
Neural-Symbolic Integration
Constructive Approaches

Master’s Thesis by Andreas Witzel

*1979-12-09 in Freiburg, Germany
Matriculation Number: 3065439

Supervisors:

Prof. Dr. rer. nat. habil. Steffen Ḧolldobler
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Abstract

The field of neural-symbolic integration has received much attention recently.
While with propositional paradigms, the integration of symbolic knowledge and
connectionist systems (also called artificial neural networks) has already resulted
in applicable systems, the theoretical foundations for the first-order case are cur-
rently being laid and first perspectives for real implementations are emerging. Two
important components of the neural-symbolic learning cycle [BH05] are represen-
tation, i.e. encoding symbolic knowledge into connectionist systems, and training,
i.e. adjusting these connectionist systems according to information observed in
other ways. These components are the focus of this thesis. Extending results
from [Wit05, BHW05], a practically feasible way is presented to approximate and
embed the semantic operator of covered logic programs in a real-valued domain,
and connectionist architectures suitable for representing this particular form of
symbolic knowledge are developed and evaluated along with appropriate training
methods.
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1 Introduction

Logic programs have been studied thoroughly in computer science and artificial intel-
ligence and are well understood. They are human-readable, they basically consist of
logic formulae, and there are well-founded mathematical theories defining exactly the
meaning of a logic program. Logic programs thus constitute one of the most promi-
nent paradigms for knowledge representation and reasoning. But there is also a major
drawback: Logic programming is unsuitable for certain learning tasks, in particular in
the full first-order case.

On the other hand, for connectionist systems — also called artificial neural net-
works — there are established and rather simple training or learning algorithms. But
it is hard to manually construct a connectionist system with a desired behaviour, and
even harder to find a declarative interpretation of what a given connectionist system
does. Connectionist systems perform very well in certain settings, but in general we do
not understand why or how.

Thus, logic programs and connectionist systems have contrasting advantages and
disadvantages. It would be desirable to integrate both approaches in order to combine
their respective advantages while avoiding the disadvantages. We could then train a
connectionist system to fulfil a certain task, and afterwards translate it into a logic
program in order to understand it or to prove that it meets a given specification. Or we
might write a logic program and turn it into a connectionist system which could then
be optimised using a training algorithm. See [BH05] for a recent survey putting these
tasks into a broader context.

Main challenges for the integration of symbolic and connectionist knowledge thus
centre around the questions (1) how to extract logical knowledge from trained connec-
tionist systems, and (2) how to encode symbolic knowledge within such systems. We
find it natural to start with (2), hoping that extraction methods can be deduced from
successful methods for encoding.

For propositional logic programs, encodings into connectionist systems like [HK94]
led immediately to applicable algorithms. Corresponding learning paradigms have
been developed [GZ99, GBG02] and applied to real settings.

For the first-order logic case, however, the situation is much more difficult, as laid
out in [BHH04]. Concrete translations, as in [BH04, BGH05], yield non-standard1

network architectures. For standard architectures, previous work has established non-
constructive proofs showing the existence of connectionist systems which approximate
given logic programs with arbitrary precision [HKS99, HHS04].

In [Wit05, BHW05] we have presented a construction for such connectionist sys-
tems; however, with the conclusion that it is not suitable for a real implementation. In
this paper, we will generalise these results, present and discuss various standard net-
work architectures and appropriate training methods, and evaluate those selected for
implementation.

First, in Section 2, we will give a short introduction to logic programs and connec-
tionist systems. In Section 3, we will then generalise the basic definitions and results
obtained in [Wit05, BHW05]. Section 4 will present two attempts to construct feed-

1standard in the sense of [BH05]
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forward networks with sigmoidal output functions in the hidden layers, coming to the
conclusion that other types of networks are better suited for our purposes. In Section 5,
we introduce the general network structure and the training framework common to
all architectures we implemented. Section 6 then defines these architectures, specifies
concrete transformation and training methods, and discusses their properties. In Sec-
tion 7, we evaluate the resulting systems using test scenarios, and Section 8 concludes
the paper.
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2 Preliminaries

In this section, we shortly review the basic notions needed from logic pogramming and
connectionist systems. Main references for background reading are [Llo88] and [Roj96],
respectively.

2.1 Logic Programs

A logic programover some first-order languageL is a set of (implicitly universally
quantified)clausesof the formA ← L1 ∧ · · · ∧ Ln, wheren ∈ N may differ for each
clause,A is anatomin L with variables from a setV, and theLi areliterals in L, that
is, atoms or negated atoms.A is called theheadof the clause, theLi are calledbody
literals, and their conjunctionL1 ∧ · · · ∧ Ln is called thebodyof the clause. As an
abbreviation, we will sometimes replaceL1∧ · · ·∧Ln by body and writeA← body .
If n = 0, A is called afact. A clause isground if it does not contain any variables.
Local variablesare those variables occurring in some body but not in the corresponding
head. A logic program iscoveredif none of the clauses contain local variables.

Example 2.1. The following is a covered logic program which will serve as our run-
ning example. The intended meaning of the clauses is given to the right.

e(0). % 0 is even

o(X)← ¬e(X). % X is odd if it is not even

e(s(X))← o(X). % the successors(X) of an odd X is even

TheHerbrand universeUP is the set of all ground terms ofL, theHerbrand base
BP is the set of all ground atoms, which we assume to be infinite. Indeed the case
whenBP is finite is of limited interest to us as it reduces to a propositional setting as
studied in [HK94, GZ99]. Aground instanceof a literal or a clause is obtained by
replacing all variables by terms fromUP . For a logic programP , G(P ) is the set of all
ground instances of clauses fromP .

A level mappingis a function‖ · ‖ : BP → N \ {0}. The level of an atomA is
denoted by‖A‖. The level of a literal is that of the corresponding atom.

A logic programP is acyclic with respect to a level mapping‖ · ‖ if for all clauses
A← L1∧ · · ·∧Ln ∈ G(P ) we have that‖A‖ > ‖Li‖ for 1 ≤ i ≤ n. A logic program
is calledacyclic if there exists such a level mapping.
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Example 2.2. For the program from Example 2.1, we have:

UP = {0, s(0), s(s(0)), . . . }
BP = {e(0), o(0), e(s(0)), o(s(0)), . . . }

G(P ) =



e(0).
o(0)← ¬e(0).

e(s(0))← o(0).
o(s(0))← ¬e(s(0)).

e(s(s(0)))← o(s(0)).
...


We will use the usual abbreviationsn(0) for the n-fold application ofs to 0. With
‖e(sn(0))‖ := 2n + 1 and‖o(sn(0))‖ := 2n + 2, we find thatP is acyclic.

A (Herbrand) interpretationis a subsetI of BP . Those atomsA with A ∈ I are
said to betrue, or to hold, underI (in symbols:I |= A), those withA 6∈ I are said
to befalse, or to not hold, underI (in symbols:I 6|= A). IP = 2BP is the set of all
interpretations.

An interpretationI is a (Herbrand) modelof a logic programP (in symbols:I |=
P ) if I is a model for each clauseA← body ∈ G(P ) in the usual sense. That is, if of
all body literalsI contains exactly those which are not negated (i.e.I |= body), then
I must also contain the head.

Example 2.3. Consider these three Herbrand interpretations forP from Example 2.1:

I1 = {e(0), o(s(0)), e(s2(0)), o(s3(0))}
I2 = {e(0), e(s2(0)), o(s3(0)), e(s3(0))}
I3 = BP

I1 6|= P sincee(s4(0)) ← o(s3(0)) ∈ G(P ) and o(s3(0)) ∈ I1, but e(s4(0)) 6∈ I1.
I2 6|= P sinceo(s(0)) ← ¬e(s(0)) ∈ G(P ) and e(s(0)) 6∈ I2, but o(s(0)) 6∈ I2.
I3 |= P .

Thesingle-step operatorTP : IP → IP maps an interpretationI to the set of ex-
actly those atomsA for which there is a clauseA ← body ∈ G(P ) with I |= body.
The operatorTP captures the semantics ofP as the Herbrand models of the latter are
exactly the pre-fixed points of the former, i.e. those interpretationsI with TP (I) ⊆ I.
For logic programming purposes it is usually preferable to consider fixed points of
TP , instead of pre-fixed points, as the intended meaning of programs. These fixed
points are calledsupported modelsof the program [ABW88]. The well-known stable
models [GL88], for example, are always supported. In Example 2.1, the (obviously in-
tended) model{e(0), o(s(0)), e(s2(0)), o(s3(0)), e(s4(0)), . . . } is supported (and sta-
ble), whileI3 is a model but not supported.
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Example 2.4. For P from Example 2.1 andI2 from Example 2.3, we get the following
by successive application (i.e. iteration) ofTP :

I2
TP7→ {e(0), o(s(0)), e(s4(0)), o(s4(0)), o(s5(0)), o(s6(0)), . . . }
TP7→ {e(0), o(s(0)), e(s2(0)), o(s2(0)), o(s3(0)), e(s5(0)), o(s5(0)) . . . }
TP7→ {e(0), o(s(0)), e(s2(0)), e(s3(0)), o(s3(0)), e(s4(0)), o(s4(0)), e(s6(0)), . . . }
TP7→ . . .

For a certain class of programs, the process of iteratingTP can be shown to con-
verge2 to the unique supported Herbrand model of the program, which in this case is
the model describing the semantics of the program [HS03]. This class is described
by the fact thatTP is a contraction with respect to a certain metric. A more intuitive
description remains to be found, but at least all acyclic programs3 are contained in this
class. That is, given some acyclic programP , we can find its unique supported Her-
brand model by iteratingTP and computing a limit. In Example 2.4 for instance, the
iteration converges in this sense to{e(0), o(s(0)), e(s2(0)), o(s3(0)), e(s4(0)), . . . },
which is the unique supported model of the program.

2.2 Connectionist Systems

A connectionist system— or artificial neural network— is a complex network of sim-
ple computational units, also callednodesor neurons, which accumulate real numbers
from their inputs and send a real number to their output. Each unit’s output iscon-
nectedto other units’ inputs with a certain real-numberedweight. Those units without
incoming connections are calledinput unitsor input neurons, those without outgoing
ones are calledoutput unitsor output neurons.

We will exclusively deal with layered feed-forward networks, i.e. networks without
cycles where the outputs of units in one layer are only connected to the inputs of units
in the next layer. The first and last layers contain the input and output units respectively,
the remaining layers are calledhidden layers. In the input layer, besides actual input
units feeding input from the outside world into the network, we allow additional units
which constantly output the value1.

Each unit has aninput functionwhich uses the connections’ weights to merge its in-
puts into one single value calledactivationor potential, and anoutput functionwhich
then computes the output. If a unit has inputsx1, . . . , xn with weightsw1, . . . , wn,
then theweighted suminput function is

∑n
i=1 xiwi. An example for a locally recep-

tive radial basisinput function is
√∑n

i=1(xi − wi)2, but any function which can be
interpreted as computing some kind of distance is suitable here.

Example 2.5. The connectionist system shown in Figure 1 classifies its input by out-
putting0 for inputs≤ 5, 0.5 for inputs> 5 and≤ 7, and1 for inputs> 7.

2Convergence in this case is convergence with respect to the Cantor topology onIP , or equivalently,
with respect to a natural underlying metric. For further details, see [HS03], where also a general class of
programs, calledΦ-accessible programs, is described, for which iteratingTP always converges in this sense.

3in this case the level mapping does not need to be injective
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Figure 1: The classifying connectionist system from Example 2.5, depicted as a graph
of units with connections. Theweightsof the connections are denoted at the arrows
representing them. Theinput resp.output unitsare marked by an unconnected incom-
ing resp. outgoing arrow. The constant1 unit is denoted as a square. In the hidden
layer, we useweighted sum input functionsalong withstep output functionswhich out-
put 0 for activations≤ 0 and1 for activations> 0. The output unit simply sums up
its weighted inputs. It can be regarded as a unit with weighted sum input function and
identity output function.

