CUP(D) if C=0QU.DwithQ e{3,Y,>n,<n}
{C} otherwise

We generalisd® to DL knowledge bases KB by defining
P(KB) to be the union of the se®(C) for all Tbox axioms
Cin KB.

For our further considerations, we will usually express
all Thox axioms as simple concept expressions as explained
above. Given a knowledge base KB we obtain its negation
normal formNNF(KB) by converting every Thox concept
into its negation normal form as usual.

It is well-known that KB andNNF(KB) are equivalent.
We will usually require another normalisation step that-sim
plifies the structure of KB bylatteningit to a knowledge
baseFLAT(KB). This is achieved by transforming KB into
negation normal form and exhaustively applying the follow-
ing transformation rules:

e Select an outermost occurrenceqnd.D in KB, such that

Q € {3,V,>n,<n} andD is a non-atomic concept.
Substitute this occurrence witpU.F whereF is a fresh
concept name (i.e. one not occurring in the knowledge
base).

If @ €{3,V,>n}, add-F u D to the knowledge base.

If @ = <naddNNF(-D) U F to the knowledge base.

Obviously, this procedure terminates yielding a flat
knowledge bas&LAT(KB) all Thox axioms of which are
Boolean expressions over formulae of the fofn-A, or
QU.Awith A an atomic concept name.

P(C) =

Proposition 2 Any SH Qb knowledge base KB is equisat-
isfiable toFLAT(KB).



From SHIQto ALCIb

Next, we present a stepwise satisfiability-preserving and
polynomial-time transformation from the quite common de-
scription logicSH 7 Q to the rather “exotic’ALCIb. This

will allow to apply the presented reasoning algorithm te ter
minologicalSH 7Q knowledge bases.

From SHIQ to ALCHIQ. As has been shown in
(Motik 2006), evenSH 7Q knowledge base KB can be con-
verted into an equisatisfiabl@LCHIQ knowledge base,
where ALCHIQ denotes the description logiS8HIQ
without transitivity axioms. We lebs(KB) denote the result
of this reduction, which is known to be time polynomial.

From ALCHIQto ALCHIb*. The DLALCHIbLSis
the fragment o5H 7 Qb that contains no transitivity axioms
and no atleast restrictions). Given anALCH IQ knowl-
edge base KB, atfiLCH b= knowledge bas®.(KB) is
obtained by first flattening KB and then applying the fol-
lowing steps until aln RA have been eliminated.

e Choose an occurrence of a subconcept of fomRA in
the knowledge base.

e Substitute this occurrence BYR;. A ... M IAR,.A, where
Ry, ..., R, are fresh role names.

e Foreveryi €{1,...,n}, addR C Rto the Rbox.
e Forevery I<i < k< n,add¥(R m Ry).L to the Thox.

Observe that this transformation can be done in polyno-
mial time for unary coding of numbers. Note that the same
can be achieved for a binary encoding by using fresh roles
as binary digits for complex roles.

Lemma 3 Any ALCHIQ knowledge base KB is equisat-
isfiable to theALCH Ib* knowledge bas®(KB).

From ALCHIb® to ALCIb=. In the presence of re-

stricted role expressions, role subsumption axioms can be
easily transformed into Thox axioms, as the subsequent

lemma shows. This allows to dispense with role hierarchies
in ALCH Ib= thereby restricting it tcALCIb=.

Lemma 4 For any role nameR, S, the Rbox axionRC S
and the Tbox axionY(Rm =S).L are equivalent.

Hence, for anyALCHIb* knowledge base KB, let
04(KB) denote theALCIb* knowledge base obtained by
substituting every Rbox axiolR C S by the Thox axiom
Y(Rm =S).L. The above lemma assures equivalence of KB
and®4(KB) (and hence also their equisatisfiability). Obvi-
ously, this reduction can be done in linear time.