Given a connectionist system, it is hard to read off any meaning beyond the obvious
purely mathematical meaning, for example some kind of symbolic or logical interpreta-
tion. Vice versa, given some description of desired behaviour, it is not straightforward
to design a corresponding connectionist system.

One of the main advantages of connectionist systems is that there are established
learning algorithms which can be used to train or adapt existing systems and perform
remarkably well. A prominent method is thebackpropagation algorithm. It changes
the network’s parameters and performs a gradient descent in order to minimise the
deviation from a given desired output. Thus, in order for this learning method to be
applicable, the function computed by the network needs to be differentiable. Obviously,
if all input and output functions are differentiable, then so is the whole network function
since it can be seen as a function composition.

But even if standard learning algorithms cannot be applied, devising training meth-
ods for connectionist systems can be much simpler than for symbolic systems. In this
thesis, we will try both approaches.
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3 Multi-Dimensional Approximations of Logic Programs

In [Wit05, BHW05] we reviewed a method introduced in [HKS99] to embed Herbrand
interpretations intoR and to represent the single-step operator of covered logic pro-
grams as real-valued function onR. We also developed approximations of this func-
tion with arbitrary precision. These approximations consisted of finitely many constant
pieces, which was the basis for the transformation into connectionist systems. One
of our conclusions was that, in order to cope with the limited precision in an imple-
mentation, it would be necessary to distribute the representations of interpretations on
multiple real numbers. This multi-dimensional extension is the subject of this section.

In Section 3.1, we will fix some notation and straightforwardly generalise the nec-
essary basic definitions from Section 2.1 and results from [HKS99, HHS04]. In the
slightly more involved Section 3.2, we will then extend the actual approximation and
prove some properties which we will use later on.

3.1 Basic Definitions

Definition 3.1 (Notation). Throughout this paper, we will usem to denote the number
of dimensions on which interpretations are distributed, andj to refer to a specific di-
mension. We will denotem-dimensional vectors in bold face and use normal face with
indices1, . . . ,m to access the components. In particular, bold face constants denote
m-dimensional vectors of the respective constant, e.g.0 = (0, . . . , 0). Vector com-
parisons and similar operations as well as functions onR are always component-wise,
e.g.

x ≤ y iff
m∧

j=1

xj ≤ yj

max {x,y} := (max{x1, y1}, . . . ,max{xm, ym})
max x := max

1≤j≤m
{xj}

f(x) := (f(x1), . . . , f(xm)) for f : R→ R
e.g. |x| := (|x1|, . . . , |xm|).

Note thatmax is not treated as a function fromR to R, which intuitively would not
make sense anyway.
Additionally, we define component-wise multiplication, division, and exponentiation:

x ∗ y := (x1 · y1, . . . , xm · ym)
x

y
:= x/y := (x1/y1, . . . , xm/ym)

zx := (zx1 , . . . , zxm)

Floating point numbers to a given baseb are denoted by an appended subscriptb.

Definition 3.2 (Multi-Dimensional Level Mappings). An m-dimensional level map-
ping is a tuple of functions(‖ · ‖,dim) where‖ · ‖ is a level mapping anddim yields a
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dimension for each atom, i.e.

‖ · ‖ : BP → N \ {0}

and

dim : BP → {1, . . . ,m}.

For an atomA ∈ BP , ‖A‖ anddim(A) are theleveland thedimensionof A. The level
and the dimension of a literal are those of the corresponding atom.

(‖ · ‖,dim) is said to bebijective iff for each dimensionj ∈ {1, . . . ,m}, ‖ · ‖
restricted todim−1(j) is bijective. In this paper, we will always assume(‖ · ‖,dim) to
be bijective.

Definition 3.3 (Acyclicity wrt multi-dimensional level mappings). A logic program
P is acyclic with respect to a multi-dimensional level mapping(‖ · ‖,dim) if for all
clausesA← L1 ∧ · · · ∧ Ln ∈ G(P ) and all1 ≤ i ≤ n, we have that

‖A‖ > ‖Li‖ or

‖A‖ = ‖Li‖ and dim(A) > dim(Li)

Example 3.4. With

‖e(sn(0))‖ := n + 1 dim(e(sn(0))) := 1
‖o(sn(0))‖ := n + 1 dim(o(sn(0))) := 2

for all n ≥ 0, we find that our running Example 2.1 is acyclic. We will always use this
level mapping for the running example.

Lemma 3.5. A logic programP is acyclic wrt to some level mapping iff it is acyclic
wrt to some multi-dimensional level mapping.

Proof.

“⇒”: AssumeP is acyclic wrt‖ · ‖. With dim(A) := 1 for all A ∈ BP , P is acyclic
wrt (‖ · ‖,dim).

“⇐”: AssumeP is acyclic wrt them-dimensional level mapping(‖ · ‖,dim), thenP
is acyclic wrt to the level mapping

‖ · ‖′ : A 7→ m · (‖A‖ − 1) + dim(A) for all A ∈ BP ,

since for any atomA and literalL

(i)

‖A‖ > ‖L‖
⇒m · (‖A‖ − 1) ≥ m · (‖L‖ − 1) + m (‖A‖, ‖L‖ ∈ N)

⇒ ‖A‖′ > ‖L‖′ (dim(A) ≥ 1,dim(L) ≤ m)
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(ii)

‖A‖ = ‖L‖ ∧ dim(A) > dim(L)⇒ ‖A‖′ > ‖L‖′

Note that bijectivity is preserved in both directions in this proof. Furthermore,
under our standing condition that multi-dimensional level mappings are bijective, all
acyclic programs with respect to some multi-dimensional level mapping are covered.

In the following definitions, we extend the standard technique for bridging the sym-
bolic world of logic programs with the real-numbers-based world of connectionist sys-
tems, namely the embedding of the single-step operator, which carries the meaning of
a logic program, into the real numbers as established for this purpose in [HKS99].

Definition 3.6 (Multi-Dimensional Embedding of BP ). Them-dimensional embed-
dingR : BP → Rm, is defined as

R(A) := (R1(A), . . . , Rm(A)) for A ∈ BP

where

Rj(A) :=

{
b−‖A‖ if j = dim(A)
0 otherwise.

with some (fixed) baseb ≥ 3

It is extended toIP by setting

Rj(I) :=
∑
A∈I

Rj(A) for I ∈ IP

Since we only deal with bijective level mappings, theRj are injective, and thus so
is R. In particular, forI ∈ IP with R(I) = x we have that

I = R−1(x) =
m⋃

j=1

R−1
j (xj).

The higher the level of an atom, the lower its embedded value is. This property gives
more weight to atoms of lower level. In our running example, this can be interpreted
such that atoms of lower nesting depth are considered to be more important.

Example 3.7. With the level mapping defined in Example 3.4, we obtain the following
values for the embedding of the interpretations from Example 2.3:

R(I1) = (0.1010b, 0.0101b)
R(I2) = (0.1011b, 0.0001b)
R(I3) = (0.1111 . . .b , 0.1111 . . .b)

Note: With base2 we would lose injectivity, since for instance the number0.01111 . . .2
has the same value as0.12.
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Definition 3.8 (Multi-Dimensional Embedding of TP ). Them-dimensional embed-
ding ofTP , fP : Df → Df with Df := {R(I)|I ∈ IP } ⊆ Rm, is defined as

fP(x) := R
(
TP

(
R−1(x)

))
Figure 2 illustrates the relations betweenTP , R, andfP.

I ∈ IP
TP

// I ′ ∈ IP

R

��

x ∈ Df

fP
//

R−1

OO

x′ ∈ Df

Figure 2: Relations betweenTP , R, andfP

Now we have a representation of the semantics of a given logic program asm-
dimensional function, which we can also view asm real-valued functions. In general
however, its domain is rugged and arbitrary precision is required. In the next Sec-
tion 3.2, we will approximate this function in a controlled way and simplify its domain.
This approximation will then be the target for the connectionist systems we build.

3.2 Constructing Piecewise Constant Functions

In the following, we assumeP to be a covered logic program and(‖ · ‖,dim) a bi-
jective multi-dimensional level mapping onBP which is, along with its inverse, ef-
fectively computable.R and fP denote the embeddings with baseb as defined in
Section 3.1.

3.2.1 Approximating one Application ofTP

We will construct a ground sub-program ofP such that the associated embedded single-
step operator approximates the original one up to a given component-wise accuracyε ∈
Rm. To this end, we determine a greatest relevant level for each dimension, ensuring
that any set of atoms of greater level will have an embedded value less than the given
accuracy for that dimension. In this way, we can guarantee that our approximation
obeys the accuracy requirements.

Definition 3.9. For all l ∈ Nm, the set ofatoms of level less than or equal tol is
defined as

Al :=
{
A ∈ BP

∣∣‖A‖ ≤ ldim(A)

}
.

Furthermore, theinstance ofP up tol is defined as

Pl :=
{
A← body ∈ G(P )

∣∣A ∈ Al

}
.

Definition 3.10. For all l ∈ Nm, thegreatest relevant input levelswith respect tol are
l̂ with

l̂j := max
{
‖L‖

∣∣ dim(L) = j andL is a body literal of some clause inPl

}
.
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From the definitions and the computability assumptions we made, it is clear thatAl

andPl are finite and, along witĥl, effectively computable.

Example 3.11. In our running example, withl = (2, 2) we have:

Al = {e(0), o(0), e(s(0)), o(s(0))}

Pl =


e(0).
o(0)← ¬e(0).

e(s(0))← o(0).
o(s(0))← ¬e(s(0)).


l̂ = (2, 1)

Note: In principle, a complete set of greatest relevant input levels could be defined for
each output dimension separately. In the above example, we would then get greatest
relevant input levels(0, 1) for output dimension1 and greatest relevant input levels
(2, 0) for output dimension2. For simplicity, however, we drop this optimisation and
use the above definition ofl̂ which boils down to taking the component-wise maximum
of all these separate vectors.

The following lemma establishes a connection between the single-step operators of
some instance ofP as in Definition 3.9 and the original programP .

Lemma 3.12. For all l,k ∈ Nm, k ≥ l, andI, J ∈ IP , we have thatTPk
(I) and

TP (J) agree onAl if I andJ agree onAl̂, i.e.

I ∩Al̂ = J ∩Al̂ implies TPk
(I) ∩Al = TP (J) ∩Al.

Proof. The claim follows directly from the facts thatPk contains all clauses ofG(P )
with heads fromAl, and that these clauses depend only on atoms fromAl̂.

Definition 3.13. The greatest relevant output levelswith respect to some arbitrary
ε > 0 areo(ε) with

o
(ε)
j := min

n ∈ N
∣∣∣ ∑
‖A‖>n

dim(A)=j

Rj(A) < εj


= min

{
n ∈ N

∣∣∣n > − ln ((b− 1)εj)
ln b

}
The following theorem connects the embedded consequence operator of the sub-

programPo(ε) with the desired error boundε. It constitutes the basis for later approxi-
mations using connectionist systems.

Theorem 3.14. For allε > 0, we have that∣∣∣fP(x)− fP
o(ε)

(x)
∣∣∣ < ε for all x ∈ Df .
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Proof. Let x ∈ Df be given. From Lemma 3.12, we know that

TP
o(ε) (R

−1(x)) = R−1(fP
o(ε)

(x))

agrees with

TP (R−1(x)) = R−1(fP(x))

on all atomsA with

‖A‖ ≤ o
(ε)
dim(A).

Thus, for eachj ∈ {1, . . . ,m} we have that thej-th components offPoε (x) andfP(x)
agree on the firsto(ε)

j digits. The maximum deviation occurs if all later digits are0 in
one case and1 in the other. In that case, the difference of thej-th components is∑

‖A‖>n
dim(A)=j

Rj(A),

which is< εj by definition ofo(ε).

Example 3.15. In our running example, forε = (0.1, 0.1) andb = 3 we have:

o
(0.1,0.1)
1 = o

(0.1,0.1)
2 = min

{
n ∈ N

∣∣∣n > − ln(2 · 0.1)
ln 3

}
= min

{
n ∈ N

∣∣∣n > 1.46
}

= 2

and therefore

o(0.1,0.1) = (2, 2)

Thus,fP(2,2)
approximatesfP up to a maximum error of0.1 in each dimension.

3.2.2 Iterating the Approximation

Now we know that one application offP
o(ε)

approximatesfP up toε. But what will

happen if we try to approximate several iterations offP? In general,̂o(ε) might be
greater thano(ε), that is, the required input precision might be greater than the resulting
output precision. In that case, we may lose precision with each iteration. So in order to
achieve a given output precision after a certain number of steps, we increase our overall
precision such that we can afford losing some of it. Since the precision might decrease
with each step, we can only guarantee a certain precision for a given maximum number
of iterations.
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Theorem 3.16. For all l ∈ Nm andn ∈ N, we can effectively computel(n) such that
for all I ∈ IP , ν ≤ n, andk ≥ l(n):

T ν
Pk

(I) agrees withT ν
P (I) onAl.

Proof. By induction onn. Let l ∈ Nm be given.

basen = 0: Obviously,T 0
Pk

(I) = I = T 0
P (I). We setl(0) := l.

stepn n + 1: By induction hypothesis, we can findl(n) such that for allI ∈ IP ,
ν ≤ n, andk ≥ l(n), T ν

Pk
(I) agrees withT ν

P (I) onAl̂. With

l(n+1) := max{l, l(n)},

we then have for allI ∈ IP , ν ≤ n, andk ≥ l(n+1):

T ν
Pk

(I) agrees withT ν
P (I) onAl̂ (k ≥ l(n))

⇒ T ν+1
Pk

(I) agrees withT ν+1
P (I) onAl (3.12)

T 0
Pk

(I) = I = T 0
P (I) completes the induction step.

This result may not seem completely satisfying. If we want to iterate our approxi-
mation, we have to know in advance how many steps we will need at most. Of course,
we could choose a very large maximum number of iterations, but then the instance of
P up to the corresponding level might become very large. But in the general case, we
might not be interested in that many iterations anyway, sinceTP does not necessarily
converge.

For acyclic programs, however,TP is guaranteed to converge, and given anyl ∈
Nm, we can findk ∈ Nm such thatTPk

is guaranteed to agree withTP onAl after an
unlimited number of applications.

Lemma 3.17. If P is acyclic, then for alll ∈ Nm we can effectively computek ∈ Nm

such that for alln ∈ N andI ∈ IP ,

Tn
Pk

(I) agrees withTn
P (I) onAl.

Proof. With k := (max l, . . . ,max l), acyclicity yields thatk ≥ k̂. Let I ∈ IP be
given. We prove by induction the stronger claim that for alln ∈ N,

Tn
Pk

(I) agrees withTn
P (I) onAk

basen = 0: T 0
Pk

(I) = I = T 0
P (I).

stepn n + 1:

Tn
Pk

(I) agrees withTn
P (I) onAk (Induction Hypothesis)

⇒ Tn
Pk

(I) agrees withTn
P (I) onAk̂ (k ≥ k̂)

⇒ Tn+1
Pk

(I) agrees withTn+1
P (I) onAk (3.12)
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3.2.3 Simplifying the Domain

Now we have gathered all information and methods necessary to approximatefP and
iterations of it. It remains to simplify the domain of the approximation so that we can
regard the approximation as a piecewise constant function. We do this by extending
Df to some larger setDl.

The idea is as follows. Since only input atomsA with ‖A‖ ≤ l̂dim(A) play a role

in Pl, we have that all elements ofDf which differ only after thêlj-th digit in each
componentj ∈ {1, . . . ,m} are mapped to the same value byfPl

. So we have hyper-
intervals

H :=
m∏

j=1

[xj , yj ] ⊆ Rm

such that all elements ofH ∩Df are mapped to the same value.

Example 3.18. In our running example, one of these hyper-intervals is given by the
following values for the endpoints, since we havel̂ = (2, 1):

x = (0. 01︸︷︷︸
=

000 . . .b , 0. 0︸︷︷︸
=

000 . . .b)

y = (0.
︷︸︸︷
01 111 . . .b , 0.

︷︸︸︷
0 111 . . .b)

Obviously, in each dimensionj ∈ {1, . . . ,m} there are2l̂j disjoint such ranges
[xj , yj ], yielding a total number of

m∏
j=1

2l̂j

disjoint hyper-intervals. So we can extendfPl
to a functionf̂Pl

which has a domain
consisting of this number of disjoint hyper-intervals and is constant on each of them.
We formalise these and some additional results in the following.

Definition 3.19. Given somel ∈ Nm, for eachj ∈ {1, . . . ,m} an ordered enumeration
of all lj-digit floating point numbers with baseb can be computed as

dl,j,i :=
lj∑

k=1

({
b−k if

⌊
i

lj−k+1

⌋
mod 2 = 1

0 otherwise

)
(0 ≤ i < 2lj ).

We define the interval length

λl,j :=
∑
‖A‖>lj

Rj(A) =
1

(b− 1) · blj
for 1 ≤ j ≤ m.



3.2 Constructing Piecewise Constant Functions 21

Now we define

Dl,j,i := [dl,j,i , dl,j,i + λl,j ] for 1 ≤ j ≤ m and0 ≤ i < 2lj

Dl,j :=
2lj−1⋃
i=0

Dl,j,i for 1 ≤ j ≤ m

Dl,i :=
m∏

j=1

Dl,j,ij
for 0 ≤ i < 2l

and get two equivalent constructions for4

Dl :=
m∏

j=1

Dl,j =
⋃

0≤i<2l

Dl,i.

Thus, eachDl,j consists of2lj pieces of equal length, or alternatively, eachDl,i is
anm-dimensional hyper-interval. No matter which way we construct it,Dl consists of∏m

j=1 2lj hyper-intervals, each of which has a size of

m∏
j=1

λl,j =
m∏

j=1

1
(b− 1) · blj

= (b− 1)−m
m∏

j=1

b−lj

Example 3.20. In Figure 3, the values of thedl,j,i , λl,j , Dl,j,i , Dl,j , and Dl,i are
computed explicitly for our running example.

Lemma 3.21. For all l ∈ Nm, Dl is an extension ofDf , i.e.

Dl ⊇ Df

Proof. Let l ∈ Nm andx ∈ Df . Then for eachj ∈ {1, . . . ,m} there is anij ∈
{0, . . . , 2lj − 1} such thatdl,j,ij

agrees withxj on itslj digits. ButDl,j,ij
contains all

numbers which agree withdl,j,ij on itslj digits, thusx ∈ Dl,i ⊆ Dl.

Lemma 3.22. For all l ∈ Nm andj ∈ {1, . . . ,m}, the connected parts ofDl,j are
disjoint and the space between one part and the next is at least as wide as the parts
themselves.

Proof. The minimum distance between two parts occurs when the left endpoints differ
only in the last, i.e.lj-th, digit. In that case, the distance between these endpoints is
b−lj , which is≥ 2 · λl,j sinceb ≥ 3.

Lemma 3.23. For all l ∈ Nm and0 ≤ i < 2l̂, fPl
is constant onDl̂,i ∩Df .

4we use
S

a≤i<b for vectors instead of
Sb−1

i=a since it is not clearly defined how to count from one
vector up to another
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d(2,1),1,0 = 0.003 d(2,1),1,1 = 0.013 d(2,1),2,0 = 0.03

d(2,1),1,2 = 0.103 d(2,1),1,3 = 0.113 d(2,1),2,1 = 0.13

λ(2,1),1 = 0.0011 . . .3 λ(2,1),2 = 0.011 . . .3

D(2,1),1,0 = [0.003, 0.0011 . . .3] D(2,1),2,0 = [0.03, 0.011 . . .3]
D(2,1),1,1 = [0.013, 0.0111 . . .3] D(2,1),2,1 = [0.13, 0.111 . . .3]
D(2,1),1,2 = [0.103, 0.1011 . . .3]
D(2,1),1,3 = [0.113, 0.1111 . . .3]
D(2,1),1 = [0.003, 0.0011 . . .3] D(2,1),2 = [0.03, 0.011 . . .3]

∪ [0.013, 0.0111 . . .3] ∪ [0.13, 0.111 . . .3]
∪ [0.103, 0.1011 . . .3]
∪ [0.113, 0.1111 . . .3]

D(2,1),(0,0) = [0.003, 0.0011 . . .3] D(2,1),(0,1) = [0.003, 0.0011 . . .3]
× [0.03, 0.011 . . .3] × [0.13, 0.111 . . .3]

D(2,1),(1,0) = [0.013, 0.0111 . . .3] D(2,1),(1,1) = [0.013, 0.0111 . . .3]
× [0.03, 0.011 . . .3] × [0.13, 0.111 . . .3]

D(2,1),(2,0) = [0.103, 0.1011 . . .3] D(2,1),(2,1) = [0.103, 0.1011 . . .3]
× [0.03, 0.011 . . .3] × [0.13, 0.111 . . .3]

D(2,1),(3,0) = [0.113, 0.1111 . . .3] D(2,1),(3,1) = [0.113, 0.1111 . . .3]
× [0.03, 0.011 . . .3] × [0.13, 0.111 . . .3]

Figure 3: The values of thedl,j,i , λl,j , Dl,j,i , Dl,j , andDl,i for the running example.

f̂P(2,2)
(x) =



(0.103, 0.113) = R ({e(0), o(0), o(s(0))}) for x ∈ D(2,1),(0,0)

(0.113, 0.113) = R ({e(0), o(0), e(s(0)), o(s(0))}) for x ∈ D(2,1),(0,1)

(0.103, 0.103) = R ({e(0), o(0)}) for x ∈ D(2,1),(1,0)

(0.113, 0.103) = R ({e(0), o(0), e(s(0))}) for x ∈ D(2,1),(1,1)

(0.103, 0.013) = R ({e(0), o(s(0))}) for x ∈ D(2,1),(2,0)

(0.113, 0.013) = R ({e(0), e(s(0)), o(s(0))}) for x ∈ D(2,1),(2,1)

(0.103, 0.003) = R ({e(0)}) for x ∈ D(2,1),(3,0)

(0.113, 0.003) = R ({e(0), e(s(0))}) for x ∈ D(2,1),(3,1)

Figure 4: The values of̂fPl
for the running example.
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Proof. For all atomsA in bodies of clauses ofPl, we have that‖A‖ ≤ l̂dim(A). Thus,

in each dimensionj ∈ {1, . . . ,m}, TPl
regards only those atoms of level≤ l̂j , i.e.

TPl
is constant for all interpretations which agree on these atoms. This means that

fPl
is constant for allx which agree on the first̂lj digits of thejth component for all

j ∈ {1, . . . ,m}, which holds for allx ∈ Dl̂,i ∩Df .

Definition 3.24. Theextension offPl
to Dl̂ , f̂Pl

: Dl̂ → Df , is defined as

f̂Pl
(x) := fPl

(dl̂,1,i1
, . . . , dl̂,m,im

) for x ∈ Dl̂,i.

From the results above, it follows thatf̂Pl
is well-defined.

Example 3.25. The values of̂fPl
for our running example are computed explicitly

in Figure 4. The corresponding graphs are shown in Figure 5. Note also that, no
matter where we start, iterated application of the function always ends up yielding
(0.103, 0.013) = R ({e(0), o(s(0))}), which is exactly the embedding of the fixed point
of TP restricted toA(2,2).

(a) output dimension 1 (b) output dimension 2

Figure 5: The graphs of̂fPl
for the running example. The graphs offP would consist

of dots slightly above the tops of these blocks.

We have simplified the domain of the approximated embedded single-step operator
such that we can regard it as a function toRm which is defined on a finite number of
disjointm-dimensional hyper-intervals, and which is constant on these.