From ALCIb® to ALCIFb. ALCIFbis the fragment
of ALCIb* that contains< only in functionality restric-
tions, i.e. axioms of the for,e1R 7. Given anALCIb*
knowledge base KB, we obtain th@LCI#b knowledge
base®#(KB) by first flattening KB and then applying the
following steps until no more steps are applicable:

e Substitute this occurrence BYRM =Ry m... M =R,).-A
whereRy, ..., R, are fresh role names.

e Foreachell,...,n},addvR.Aand<1R,.T to the Thox.

Obviously, this transformation can be done in polynomial
time (again assuming a unary encoding of theand we
establish the following equisatisfiability result.

Lemma5 Any ALCIb* knowledge base KB is equisatis-
fiable to theALCI¥ b knowledge bas®.(KB).

From ALCIFbto ALCIb. We now show how the role
functionality axioms of the shap€l R T can be eliminated
from ALCIF b knowledge base.

Essentially, we do so by adding axioms that enforce that,
for every functional roleR, any twoR-successors coincide
with respect to their properties expressible in “relevdit”
terms. While it is rather obvious that those axioms follow
from R's functionality, the other direction (a Leibniz-style
“identitas indiscernibilium” argument) needs a closerkoo
and some intermediate constructions and results that can be
found in the accompanying technical report.

For an ALCI¥b knowledge base KB, le®#(KB) de-
note theALCZb knowledge base obtained from KB by re-
placing every role functionality axiom1 R. T by axioms

e YR-D U VRD foreveryD € P(KB \ {<1R T € KB}),
e Y(RMS).L uVY(RM=S).L for each atomic rol& in KB.

Clearly, also this transformation can be done in polyno-
mial time and space w.r.t. the size of KB, and we establish
the missing link for the desired transformation.

Lemma 6 Any ALCIF bknowledge base KB is equisatis-
fiable to theALCIb knowledge bas®«(KB).

We have thus shown how to transfornS&7Q knowl-
edge base KB into an equisatisfiabfeLC7b knowledge
base @+-0.040,05(KB) in polynomial time. As our
next step towards checking satisfiability $7Q, we can
therefore construct satisfiability checking procedures fo
ALCID.

Building Models from Domino Sets

We now introduce the notion of a set@dminoegor a given
terminologicalALCIb knowledge base. Intuitively, each
domino abstractly represents two individuals ina#£C7b
interpretation, based on their concept properties and role
relationships. We will see that suitable sets of such two-
element pieces $fice to reconstruct models cfiLCTDb,
which also reveals certain model theoretic propertiesisf th
not so common DL. In particular, every satisfiatde’C7b
Thox admits tree-shaped models. This result is rather a
by-product of our main goal of decomposing models into
unstructured sets of local domino components, but it ex-
plains why our below constructions have some similarity
with common approaches of showing tree-model properties
by “unravelling” models.

After introducing the basics of domino representation,

e Choose an occurrence of a subconcept of form the shapewe present a first algorithm for deciding satisfiability of a

<n RAwhich is not a functionality axiom1R.T.

ALCIbterminology based on sets of dominoes.



From Interpretations to Dominoes We firstintroduce the
basic notion of a domino set, and its relationship to interpr
tations. Given a DL language with conce@tand roleRR, a
dominois an arbitrary tripldA, R, B), whereA, B C C and

R € R. We will generally assume a fixed language and refer
to dominoes over that language only. Interpretations can be
deconstructed into sets of dominoes as follows.

Definition 7 Given an interpretatiod = (Af,-7), and a set
C C C of concept expressions, tldomino projectionof
7 w.rt. C, denoted byrc(X) is the set that contains for all
8,6" € A the triple(A, R, B) with

e A={CeC|seCly,

e R={ReR|(40) € R},

e B={CeC|¢ eCl).