Now, we will try to construct connectionist systems which either compute this func-
tion exactly or approximate it up to a given, arbitrarily small error vector. In the latter
case we are facing the problem that the two errors might add up to an error which is
greater than the desired maximum error. But this is easily taken care of by dividing the
desired maximum overall error into one errorε′ for fP

oε′
and another errorε′′ for the

connectionist system to be constructed.
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4 Attempts for Sigmoidal Network Architectures

In the following, we will try to construct standard feed-forward networks with sig-
moidal output functions in the hidden layer computing or approximating piecewise
constant functions like the ones obtained in Section 3.2. We choose this architecture
firstly because there exist well-established training algorithms, and secondly out of an
intuition that a continuous network function will be better suited for dealing with the in-
finite nature of first order logic programs than discrete, propositional-like approaches.
The reason for this intuition is that, in the context of the embedding we use and with
infinite BP , the differences between embedded values can be arbitrarily small, falling
below any fixed increment of some discrete function. Of course, on a real computer
this argument is void, but intuitively we would like to stick to it at least in theory.

We will consider a functiong : D → R whereD ⊂ Rm consists of a finite number
of disjoint m-dimensional hyper-intervals. In each dimensionj ∈ {1, . . . ,m}, we
havenj edges of hyper-intervals, i.e. plain one-dimensional intervals, each of length
bj . On each of the hyper-intervals,g has a constant value. We will then compute or
approximate this functiong using connectionist systems. Each component off̂Pl

is
a special case of such a function, so our results will be applicable to it. The simple
intention with usingg is to save some indices and get less complicated expressions.

So letg : D → R be given by

D :=
m∏

j=1

nj−1⋃
i=0

[aj,i, cj,i],

or, equivalently,

D =
⋃

0≤i<n

m∏
j=1

[aj,ij
, cj,ij

]

with

g(x) := yi for x ∈
m∏

j=1

[aj,ij
, cj,ij

] and someyi ∈ R, yi ≥ 0,

where

cj,i = aj,i + bj andcj,i < aj,i+1 (1 ≤ j ≤ m, 0 ≤ i < nj)

We want the output of the networks to agree with or to approximateg onD. We do
not care about the output of the network for inputs outsideD, since they are guaranteed
not to be possible embeddings of interpretations, i.e. in our setting they do not carry
any symbolic meaning which could be translated back toIP .
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4.1 Intuitive Geometrical Attempt with 3 Layers

In the one-dimensional case examined in [Wit05, BHW05], we intuitively started the
construction of the connectionist systems by positioning step functions between the
constant pieces of the target function. If we want to extend this construction to mul-
tiple dimensions, we have to position the step functions accordingly in the multi-
dimensional input space. Each step function divides the input space linearly and assigns
a different output value to inputs from each of the two parts. Thus, once we have found
a pattern to arrange the steps, it only remains to solve a set of linear equations to find
out which outputs the step functions should use.

Figure 6 schematically shows two attempts to position the steps in an easy two-
dimensional case. Attempt (a) aligns the steps along the input dimensions, putting one
step between each row and column of the blocks representing the constant parts of the
target function. If we usev1 resp.v2 to denote the output values that the step functions
s1 resp.s2 assign to inputs within2 resp. in1 values less than the step position, and
w1 resp. w2 to denote the output values for inputs with greaterin2 resp. in1 values,
we obtain the following set of equations:

h1 = v1 + v2 h2 = v1 + w2

h3 = w1 + w2 h4 = w1 + v2

which resolves to the dependency

h1 + h3 = h2 + h4

in1

in2

out

h1

h2

h3

h4

s1

v1

w1

s2

v2 w2

(a)

in1

in2

out

(b)

Figure 6: Schematic view of two attempts to position the step functions in a two-
dimensional input space.

However, our target functiong does not necessarily obey such restrictions. More
specifically, for any given valuesh1, h2, h3, h4 we can construct a logic program and
an approximation of it such that this combination of height values occurs in the em-
bedded approximated single-step operator. Dependencies as the above one are thus not
acceptable in the context of our application.
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Attempt (b) works in this simple case, but fails with slightly more complicated
target functions. Since all attempts to find intuitive patterns failed at some point, we
abandoned this approach.

4.2 Discrete Construction with 4 Layers

We will now construct feed-forward networks with two hidden layers, each using
weighted sum input functions. The networks havem input units whose values are
fed to the units in the first hidden layer. Their outputs in turn serve as inputs for the
units in the second hidden layer, whose outputs are summed up in the one output unit.

The construction works as follows: The first hidden layer is used to find out in
which hyper-interval ofD the input is contained. The second hidden layer has one
unit for each hyper-interval, computing the value ofg if the input is contained in the
respective hyper-interval and0 otherwise. Then we can sum up all results from the
second hidden layer in the output unit to obtain the value ofg.

We proceed in two steps. First we computeg exactly using a connectionist system
with step activation functions in the hidden layers. Then we replace each step func-
tion by a corresponding sigmoidal function similar enough to guarantee that a given
maximum error for the whole system is not exceeded.

4.2.1 Step Output Functions

In detail, in the first hidden layer for each dimensionj and each interval[aj,i, cj,i] we
set up units whose summed output is1 for inputs from this interval and0 for inputs
from the other intervals. In the second hidden layer, for each hyper-interval ofD we
sum up these values for them intervals constituting the hyper-interval. If this sum
equalsm, we know that the input is contained in the hyper-interval. In this case, the
respective unit in the second hidden layer should output the value ofg on this hyper-
interval, otherwise0.

Each of the units in the two hidden layers has the following output function.

Definition 4.1 (Step function). Forx ∈ R,

s(x) :=

{
0 if x ≤ 0
1 otherwise.

In the first hidden layer, for each dimensionj ∈ {1, . . . ,m} we neednj − 1
units plus2 “dummy” units to simplify the formalism. They can either be removed
or replaced by a constant unit in a real implementation. The functions we intend to
compute in the first hidden layer are defined in the following.

Definition 4.2 (Functions computed in the first hidden layer). For each input di-
mensionj ∈ {1, . . . ,m} and for eachi ∈ {1, . . . , nj − 1}, we define

θj,i := 1
2 (cj,i−1 + aj,i)



4.2 Discrete Construction with 4 Layers 27

and, for allx ∈ R,

sj,i(x) := s(x− θj,i)
sj,0(x) := 1

sj,nj
(x) := 0

Lemma 4.3. For allx ∈ D, j ∈ {1, . . . ,m} andi ∈ {0, . . . , nj − 1}, we have that

sj,i(xj)− sj,i+1(xj) =

{
1 if xj ∈ [aj,i, cj,i]
0 otherwise

Proof. The claim follows directly from Definitions 4.1 and 4.2. Figure 7 illustrates the
corresponding functions for the first input dimension of our running example. Note
that the claim is only forx ∈ D, so input values that lie between theDl,j,i do not
matter.
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Figure 7: Illustration of the first hidden layer functions for the input dimension1 of the
running example.

Corollary 4.4. For allx ∈ D and0 ≤ i < n, we have that

m∑
j=1

(
sj,ij

(xj)− sj,ij+1(xj)
){= m if x ∈

∏m
j=1[aj,ij

, cj,ij
]

≤ m− 1 otherwise

Proof. The claim follows from Lemma 4.3 and the fact that

x ∈
m∏

j=1

[aj,ij
, cj,ij

] iff xj ∈ [aj,ij
, cj,ij

] for all j ∈ {1, . . . ,m}.
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In the second hidden layer, we need one unit for each hyper-interval ofD, yielding
a total number of

∏m
j=1 nj units. The functions we want to compute in the second

hidden layer are given in the following.

Definition 4.5 (Functions computed in the second hidden layer).For eachi ∈ Nm

with 0 ≤ i < n, we defineθi := m− 0.5 and, for allx ∈ R,

s′i(x) := s(x− θi)

Lemma 4.6. For allx ∈ D andi ∈ Nm with 0 ≤ i < n, we have that

s′i

( m∑
j=1

(
sj,ij

(xj)− sj,ij+1(xj)
) )

=

{
1 if x ∈

∏m
j=1[aj,ij

, cj,ij
]

0 otherwise

Proof. The claim follows from Definitions 4.1 and 4.5 and Corollary 4.4.

Corollary 4.7. For allx ∈ D, we have that∑
0≤i<n

yi · s′i
( m∑

j=1

(
sj,ij

(xj)− sj,ij+1(xj)
) )

= g(x)

Proof. The claim follows from Lemma 4.6 and the fact that the hyper-intervals are
disjoint.

Now we have specified all functions we want to compute. It remains to define a
network topology which implements these functions.

Definition 4.8 (The topology of the network).

V := {uin,j |1 ≤ j ≤ m} ∪ {uout} ∪ {u=1} ∪
{uj,i|1 ≤ j ≤ m, 0 ≤ i ≤ nj} ∪
{ui|0 ≤ i < n}

is the set of input, output, constant1, first hidden layer, and second hidden layer units,
respectively. The hidden units and the output unit use the weighted sum input function.
The hidden units use the step output function specified in Definition 4.1, while the
output unit uses identity as output function.

An edgeis a tuple(α, β, γ) ∈ V ×V ×R with the intended meaning that the output
of unit α is fed to unitβ with weightγ. The set of edges is

E :=
m⋃

j=1

nj−1⋃
i=1

{(uin,j , uj,i, 1), (u=1, uj,i,−θj,i)} ∪

m⋃
j=1

{
(u=1, uj,0, 1), (u=1, uj,nj

, 0)
}

⋃
0≤i<n

m⋃
j=1

({
(uj,ij

, ui, 1), (uj,ij+1, ui,−1)
})
∪

⋃
0≤i<n

{(u=1, ui,−θi), (ui, uout, yi)}
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with the values ofθj,i andθi as specified in Definitions 4.2 and 4.5.

Thus, we defined a network withm input,1 output,1 constant,
∑m

j=1 (nj + 1) first
hidden layer units (including the “dummy” units), and

∏m
j=1 nj second hidden layer

units.

Example 4.9. See Figure 8 to get an impression of the network resulting from our
running example.

Theorem 4.10. The function computed by the network from Definition 4.8 coincides
with g onD.

Proof. With the specified network topology, the functions computed in the first and
second layer correspond exactly to the functions defined in Definitions 4.2 and 4.5.
The claim thus follows from Corollary 4.7.

4.2.2 Sigmoidal Output Functions

We will now replace the step output functions by sigmoidal functions, keeping the
topology from Definition 4.8.

Definition 4.11 (Sigmoidal function). Forx, z ∈ R,

σz(x) :=
1

1 + e−zx
.

For all x ∈ R \ {0}, we havelimz→∞ σz(x) = s(x). Since the value of the step
function for input0 was never relevant for us, we can approximate each step function
by a sigmoidal function up to an arbitrarily small error in the relevant ranges. So we
can approximate the whole step function network by a sigmoidal one up to any given
error. It only remains to find out how large we have to choose the value ofz for each
unit.

In the following, for simplicity we will keepz as a parameter to the sigmoidal
functions. In a real implementation, it can be incorporated in the connection weights.

Definition 4.12. Extending Definitions 4.2 and 4.5, for allj ∈ {1, . . . ,m} we define

σj,i(x) := σzj,i(x− θj,i) (i ∈ {1, . . . , nj − 1})
σj,0(x) := 1

σj,nj (x) := 0

and for eachi ∈ Nm with 0 ≤ i < n, we define

σ′i(x) := σzi
(x− θi)

wherex ∈ R, and the values for thezi and thezi,j are chosen according to Algorithm 1
with some givenε > 0.
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Algorithm 1 : Computingzi andzj,i from Definition 4.12

Input : Someε > 0
Output : Values for thezi and thezi,j

for 1 ≤ j ≤ m, 0 ≤ i ≤ nj do1

zi,j ← 02

end3

ε′ ← ε
(
Qm

j=1 nj)−14

for 0 ≤ i < n do5

chooseµ ∈ (m− 1,m− 0.5)6

choosezi such thatyi · σ′i(µ) < ε′7

chooseν ∈ (m− 0.5,m) such thatyi · σ′i(ν) > yi − ε8

for 1 ≤ j ≤ m do9

increasezj,ij such thatσj,ij (aj,ij ) ≥ 1
2

(
ν
m + 1

)
10

increasezj,ij+1 such thatσj,ij+1(cj,ij ) ≤ 1
2

(
1− ν

m

)
11

increasezj,ij
such thatσj,ij

(cj,ij−1) ≤ µ− (m− 1)12

increasezj,ij+1 such thatσj,ij+1(aj,ij+1) ≥ 1− (µ− (m− 1))13

end14

end15

Algorithm 1 obviously terminates and assigns values to all variables needed in
Definition 4.12. It remains to prove that the algorithm is consistent, i.e. in all statements
containing “such that” there actually exist values satisfying the condition, and that
using the resulting assignments we really obtain an approximating network.

Lemma 4.13. Algorithm 1 is consistent.

Proof. For each of the critical statements, we give the reason why there is always a
value satisfying the respective condition, using the facts that allyi ≥ 0 as well as
ε, ε′ > 0, the property thatlimz→∞ σz(x) = s(x) for all x ∈ R \ {0}, and our
knowledge about theθj,i and theθi.

line 7: µ < m− 0.5 = θi

line 8: m > m− 0.5 = θi, |m− θi| ≥ |µ− θi|, ε > ε′

line 10: aj,ij
> θj,ij

, 1
2

(
ν
m + 1

)
< 1

line 11: cj,ij
< θj,ij+1,

1
2

(
1− ν

m

)
> 0

line 12: cj,ij−1 < θj,ij
, µ− (m− 1) > 0

line 13: aj,ij+1 > θj,ij+1, 1− (µ− (m− 1)) < 1

Theorem 4.14. For all ε > 0, the function computed by the network from Defi-
nition 4.8 with the step functions replaced by the sigmoidal functions from Defini-
tion 4.12 approximatesg up toε onD.
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Proof. All line numbers in this proof refer to Algorithm 1. Letx ∈ D. For eachi with
0 ≤ i < n and each dimensionj ∈ {1, . . . ,m}, we have thatσj,ij (xj)−σj,ij+1(xj) ≤
1 and

case 1xj ∈ [aj,ij
, cj,ij

]:

σj,ij (xj) ≥
1
2

( ν

m
+ 1
)
∧ by line 10 andxj ≥ aj,ij > θj,ij

σj,ij+1(xj) ≤
1
2

(
1− ν

m

)
by line 11 andxj ≤ cj,ij < θj,ij+1

⇒ σj,ij
(xj)− σj,ij+1(xj) ≥

ν

m

case 2xj 6∈ [aj,ij
, cj,ij

]:

(ij > 0 ∧ xj ≤ cj,ij−1) ∨
(ij < nj − 1 ∧ xj ≥ aj,ij+1)

sincex ∈ D

⇒ σj,ij (xj) ≤ µ− (m− 1) ∨ by line 12 ifxj ≤ cj,ij−1 < θj,ij

σj,ij+1(xj) ≥ 1− (µ− (m− 1)) by line 13 ifxj ≥ aj,ij+1 > θj,ij+1

⇒ σj,ij (xj)− σj,ij+1(xj) ≤ µ− (m− 1)

Thus, for eachi with 0 ≤ i < n we have

case 1x ∈
∏m

j=1[aj,ij
, cj,ij

]:

m∑
j=1

(
σj,ij (xj)− σj,ij+1(xj)

)
≥ m · ν

m
= ν

⇒ yi · σ′i
( m∑

j=1

(
σj,ij (xj)− σj,ij+1(xj)

) )
> yi − ε by line 8 andν > θi

case 2x 6∈
∏m

j=1[aj,ij
, cj,ij

]:

there isj ∈ {1, . . . ,m} with xj 6∈ [aj,ij , cj,ij ]

⇒
m∑

j=1

(
σj,ij

(xj)− σj,ij+1(xj)
)

≤ (m− 1) + (µ− (m− 1)) = µ

⇒ yi · σ′i
( m∑

j=1

(
σj,ij (xj)− σj,ij+1(xj)

) )
< ε′ by line 7 andµ < θi

as well as0 < yi · σ′i < yi onR.
Thus, for allι with 0 ≤ ι < n, if x ∈

∏m
j=1[aj,ιj

, cj,ιj
] then

g(x) = yι
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and

yι − ε <
∑

0≤i<n

yi · σ′i
( m∑

j=1

(
σj,ij

(xj)− σj,ij+1(xj)
) )

< yι +
(
(
∏m

j=1 nj)− 1
)

ε′

= yι +
(
(
∏m

j=1 nj)− 1
) ε

(
∏m

j=1 nj)− 1
by line 4

= yι + ε

The fact that the sigmoidal version of the network from Definition 4.8 actually com-

putes
∑

0≤i<n yi · σ′i
(∑m

j=1

(
σj,ij

(xj)− σj,ij+1(xj)
))

follows analogously to the

proof of Theorem 4.10.

4.3 Conclusion: Failure

While the attempt in Section 4.1 failed right away, the construction presented in Sec-
tion 4.2 is too clumsy and too fragile for a real implementation. There are many pa-
rameters that are related to each other, and if we change only some of them, the whole
construction will break down. This means we cannot use standard training algorithms
like backpropagation if we want to preserve the construction. Additionally, the con-
struction with the counting first hidden layer is a very discrete approach, which is only
disguised by the use of sigmoidal functions used to simulate local receptiveness. Hav-
ing lost two main reasons for using sigmoidal feed-forward networks, we will therefore
abandon this attempt.
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5 Prerequisites for a Real Implementation

Freed from the requirement to use sigmoidal networks, we will now design specialised
network architectures, accepting that we may also have to devise suitable training meth-
ods. According to the experiences from the previous section where we used sigmoidal
networks just in order to simulate local receptiveness, we will now concentrate on lo-
cally receptive architectures right away.

Exploiting the domain knowledge we have will enable us to adapt or design net-
works architectures specifically tailored to our needs with only small numbers of free
parameters. While in some cases standard training methods may still work, we will
modify them or devise new methods to take advantage of these properties.

Unlike Section 4, this section will not deal with an arbitrary real-valued function
defined onD. Firstly because we want to exploit our knowledge about the specific
properties of the function we compute, and secondly because when implementing the
resulting connectionist systems, we would like to avoid building a separate network for
each output dimension.

As target function for the transformation algorithms, we will consider a function
g : Dl → Rm for some arbitraryl ∈ Nm with Dl as defined in Definition 3.19. It
corresponds to the extended embedded single step operator of a finite approximation
of some logic program. Training data will be generated using (possibly approximated)
logic programs. Whether or notg relates to the same logic program as the training data
depends on the scenario.

Again, one could examine in each concrete case how much the input space granu-
larity required by the individual output dimensions ofg varies, and then decide whether
to use a separate set of hidden layer units for each output dimension splitting the input
space only as fine-grained as necessary for that output dimension, or to use one com-
mon set of hidden layer units and accept a possibly more fine-grained partition of the
input space than necessary for some output dimensions. Since neither of these meth-
ods is in all cases the more efficient choice, we will stick to the second one and stay
consistent with Definition 3.10 and the subsequent remark.

Since in a real implementation we are inherently dealing with finite interpretations,
we could allow base2 for the embedding without losing injectivity (see the remark
after Definition 3.6). Considering the binary nature of computers, this is obviously an
efficient choice, and the algorithms we will describe do not depend on the gaps between
the hyper-intervals ofDl which disappear with base2. However, to leave room for
computational inaccuracy and to stay consistent with the theoretical background, we
will stick to bases greater than2.

In the following Section 5.1, we describe the general structure which all imple-
mented network architectures have in common. Section 5.2 introduces the general
training framework. In the remaining part of the thesis, we use this framework to
present various network constructions in detail and discuss their properties.

5.1 Network Structure

All networks we discuss are 3-layer feed-forward networks withm units in the input
layer andm units in the output layer, the latter computing the weighted sum of the
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hidden layer units’ outputs. Each layer is fully connected to the next layer. This general
structure is depicted in Figure 9.
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Figure 9: The general network structure used in the implementations.

5.1.1 Radial Basis Input Function

Each unit in the hidden layer has a radial basis input function computing the unit’s ac-
tivation, or potential, as defined in Algorithm 2. TheweightsInvector of a unitu (also
denotedweightsInu, but we will drop the subscript where it is clear from the context)
contains the current weights of the incoming connections from them input units, while
its scaling vector (also denotedscalingu) is an optional internal parameter ofu. The
functiondistance for a given network is the same in all hidden units. Usually it will
be a metric, but this property is not required since we will not prove any results which
might need it. In certain cases5, a tolerant behaviour has proven useful to compensate
for computational inaccuracy, moving inputs which are only slightly outside a unit’s
receptive area into the receptive area.

Algorithm 2 : Radial Basis Input Function
Input : Input in ∈ Rm

Output : Activationact ∈ R
Uses: weightsIn∈ Rm

scaling∈ Rm

distance : Rm × Rm → R
if scaling is usedthen1

return distance ((in − weightsIn) ∗ scaling,0)2

else3

return distance(in , weightsIn)4

end5

5see the paragraph about noise in Section 6.1.5
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5.1.2 Output Function

From the activation computed by the input function, theoutputFunction : R → R
produces the unit’s final output. The output function depends on the network architec-
ture, but it is the same for all hidden units and normally assigns greater output values
to activations closer to0.

The intuition is that theweightsInvector of a unitu encodes a position in the input
space. The closer a network input is tou’s position, the loweru’s activation becomes,
thus the higher its output is. That is why this kind of units is also calledlocally recep-
tive. The area in the input space whereu’s output is (significantly) different from0 is
calledu’s receptive arearec(u).

The final output of a hidden unitu is fed forward to the output units via weighted
connections. The weights ofu’s connections to allm output units formu’s output
weight vectorweightsOut(also denotedweightsOutu). Each output unit computes
the weighted sum of its inputs, i.e. it collects the inputs it receives from the hidden
units multiplied by the corresponding weights and outputs the sum. Thus, a connection
weight of0 will disable the respective connection.

5.1.3 Winner Unit

The hidden unit that receives the least activation is called thewinner unit. Its position
in the input space is closest to the given input, and in the normal case described above
it will be the unit with the highest output.

In some cases6 we will usewinner-takes-allbehaviour: The winner unit is set to
maximum output, all other units are set to output0.

In other cases7 we may need the slightly weakerwinners-sharebehaviour: If the
input lies in the receptive area of some (possibly several) units, nothing is changed.
Only if this is not the case, the winner unit is set to maximum output.

5.2 The Training Framework

We train the networks by presenting positive examples, i.e. pairs of input vector and
desired output vector. According to the context of this work, these pairs consist of an
embedded interpretation and the embedded result of applying the consequence opera-
tor.

In some settings the training data may benoisy, i.e. we cannot be sure that each
presented example is valid. The reason why we want to simulate such difficulties is
that in the real world the training data may be obtained using sensors or other analog
channels which are inherently noisy, or it may be modified by a malevolent third party.
We will simulate two different kinds of noise:

Numeric Noise: The embedded interpretations have been modified numerically, usu-
ally in less significant digits. We will simulate this kind of noise by adding or
subtracting (uniformly distributed) random values from some given range.

6see Section 6.3.1
7see Section 6.1.5
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Semantic Noise:The example may encode valid interpretations, but it is semantically
incorrect. The presented desired output is not a consequence of the presented in-
put in the context of the single-step operator to be learned. We will simulate this
kind of noise by presenting a certain ratio of examples obtained from a different
program than the target program.

The training algorithms workonline, i.e. each example encountered is processed
immediately and the network is adjusted. The examples are not stored.

Algorithm 3 is the general training algorithm used for all networks. In the following
we will describe in detail each of the components it uses and conclude this section with
some remarks about termination of the training process.

Algorithm 3 : Online Training

Input : Positive example(in , outdes)
Uses: NetworkN

Procedureadjust(in , outdes)
Error ComputerEC : Rm × Rm → R
Error InformationInferror

Initialisation InformationInfinit

Utility Information Infutil

Refinement CriterionRC
Procedurerefine()

adjust(in , outdes)1

outact ← N(in)2

error ← EC(outact, outdes)3

updateInferror4

updateInfinit5

updateInfutil and remove inutile units6

if refinement necessary according toRC then7

refine()8

5.2.1 Procedureadjust

The procedureadjust takes the given example and adjusts the network’s weights and
parameters so that it better fits the example. How exactly this is done depends on the
network architecture.