Itis easy to see that domino projections do not faithfully
represent the structure of the interpretation that theyewer
constructed from. But as we will see below, domino projec-
tions capture enough information to reconstruct models of
a knowledge base KB, as long @sis chosen to contain at
leastP(KB). For this purpose, we now introduce the inverse
construction of interpretations from arbitrary dominacsset

Definition 8 Given a setD of dominoes, the induced
domino interpretatiorf (D) = (Af, -7) is defined as follows:

1. Af consists of all finite nonempty words ov@where, for
each pair of subsequent lettérd, R, B) and(A’, R, B')
in a word, we have8 = A'.

. Fors = (A, Ry, A)(Az, Ro, A3) .. . {(Ai_1, Ri_1, Aj) a
word andA € N¢ a concept name, we define té)l(= A;,
and seb € A? iff A € tail(0),

. For eachR € Ngr, we set (61,52)
ther 6> 01{ARBYWithR €
62({A, R, B) with Inv(R) € R.

e R if ei-
R or 0,

Mark that — following the intuition — the domino interpre-
tation is constructed by conjoining matching dominoes. We
find that certain domino projections contain enough infor-
mation to reconstruct models of a knowledge base.

Proposition 9 Consider a sef C C of concept expressions,
and an interpretatioly’, and letX = Z(nc(J)) denote the
interpretation of the domino projection gf w.r.t. C. Then,
for any ALCIb concept expressiod € C with P(C) C C,
we have thay7 E Ciff K  C. Especially, for anyALCTb
knowledge base KBY KB iff I (mpkg)(J)) E KB.

Constructing Domino Sets The observation just made
can be the basis for designing an algorithm that decides
knowledge base satisfiability. Checking satisfiabilityeoft
amounts to the attempt to construct a (representation of a)
model. As we have seen, we may achieve this by trying to
construct a model's domino projection. If this can be done,
we know that there is a model, if not, there is none.

In what follows, we first describe the iterative construc-
tion of such a domino set from a given knowledge base, and
then show that it is indeed a decision procedure for knowl-
edge base satisfiability.

Definition 10 Consider anALCZb knowledge base KB,
and defineC = P(FLAT(KB)). SetsD; of dominoes based
on concepts frond are constructed as follows:

Dy consists of all dominoesA, R, B) which satisfy:

kb: for every conceptC € FLAT(KB), we have that
Mbes D C Cis a tautology,

ex: forall JU.Ae C,if Ae BandR + U thendU.A e A,
uni: forallYVU.AeC,if YUAe AandR + U thenA e B.

Given a domino sebj, the setDj,; consists of all domi-
noes(A, R, B) € D; satisfying the following conditions:

delex: for everydU.A € C with JU.A € A, there is some
(A, R,BYeDjsuchthaR’ + U andA e B,

deluni: for everyVU.A € C with YU.A ¢ A, there is some
(A, R, By eDjsuchthatr’ + U butA¢ 8,

sym: (8B, Inv(R), A) € Dj.

The construction of domino sels, ;1 is continued until
Di;1 = Dj. The final resulDkg = Dj,1 defines theeanoni-
cal domino sebf KB. The algorithm returns “unsatisfiable”
if Dkg = 0, and “satisfiable” otherwise.

Since Dy is exponential in the size of the knowledge
base, the iterative deletion of dominoes must terminagg aft
finitely many steps. Below we will see that this procedure is
indeed sound and complete for checking satisfiability.

Note that, in contrast to tableau procedures, the presented
algorithm starts with a large set of dominoes and succes-
sively deletes undesired dominoes. Indeed, on can show that
the constructed domino set is the largest such set from which
a domino model can be obtained. The algorithm thus may
seem to be of little practical use. In the next section, we
will therefore refine the above algorithm to employ Boolean
functions as ficient implicit representations of domino sets,
such that the ficient computational methods of BDDs can
be exploited. Domino sets, however, are well-suited for
showing the required correctness properties.

An important property of domino interpretations con-
structed from canonical domino sets is that the (semantic)
concept membership of an individual can typically be (syn-
tactically) read from the domino it has been constructed of.