5.2.2 Error Computer

The Error Computer is a function which takes the desired output vector from the given
example along with the actual output vector computed by the network and computes
a single error value inR which represents the “badness” of the error made. As for
thedistance function in Section 5.1.1, we do not require the Error Computer to be a
metric. In fact, the Error Computer used in Section 6.1.3 is not a metric.
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While it would in principle be possible to simply use a distance function like the
Euclidean distance, we will usually use the slightly more general and adaptable Error
Computer given in Algorithm 4.

Algorithm 4 : The general Error Computer
Input : Actual outputoutact

Desired outputoutdes
Output : Error value∈ R

Uses: deviation : Rm × Rm → Rm

errorNorm : Rm → R
Parameters: squareError ∈ {true, false}
dev← deviation(outact, outdes)1

error ← errorNorm(dev)2

if squareError then3

error ← error24

return error5

It proceeds in three steps. First, a deviation vector is computed from the two input
vectors. Then a norm is computed from this deviation vector. Finally, the resulting
value is optionally squared. All three steps are customisable by plugging appropriate
functions resp. values into the Error Computer; for thedeviation function, we will
usually use the Deviation Computer given in Algorithm 5.

Algorithm 5 : The standard Deviation Computer
Input : Actual outputoutact

Desired outputoutdes
Output : Deviation∈ Rm

Uses: differenceToDeviation : R→ R
Parameters: Tolerance vectorε ∈ Rm

discardDeviationLessThanEpsilon ∈ {true, false}
computeDeviationRelativeToEpsilon ∈ {true, false}

dev← differenceToDeviation(outdes − outact)1

if discardDeviationLessThanEpsilon then2

for 1 ≤ j ≤ m do3

if devj < εj then devj ← 04

if computeDeviationRelativeToEpsilon then5

dev← dev/ε6

return dev7

Here, further options are given. The absolute value function is the most obvious
choice fordifferenceToDeviation, but we will also use other functions. There is also
the possibility to specify a tolerance vectorε, and to discard deviation components less
than the corresponding component ofε or to compute the deviation relative toε in
order to give more weight to deviations in dimensions with small tolerance.
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5.2.3 Error Information

The Error Information stores the amount of error each individual unit has caused. With
each presented example, the error computed by the Error Computer is ascribed to the
unit that is considered to have caused it, which is usually the winner unit. Different
ways of storing these errors can be thought of; however, in practice we always use the
last one.

• Just store thelast error for each unit.

• Store the sum and the number of errors caused by each unit and compute the
average error.

• In each step, reduce all units’ errors by a given factorerrorRed and add the new
error for the unit that caused it, thus obtaining anaccumulated error. Obviously,
the average accumulated error decreases as the number of units increases, since
each individual unit in average receives less examples. In cases where we con-
sider the absolute error values, e.g. with threshold refinement as described in
Section 5.2.6, this is an undesirable effect which can impede the refinement pro-
cess. A simple remedy consists in only reducing the error of the one unit where
the new error is added. A drawback of this method is that the error informa-
tion for units which have not received any inputs for a long period of time could
be considered obsolete and cause inappropriate refinements. See the paragraphs
about Error Information in Sections 6.1.3 and 6.3.3 for a discussion of this issue
in practice.

5.2.4 Initialisation Information

The Initialisation Information is used when adding new units in the refinement step.
While the concrete content of this information obviously depends on the network ar-
chitecture, there are some general strategies for how to obtain it in case the receptive
areas of potential new units are known and of finite number. For each potential new
unit we may store and update the following information when we encounter examples
whose input vectors lie in its receptive area:

• The component-wiseminimum8, maximum, or averagedesired output valuesen-
countered.

• A pseudo-learned8,9 output vector, i.e. we apply the same adjustments as to
actually existing units.

This information can then be used to initialise new units’ output weights in a sen-
sible way. Other possibilities to initialise new units include using someconstant value
like 0 or the maximum embedded interpretation8, or deducing10 information from ex-
isting units. In these cases, there is be no need to store any initialisation information.

8see Section 6.1.3
9see Section 6.3.3

10see Section 6.2.4
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5.2.5 Utility Information

The Utility Information is used to determine and remove inutile units, i.e. units which
do not affect the outcome of the network to a significant extent. This is used to optimise
the network in settings where units need to be inserted in the training process which
later become unnecessary, where noisy data leads to spurious units, or where the net-
work is initialised inappropriately. The concrete content of this information depends
on the network architecture and the training method, but a general idea is to decrease
utilities over time and to add the difference of the actual network output and the imag-
inary network output without the winner unit to that unit’s utility. In this work, utility
information is only used in Section 6.3.3.

5.2.6 Refinement Criterion

The Refinement Criterion decides when and which unit should be refined. The follow-
ing refinement criteria can be used:

• Threshold refinement: Refine units whose error exceeds a given threshold.

• Periodical refinement11: After a fixed or increasing number of examples, refine
the unit with the greatest error.

• Periodical threshold refinement12: As above, but refine only if that error exceeds
a given threshold.

5.2.7 Procedurerefine

As with the procedureadjust, the procedurerefine depends on the concrete network
structure and training method, but generally it involves adding hidden units.

5.2.8 Termination

The termination criterion depends on the scenario. If positive examples can be gener-
ated artificially, a network can bepre-trainedto a given accuracy. Possible measures
for the accuracy include the error caused by the network on the presented examples, i.e.
the Error Information described above, or the error caused on a certain reference set
which need not be a subset of the presented examples. The intention with the latter is
to avoid over-adaptation to the training data by terminating the training when accuracy
on the reference set ceases to increase. Additional indicators for termination may be
the number of examples presented or the number of hidden units used by the network.

Since we are dealing with online training algorithms, it is possible for a running sys-
tem to learn continuously from its observations. In suchalways-onscenarios, training
never terminates but instead causes adequate adjustments each time a positive example
is encountered. One interesting question to investigate here is whether a system stays
stable over a longer period of time when presented with examples that do not require
adjustments.

11see Section 6.2.3
12see Sections 6.1.3 and 6.3.3
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6 Implemented Network Architectures

In this section, we will develop or adapt several network architectures in the context
and framework described in Section 5. Each architecture’s properties will be discussed
theoretically, and in Section 7 we will examine them using statistics from actual imple-
mentations.

6.1 Cuboid Networks

The Cuboid Network architecture corresponds directly to the functiong we want to
compute. In this way we hope to be able to optimally exploit our background knowl-
edge and to minimise the number of parameters to be trained.

The receptive areas of the hidden layer units are hyper-intervals. If an input lies
inside the receptive area of a certain unit, then the unit outputs1, otherwise0. The
unit’s contribution to the final output for inputs from its receptive area is encoded in its
weightsOutvector, the weights of its connections to them output units.

In the two-dimensional case, the graph of each output dimension of the network
function can be depicted using cuboids, hence the name.

6.1.1 Definition of the Hidden Layer

In more detail, the hidden units use the Radial Basis Input Function from Algorithm 2
and the following parameters and output function:

• TheweightsIn from the input units to the hidden units encode the centre of the
hidden units’ receptive areas, as described in Section 5.1.1.

• The scaling parameter is used to determine the size of the receptive area: the
larger the value ofscaling in some dimension, the smaller the receptive area
along that dimension.

• Thedistance function for all hidden units is set to the Maximum metric:

(x,y) 7→ max |x− y|

In this way we achieve rectangular receptive areas, in contrast to the elliptic
receptive areas obtained with the Euclidean metric.

• As outputFunction for all hidden units, we invert and shift the step functions
from Section 4.2.1, obtaining:

x 7→

{
1 if x ≤ 1
0 otherwise.

This defines the receptive area of a hidden unit to be the area where the unit’s
activation is≤ 1. The output for inputs from that area is1 while it is 0 for other
inputs.
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All together we get units with rectangular receptive areas on which they output1 and
outside which they output0, which is exactly what we wanted.

Definition 6.1 (Valid Cuboid Network). A Cuboid Network isvalid if it satisfies the
following three conditions:

(i) For any hidden unitu there must bel ∈ Nm and0 ≤ i < 2l such thatu’s
receptive arearec(u) coincides withDl,i from Definition 3.19.

(ii) For any two hidden units with overlapping receptive areasDl,i andDl′,i′ , it must
be the case that eitherDl,i ⊂ Dl′,i′ or Dl′,i′ ⊂ Dl,i.

(iii) The union of all hidden units’ receptive areas must be a superset ofDf .

These conditions ensure (i) that each hidden unit is responsible for some hyper-
interval of the domain of a possible embedded approximated single-step operator,
(ii) that a hierarchy among the hidden units can be deduced from their receptive ar-
eas, and (iii) that each valid embedded input interpretation lies in the receptive area of
some hidden unit.

Definition 6.2. A unit u′ with rec(u′) = H ′ is called adescendantof unit u with
rec(u) = H if H ′ ⊂ H. It is called achild if it is a descendant and there is no unit
u′′ with rec(u′′) = H ′′ such thatH ′ ⊂ H ′′ ⊂ H. In these cases,u is calledancestor,
resp.mother, of u′.

6.1.2 Transformation

Algorithm 6 shows how to build a valid Cuboid Network computing the functiong.

Algorithm 6 : The Transformation Algorithm into Cuboid Networks
Input : The functiong : Dl → Rm

Output : A valid Cuboid NetworkN computingg

InitialiseN with m input and output units and an empty hidden layer1

foreachhyper-intervalH =
∏m

j=1[aj , cj ] of Dl do2

Add a hidden unitu to N with3

weightsInu = 1
2 (a + c)4

scalingu = 1/
(

1
2 (c− a)

)
5

weightsOutu = g(x) for somex ∈ H6

end7

return N8

Theorem 6.3. The Cuboid NetworkN obtained from Algorithm 6 is valid, and the
function it computes coincides withg onDl.
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Proof. Consider the unitu of N which was inserted for a given hyper-intervalH =∏m
j=1[aj , cj ] of Dl. Remember thatg is constant on each hyper-interval ofDl. Now

for each input vectorx ∈ Dl and dimensionj ∈ {1, . . . ,m} we have:

xj ∈ [aj , cj ] iff xj ≥ aj andxj ≤ cj

iff |xj − 1
2 (aj + cj)| ≤ 1

2 (cj − aj)

iff

∣∣∣∣xj − 1
2 (aj + cj)

1
2 (cj − aj)

∣∣∣∣ ≤ 1 sincecj − aj > 0

According to Algorithms 2 and 6,u’s input function will output:

act := distance
(
(x− weightsInu) ∗ scalingu,0

)
= max

∣∣∣∣x− 1
2 (a + c)

1
2 (c− a)

∣∣∣∣
and with the observation made above we obtain

act

{
≤ 1 if x ∈ H

> 1 otherwise.

Thus, we have

outputFunction(act) =

{
1 if x ∈ H

0 otherwise.

Each of them output units scales this value with the corresponding component of
weightsOutu, thusu’s contribution toN ’s output vector is

1 · weightsOutu = g(x) if x ∈ H, and

0 · weightsOutu = 0 otherwise.

From the facts that Algorithm 6 inserts exactly one unit for each hyper-interval ofDl

and that the hyper-intervals are disjoint, it follows that the network function coincides
with g onD. Validity follows directly from

(i) Definition 3.19 because the hyper-intervals ofDl are exactly theDl,i

(ii) Lemma 3.22

(iii) Lemma 3.21.

6.1.3 Training

The idea for training valid Cuboid Networks is as follows. As we encounter positive
example pairs of input and desired output, we adjust the cuboids’ heights, i.e. the



44 6 IMPLEMENTED NETWORK ARCHITECTURES

weightsOutvectors. TheweightsIn as well as thescaling vectors, which together de-
termine the receptive areas, remain unchanged. Thus, validity is obviously not affected.
Only when a refinement occurs, i.e. when some unit produces too much error and we
have to insert new units, we will have to do changes to the receptive areas. But these
will be done in a well-defined way, preserving the validity of the network. In this way,
we introduce our knowledge of the particular domain into the training process.