Lemma 11 Consider anALCIb knowledge base KB with
non-empty canonical domino s@&g, and defineC :=
P(FLAT(KB)) and 7 = (Af,-7) := I(Dkg). Then for all
C e C and¢d € A, we have that € C! iff C e tail(o).
Moreover,/ E FLAT(KB).

Lemma 11 shows soundness of our decision algorithm.
Conversely, completeness can also be proven, which results
— together with Proposition 2 — in the following theorem.

Theorem 12 A terminological ALCIb knowledge base
KB is satisfiable ff its canonical domino sébkg is non-
empty. Definition 10 thus defines a decision procedure for
satisfiability of suchALCIb knowledge bases.

3Please note that the formulaeRhAT(KB) and inA C C are
such that this can easily be checked by evaluating the Bodpa
erators inC as if A was a set of true propositional variables.



Sets as Boolean Functions

We will now introduce how large sets (in our case the canon-
ical domino, respectively the intermediate sets during its
construction) can befkectively represented implicitly via
Boolean functions. This kind of encoding is rather stan-
dard within the field of BDD-based model checking. Due
to space reasons, we will only give a very brief overview on
OBDDs (for a general reference, see (Huth & Ryan 2000))
and not further elaborate on the technical details of thair m
nipulation in this paper, however, the way of implementing
our approach can be directly derived from the algorithm de-
scribed in this section, as for every operation to be carried
out on the Boolean functions (namely combining them, per-
mutation of variables, instantiating variables etc.) ¢hsran
algorithmic counterpart for the BDD-based representation

Boolean Functions and Operations We first explain how

wise. If a terminal node is reached, its label is returned as a
result. AnorderedBDD (short OBDD) is a BDD for which
there is a total order oviar such that any path in the BDD is
strictly ascending w.r.t. that order.

For any Boolean functiop : 2¥&" — {true, falsg and
any ordering onVar there is (up to isomorphy) exactly
one minimal OBDD realising it, called theducedOBDD
(ROBDD), and this minimal representative can feceently
computed from any non-minimal OBDD. This is used to
efficiently decide whether two OBDDs encode the same
Boolean function. The function that yieldalsefor every
inputis encoded by an ROBDD consisting of just two nodes:
thefalsenode, marked as root, and the (unusteg@-node.

OBDDs for some Boolean formula might be exponen-
tially large in general, but often there is an order which
allows for OBDDs of manageable size. Finding the op-
timal order is NP-complete, but heuristics have shown to

sets can be represented by means of Boolean functions. ThisYield good approximate solutions. Hence OBDDs are of-

will enable us, given a fixed finite base $&tto represent
every family of sets ¢ 25 by a single Boolean function.

A Boolean functioron a seVar of variables is a function
@ : 2¥ _ {true, falsg. The underlying intuition is thas(V)
computes the truth value of a Boolean formula based on the
assumption that exactly the variables\bfare evaluated to
true. A simple example are functions of the forpa] for
somev € Var, which are defined gp/](V) := trueiffve V.

Boolean functions over the same set of variables can be
combined and modified in several ways. Firstly, there are
the obvious Boolean operators for negation, conjunction,
disjunction, and implication. By slight abuse of notation,
we will use the common (syntactic) operator symbels\,

Vv, and — to also represent such (semantic) operators on
Boolean functions. Given, e.g., Boolean functiangnd

¥, we find that ¢ A ¥)(V) true iff ¢(V) = true and
(V) = true. Another operation on Boolean functions is ex-
istential quantification over a set of variabMs Var, writ-
ten asiV.¢ for some functiorp. Given an input sétv C Var

of variables, we definedV.¢)(W) = true iff there is some
V’ € V such thatp(V’ U (W \ V)) = true. In other words,
there must be a way to set truth values of variablés such
thatp evaluates tdrue. Universal quantification is defined
analogously, and we thus haw®&.¢ = -3V.-p as usual.
Mark that our use ofl and¥ overloads notation, and should
not be confused with role restrictions in DL expressions.