Additionally, we impose two restrictions on the height adjustments to further con-
fine the training process:

1. The cuboids’ heights can only decrease. The intuition is that each cuboid should
represent those atoms which are consequences of all interpretations embedded
in its receptive area, and not a kind of average consequence. We hope this may
make it easier to extract symbolic information from trained networks.

2. The cuboids’ heights can only be positive. This is in line with the first restriction,
as the cuboids represent consequences, not exceptions.

In the following, we describe how we set up each of the components of the training
framework described in Section 5.2.

Procedureadjust In principle, the adjustment strategy is, in each individual output
dimension, to decrease the cuboid’s height to the smallest desired output value encoun-
tered for inputs in its receptive area. We could, whenever we encounter a desired output
value lower than the current height, simply set the height to that value. However, to be
less susceptible to noise and to avoid pure “learning by heart”, we will soften this ad-
justment by introducing alearningRate parameter. Given the actual and the desired
output vectors for some cuboid, the function described in Algorithm 7 will be used to
compute the new, adjusted output vector. Note that this may result in network outputs
that do not represent a valid embedded interpretation. If we want to use outputs as new
inputs in an iteration, such cases should be taken care of as described for numeric noise
in Section 6.1.5.

Algorithm 7 : ThevalueAdjustFunction for Cuboid Networks
Input : Actual output vectoroutact

Desired output vectoroutdes
Output : Adjusted output vector

Parameters: learningRate ∈ [0, 1]

return learningRate ·min{outdes, outact}+ (1− learningRate) · outact1

This function is used in Algorithm 8 to adjust the units involved in processing
an example inputin presented to the network. The idea is that the units involved in
the computation are lowered towards the desired output (if it is lower than the actual
output), proceeding from ancestor to descendant units. Only non-negative values are
assigned toweightsOutvectors. Thus, both of the above restrictions on height adjust-
ments are satisfied.
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When a unit is lowered, its children are raised in order to preserve the overall output
on their receptive areas. The last unit in this hierarchy is the unit with the smallest
receptive area containingin . It may still have children, but none of their receptive
areas containin . Thus, lowering this unit causes the desired change in the computation
for in . This process is illustrated in Figure 10.

Figure 10: Illustration of theadjust procedure for Cuboid Networks. The adjustment
of one output dimension in a two-dimensional setting is shown schematically. The
cross in the left part indicates the desired output.

Algorithm 8 : Theadjust procedure for Cuboid Networks
Input : Input vectorin

Desired output vectoroutdes
Uses: Valid Cuboid NetworkN

Output weight vectorsweightsOut

Find all hidden unitsui (0 ≤ i < n) of N with1

in ∈ rec(ui)2

and order them such that3

rec(u0) ⊃ rec(u1) ⊃ · · · ⊃ rec(un−1)4

for 0 ≤ i < n do5

new← max
{
0, valueAdjustFunction(weightsOutui

, outdes)
}

6

foreachchild v of ui do7

weightsOutv ← weightsOutv + weightsOutui
− new8

weightsOutui ← new9

outdes ← outdes − new10

end11

Error Computer We neglect negative errors, i.e. errors caused by desired output
values less than the actual output. The reason is that, since the heights can only de-
crease, these errors will at some point of the process be handled by existing units, and
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new units are not allowed to have the necessary negative heights anyway. Therefore we
only want positive errors to cause refinement by insertion of new units.

Additionally we assume that we are given a vectorε specifying the tolerance for
each output dimension. Errors less than this tolerance are neglected.

In the following we will define the specific settings needed to achieve the described
behaviours in the training framework from Section 5.2. We use the general Error Com-
puter from Algorithm 4 with the following parameters:

• deviation: standard Deviation Computer from Algorithm 5 with

– differenceToDeviation: x 7→

{
0 if x < 0
x otherwise

We neglect negative errors as motivated above.

– ε: as given

– discardDeviationLessThanEpsilon: true
We neglect errors within the given tolerance.

– computeDeviationRelativeToEpsilon: true
With this setting, we give more weight to errors occurring in an output
dimension with lower tolerance.

• errorNorm: x 7→ max |x|
Since we are given separate tolerance values for each output dimension, each
single output dimension should be within this tolerance. Therefore we consider
the maximum error rather than the Euclidean norm, for instance.

• squareError: false

Error Information All of the methods described in Section 5.2.3 for updating the
units’ errors work and make sense in certain settings. We use theaccumulated error.
The unit with the smallest receptive area still containing the input is considered to cause
the error. Only that unit’s error is reduced and increased, as described in Section 5.2.3.
In practice, the issue mentioned there turns out not to be of great concern. Assuming
a uniform distribution of the examples over time, the error accumulated in some unit
can always be considered to be appropriate, since the unit’s position in the input space
and its receptive area do not change. Upon refinement, the error information is reset
anyway, as defined in Section 6.1.4.

Initialisation Information The concrete information we use depends on the refine-
ment method discussed in Section 6.1.4, but considering the architecture and the re-
strictions we imposed, three general ways of initialising new units make sense.

If we do not want to involve past examples, we can initialise new units such that
the network’s output in their receptive areas is the maximum embedded interpretation.
Because of our restriction that the units’ heights can only decrease, this is the only
sensibleconstant valueinitialisation.
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If we want to involve past examples, there are two options. In settings without
noise, we can use theminimum encountereddesired output, since the cuboid would
have to shrink to that value anyway. However, thepseudo-learnedinitialisation will
generally be preferable, enabling the network to deal with noise and avoiding over-
adaptation, while retaining the advantage of exploiting knowledge about previously
encountered examples.

Utility Information Two intuitive strategies of identifying inutile units can be thought
of. Firstly, cuboids whose height in all dimensions has decreased to negligibly small
values could be considered inutile. Secondly, neighbouring units of virtually equal
height in all dimensions could be combined to one single unit. However, cases can be
constructed where such seemingly inutile units are needed, e.g. to allow for further
refinement of the respective area of the input space where some future descendant may
have a height greater than zero. While methods are conceivable to deal with these is-
sues, we did not implement utility measuring and unit removal mechanisms for this
network architecture.

Refinement Criterion We use theperiodical threshold refinementas described in
Section 5.2.6 to avoid too hasty refinement as well as unnecessary refinement of units
causing a low amount of error.

6.1.4 Refinement

For therefine procedure in Algorithm 3, we consider two methods each having two
variants, aware of the fact that there are many more methods and variants than can
be covered here. The methods and variants are not designed to be changed during a
training process.

Splitting Refinement A unit is refined by splitting its receptive area, inserting a new
unit for each fragment, and removing the original unit. The split can occur (i) in one
dimension of the input space, thus splitting the original unit into2 new units, or (ii) in
all dimensions at the same time, resulting in2m new units. If the receptive area of the
unit u to be refined isrec(u) = Dl,i for somel ∈ Nm and0 ≤ i < 2l, then

(i) the split occurs in a dimensionj ∈ {1, . . . ,m} and the new units’ receptive ar-
eas are those two hyper-intervals ofDl′ which are subsets ofDl,i, wherel′ =
(l1, . . . , lj + 1, . . . , lm). The initialisation information consists of the new units’
heights for each of them possible split dimensions. If for some possible split
dimension no examples have been encountered in the receptive area of some po-
tential new unit, the according height information is set to the current unit’s height
at the time of the refinement.

If hj andh′j are the heights of the new units resulting from a split in dimension
j, thenj is chosen such that12

(
EC(hj ,h

′
j) + EC(h′j ,hj)

)
is maximal. The

intuition behind this is that we want to choose the split dimension such that the
difference between the new units is maximal with respect to the error computer.
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SinceEC need not be symmetric, we take the average of both orders of applica-
tion.

In cases where the initial values do not provide useful information for determining
the split dimension, e.g. withconstant valueinitialisation, we simply split the
dimension whererec(u) has the greatest extent.

(ii) the new units’ receptive areas are those2m hyper-intervals ofDl′ which are sub-
sets ofDl,i, wherel′ = l + 1. The initialisation information consists of the new
units’ heights.

In both cases, the new units’ error and initialisation information is initially empty.

Hierarchical Refinement A unit is refined by adding children. For a unitu with
rec(u) = Dl,i for somel ∈ Nm and0 ≤ i < 2l, we consider as possible children
units that have as receptive area one of those hyper-intervals ofDl′ which are subsets
of Dl,i, wherel′ = l + 1. Thus, for each unit there are2m possible children. When
a child is added, its height in each respective dimension is set such that the network
output for inputs from its receptive area is equal to the initialisation value, if possible;
otherwise it is set to0. Refinement can be done by

(i) adding one child at a time. The initialisation information contains the initial
height for each of the2m possible children along with the sum of errors caused
by examples whose input is contained in the possible child’s receptive area. The
child with the greatest sum is added.

(ii) adding all2m children in one step. The initialisation information only contains
the initial height for all2m children.

In both cases, the child units’ error and initialisation information is initially empty.
The mother unit’s error information is reset, and the initialisation information for the
generated children is removed.

Comparison All methods and variants described above preserve validity of the Cuboid
Network. The advantage with Splitting Refinement is that it results in less units. On the
other hand, Hierarchical Refinement has the benefit that a unit can capture common-
alities of interpretations embedded in adjacent parts of the input space, even if these
commonalities consist of only some of the interpretations’ consequences. Additional
consequences belonging to a subset of these interpretations can then be produced by
child units.

For both refinement methods, there is one variant increasing the number of units
by 1 and another one increasing the number of units exponentially in the number of
dimensions. The former option may take more refinement steps, while the latter option
may add more unnecessary units.

6.1.5 Properties

Robustness We will discuss the semantic and structural effects of various kinds of
damage that may affect a hidden layer unitu. We will not discuss damage to input and



6.1 Cuboid Networks 49

output units since they can simply be replaced. Generally it can be said that whenever
damage affects the validity of the network, it will not recover from this damage.

• u fails: In general, we can only say that the output for inputs fromrec(u) de-
creases. In the case of a fairly trained network, however, where due to our train-
ing restrictions units describe the consequences common to all interpretations
embedded in their receptive area, we can draw a semantic conclusion: The con-
sequences captured byu will now simply be missing for inputs fromrec(u).
This displays an advantage of Hierarchical Refinement, since here the conse-
quences captured by ancestors or descendants ofu are preserved. Additionally,
if all possible children ofu already exist, the structural effects of the failure can
be coped with, althoughu’s failure will be repaired with a possibly large num-
ber of previously unnecessary descendants. However, if not all possible children
exist or if Splitting Refinement is used, there will be a hole in the input space not
covered by any unit’s receptive area, resulting in an output of0. It is possible to
detect and correct this during training, but care must be taken to avoid interfer-
ence with thewinners-sharebehaviour described below in the paragraph about
noise.

• scalingcorrupted: The size ofrec(u) is changed. The semantic effects for inputs
which were previously contained inrec(u) and now are outside correspond to
those of failure described above. Inputs for which the opposite holds may get
additional consequences, consequences may become erased, or even completely
flipped, depending on the base of the embedding. In any case, the damage to
the network’s structure will not be repaired by the training methods and will also
affect future refinements ofu.

• weightsIn corrupted: The centre ofrec(u) is shifted. The effects correspond
those ofscalingcorruption described above.

• weightsOutcorrupted: u’s height is changed, i.e. its contribution to the out-
put for inputs fromrec(u). Because of the restriction that heights can only
decrease in training, positive changes toweightsOutwill simply be corrected
by re-learning while negative changes can lead to previously unnecessary refine-
ments.

Noise Noisy data can lead to wrong adjustment of units as well as unnecessary re-
finements. To a certain extent, the first effect is handled by using alearningRate less
than1, while the second effect is avoided by considering multiple examples in the er-
ror computation, as withaverageor accumulated error. Still, due to the missing unit
removal mechanism, noisy data may generally lead to an excessively growing number
of hidden units.