Ordered Binary Decision Diagrams Ordered Binary De-
cision Diagrams are data structures thfiiceently encode
Boolean functions. Structurally,@inary decision diagram
(BDD) is a directed acyclic graph whose nodes are labelled
by a variable fromvar. The only exception are twtermi-

nal nodes that are labelled bhyue andfalse respectively.
Every non-terminal node has two outgoing edges, again la-
belled bytrue and byfalse Every BDD based on a variable
setVar = {vi,...,V,} represents an-ary Boolean function

¢ 1 2% — {true, false. The valuep(V) for someV C Var is
determined by traversing the BDD, beginning from a distin-
guished root node: at a node labelled with Var, the eval-
uation proceeds with the node connected bytthe-edge if

v € V, and with the node connected by tlaése-edge other-

ten conceived asfigciently compressed representations of
Boolean functions. In addition, many operations on Boolean
functions — such as the aforementioned “pointwise” nega-
tion, conjunction, disjunction, implication as well as pom
sitional quantification — can be performed directly on the
corresponding OBDDs by fast algorithms.

Translating Dominos into Boolean Functions Now, let
KB = FLAT(KB) be a flattenedALCIb knowledge base.
The variable se¥ar is defined a¥ar := RU(P(KB) x{1, 2}).
We thus obtain an obvious bijection between 3éts Var
and dominoes over the 98¢(KB) given a(A, R, B) — (Ax
{1) UR U (B x {2}). Hence, any Boolean function ovear
represents a domino set as the collection of all variabke set
for which it evaluates tdrue. We can use this observation
to rephrase the constructiondkg in Definition 10 into an
equivalent construction of a functigiKBJ.

We represent DL concep and role expressiond by
characteristic Boolean functions ovéar as follows. Note
that the application of results in another Boolean function,
and is not to be understood as a syntactic formula.

[C] = [DIATE] ifC=DnE
) [DIV[E] ifC=DUE
[C, 1)1 if C € P(KB)
—|[[V]] |f U = _|V
[U] = ViAW) ifU=vnw
) vIviIiwg ifu=vuw
[Ul ifUeR

We can now define an inferencing algorithm based on
Boolean functions.

Definition 13 Given a flattenedALCZb knowledge base
KB and a variable sevVar as above, Boolean functions
[KB]; are constructed based on the definitions in Fig. 1:
° [[KB]IO = ‘,0kb A ‘puni A ‘pex,

o [KBJjis1 := [KBI; A @leleX A gdeluni o =¥

The construction terminates as soon[&8li.1 = [KBIi,
and the result of the construction is then definefiB] :=



P = /\ [C1 pretex = /\ [(AU.C,1H)] — AR UCx{2}).(IKBT; A [UT A [(C, 2)])

) CeKB ) JU.CeP(KB)
¢ = A\ I(VUC, DI A U] - [KC. 2)] gfem= A\ [VU.C, DI - ~3(R UCx(2).(IKB]; A [U] A =I(C, 2)T)
YU.CeP(KB) YU.CeP(KB)
¢*:= \IC.21 A IUT - [(AUC D] ¢™(V) = [KBTi({(D, 1) | (D, 2) € V} U {Inv(R) | Re V} U {{D,2) | (D, 1) € V})

JU.CeP(KB)
Figure 1: Boolean functions for defining the canonical damsat in Definition 13.

[KBT;i. The algorithm returns “unsatisfiable” fKB] (V) = themselves are a widely used notion in modal logic (Black-
falsefor all V C Var, and “satisfiable” otherwise. burn, de Rijke, & Venema 2001), however, due to the ad-
ditional expressive power ofi LCZb compared to standard
We claim that the above algorithm is a correct procedure modal logics like K (the counterpart of the DAELC), we

for checking consistency of terminologicalLC b knowl- had to substantially modify this notion.
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