Another effect can occur with numeric noise: If the corrupted input does not rep-
resent a valid embedded interpretation, it may not be contained in any unit’s receptive
area. In this case, the output will be0 and no units will be adjusted. Due to the limited
precision of floating point computations in a computer, these effects are likely to occur
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for inputs close to a receptive area’s border, even if no noise has been added deliber-
ately. To avoid them, the tolerant behaviour of the radial basis input function described
in Section 5.1.1 or thewinners-sharebehaviour described in Section 5.1.3 can be used.

Initialisation Issues In the following we will discuss three general ways of initialis-
ing a Cuboid Network:

• Basic initialisation yields a network to be trained from scratch. It consists of a
unit that has a receptive area corresponding to the one hyper-interval ofD0 and
a height set to the maximum embedded interpretation.

• Roughinitialisation, which corresponds to cases where the network is initialised
with the transformation of some approximationf̂Pl

and then trained with em-
bedded examples from the original programP or from a finer approximationPl′

with l, l′ ∈ Nm, l′ ≥ l.

If for some unitu of the initial network, all training examples within ∈ rec(u)
have the same constantoutdes value andoutdes is strictly greater thanu’s output,
thenu may be refined unnecessarily, i.e. by units which all have the same height.

If for some unitu of the initial network, all training examples within ∈ rec(u)
have a (not necessarily constant)outdes value strictly greater thanu’s output,
thenu may not satisfy the intention of capturing all consequences common to all
interpretations embedded inrec(u).

Both of these undesirable properties can be avoided by initialising the network
not with f̂Pl

but with

f̂Pl
+

∑
A with ‖A‖>ldim(A)

R(A)

= f̂Pl
+

∑
k with k>l

b−k

= f̂Pl
+

1
b− 1

(
1/bl

)
i.e. by initially assuming all output atoms neglected byf̂Pl

to be true instead of
false. It is easy to show that Theorem 3.14 still holds for this modified approxi-
mation.

Rough initialisation is advantageous as compared to random or basic initialisa-
tion in that all consequences that hold in the initialisation function still hold in
the training data, and thus the initially generated units would otherwise have to
be learned during training. However, because of the simplifications we made in
the definition of the hyper-intervals (e.g. uniformly partitioning the input space
according to the greatest relevant input level, disregarding local possibilities of
larger partitions), more units may be generated using rough initialisation than
using training from basic initialisation.
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• Inappropriateinitialisation, i.e. initialisation using some function independent
of the training examples.

Training will still work, but since removal of units does not occur, the partition-
ing of the input space performed by the initial network can only be refined and
not be freely restructured. Since the partitioning of the input space implicit in
the training data may differ significantly from that of the initialisation function,
this may lead to significant numbers of units which would not have been needed
with some appropriate initialisation like rough or basic initialisation.

Obviously, inappropriate initialisations can be tailored such that training per-
forms worse than in the average case with random or basic initialisation in terms
of runtime consumption and the number of units generated.

6.1.6 Wish List

Flexibility In an attempt to guarantee exploitation of the domain knowledge, the
Cuboid Network architecture by design is very rigid. Most of the units’ internal pa-
rameters are fixed or computed explicitly during training. While this has the advantage
of a very small number of free parameters to be learned, intuitively we would like to
soften this strict behaviour, achieving a more flexible architecture which may require
less units or adapt better to concrete domain instances.

Robustness As described in Section 6.1.5, Cuboid Networks are quite susceptible to
various kinds of damage or noise, and many of the resulting negative effects will not
be remedied in the training process. We would like to have a more robust architecture
which is able to recover from damage.

Unit Removal We would like to have a mechanism for detecting and removing units
in order to reduce the number of unnecessary units and to counteract the unit producing
effect of noise described in Section 6.1.5.

6.2 Supervised Growing Neural Gas

In the following we will review and adapt a network architecture called Supervised
Growing Neural Gas (SGNG), as described in [Fri98]. In contrast to Cuboid Networks,
SGNG is very flexible and general, with the drawback that it does not exploit the very
special kind of functions we want to compute.

The hidden units’ positions in the input space are not fixed, and SGNG uses a
continuous approach without discrete and sharply delimited receptive areas. However,
since the units’ outputs quickly decrease towards0 with increasing input distance, they
can still be regarded as locally receptive.

Additionally, SGNG maintains a topology on the hidden units in order to determine
which units should be considered neighbours and where units should be inserted or
removed. This topology is adapted during training.

The idea is that SGNG expands in the input space just like gas would, and that more
units will be located in areas where the output function is less smooth.



52 6 IMPLEMENTED NETWORK ARCHITECTURES

In the following, we will fit the SGNG architecture and training algorithm into our
training framework from Section 5.2, slightly reordering the steps from the original
algorithm. For a broader discussion of SGNG, see [Fri98].

6.2.1 Definition of the Hidden Layer

Definition 6.4. Let U be the set of hidden layer units of an SGNGN . ThenN has a
topologygiven by a set of undirected edges

E ⊆
{
{u1, u2}

∣∣u1, u2 ∈ U, u1 6= u2

}
along with anagefunction

age : E→ N.

Theneighboursof a unitu ∈ U are

N(u) :=
{
u′ ∈ U

∣∣{u, u′} ∈ E
}
.

The hidden units use the Radial Basis Input Function from Algorithm 2 and the
following parameters and output function:

• TheweightsIn from the input units to the hidden units encode the hidden units’
positions in the input space.

• Thescalingparameter is not used.

• As distance function for all hidden units we use the Euclidean metric:

(x,y) 7→

√√√√ m∑
j=1

(xj − yj)2

• TheoutputFunction for all hidden units is the Gaussian Function

x 7→ exp
(
−1

2
x2

σ2

)
The parameterσ determines the width of the function. While the function value
rapidly decreases with increasing inputs, it never actually becomes0. The larger
σ, the wider the area in the input space becomes where the unit outputs values
significantly above0. To achieve a kind of local receptiveness where interference
between units does not play a major role,σ of a unitu is always set proportional
to u’s average Euclidean distance from its topological neighboursN(u) in the
input space.

However, since the functions we are dealing with are always non-negative, all hidden
units will typically produce non-negative output (i.e.weightsOutwill usually be≥ 0).
This means that the interference will not be cancelled out but reinforced and may be-
come significantly greater than0, thus compromising the intention of locally receptive
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units. A remedy is to introduce abias unit, i.e. a hidden layer unit which is, however,
excluded from the topology and not connected to any input units. Instead it constantly
outputs1 and only itsweightsOutare adjusted during training. No special treatment
different from that for normal units is required for this adjustment. After some training,
the bias unit’sweightsOutwill encode the average output. Thus, the normal units will
have negative as well as positiveweightsOutand the interference is more likely to be
cancelled out.

6.2.2 Transformation

We did not devise a transformation algorithm for SGNG. The only way to obtain an
SGNG approximating a given program is thus by training from scratch.

6.2.3 Training

In the following, we describe how each of the components of the training framework
described in Section 5.2 is set up.

Procedureadjust The adjustment procedure used by Algorithm 3 is defined in Al-
gorithm 9 for SGNG.

Error Computer As error measure we use the squared Euclidean distance, i.e. for
EC in Algorithm 3 we use the function

(outact, outdes) 7→ ‖outact − outdes‖2

where‖ · ‖ denotes the Euclidean norm.

Error Information We use theaccumulated erroras described in Section 5.2.3, re-
ducing all units’ error in each step. The winner unit is considered to have caused the
error.

Initialisation Information is not used.

Utility Information is not used.

Refinement Criterion We use theperiodical refinementas described in Section 5.2.6.

6.2.4 Refinement

The refinement procedure for SGNG is given in Algorithm 10. Intuitively, the error
information and the network topology are used to determine two units which might
surround an area of the input space for which more fine-grained sampling is needed.
Then a new unit is inserted with all parameters set to the average of the parent units’
parameters.
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Algorithm 9 : Theadjust procedure for SGNG
Input : Input vectorin

Desired output vectoroutdes
Uses: SGNGN with unitsU and edgesE

Input weight vectorsweightsIn
Output weight vectorsweightsOut
The outputoutu of any hidden unitu in the last computation

Parameters: Winner position adaptation rateµw ∈ [0, 1]
Neighbour position adaptation rateµn ∈ [0, 1]
Output adaptation rateη ∈ [0, 1]
Maximum age for edgesamax ∈ N

Determine winner unitu1 and second winneru2 for in1

E← E ∪
{
{u1, u2}

}
2

age
(
{u1, u2}

)
← 03

weightsInu1 ← µw · in + (1− µw) · weightsInu14

foreachneighbourn ∈ N(u1) do5

weightsInn ← µn · in + (1− µn) · weightsInn6

outact ← N(in)7

foreachunit u ∈ U do8

weightsOutu ← weightsOutu + η · outu · (outdes − outact)9

foreachedgee = {u1, u
′} ∈ E do10

age(e)← age(e) + 111

if age(e) > amax then12

E← E \ {e}13

if N(u′) = ∅ then U← U \ {u′}14

end15

end16
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Algorithm 10 : Therefine procedure for SGNG

Uses: SGNGN with unitsU

Accumulated errorerr(u) for any unitu
Input weight vectorsweightsIn
Output weight vectorsweightsOut

Parameters: Error reduction factor for parentsα ∈ R

Determine unitu1 ∈ U with maximumerr(u1)1

Determine neighbouru2 ∈ N(u1) with maximumerr(u2)2

err(u1)← (1− α) · err(u1)3

err(u2)← (1− α) · err(u2)4

Add a hidden unitu to U with5

weightsInu = 1
2 (weightsInu1 + weightsInu2)6

weightsOutu = 1
2 (weightsOutu1 + weightsOutu2)7

err(u) = 1
2

(
err(u1) + err(u2)

)
8

E← E \
{
{u1, u2}

}
∪
{
{u1, u}, {u, u2}

}
9

age({u1, u})← 010

age({u, u2})← 011

6.2.5 Properties

Robustness As in Section 6.1.5, we consider the effects of damage to a hidden layer
unit u. Because of the continuous and generic nature of SGNG, a semantic interpre-
tation of the effects of damage for our specific area of application is generally not
possible.

In general, any damage tou, the connection weights, or the SGNG topology can
be coped with through further training. Failing units can be replaced and holes in the
input space where no unit is responsible cannot occur due to the winner mechanism
in theadjust procedure. However, there is one caveat: If failure of a unit or damage
to the SGNG topology causes a unitu to haveN(u) = ∅ andu is the maximum error
unit, then refinement as defined in Algorithm 10 will fail. But over timeu will either be
winner (or second winner) for some input and thus be re-integrated into the topology, or
otherwise its error will decrease such that at some pointu no longer has the maximum
error. In either case, refinement will work again.

Noise Like the effects of damage to the network discussed above, corruption in the
training data is handled gracefully.

Initialisation Issues We did not devise an algorithm for transforming logic programs
into SGNG networks, so there is onlybasic initialisation, generating an initial network
with 2 units. While the output weights can be initialised randomly, the input weights
are preferably initialised such that the units are positioned in opposite areas ofD0.
Inappropriate initialisationcan be simulated by first training a network with examples
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from one program or randomly generated examples, and later switching to another
program. Due to its flexible structure, SGNG is able to cope with this change.

6.2.6 Wish List

In the following we describe some desirable adaptations and inherent disadvantages of
the general SGNG architecture in the context of our intended application. Due to its
general nature, SGNG does not at all exploit the quite precise background knowledge
we have about the input space, the approximate shape of the functions, or its semantics.
We would expect to achieve more precise and faster learning results if we exploited this
knowledge.

Output Function While hidden units with Gaussian output functions generally work,
they are not very efficient for describing partially constant functions. Each constant
piece has to be approximated by multiple Gaussian hidden units. Since all approxima-
tions we are dealing with are partially constant functions, and since even real examples
from a non-approximated program can be computed by such functions within a given
toleranceε, we would prefer a more suitable kind of hidden units. For example, remov-
ing the Gaussian output functions and using thewinner-takes-allbehaviour described
in Section 5.1.3 could drastically reduce the number of units needed.

Error Computer If we are given a per-dimension maximum toleranceε, as we have
always assumed, we would prefer to use the general Error Computer with settings as
described in Section 6.1.3 for Cuboid Networks, with the exception that the function
differenceToDeviation should bex 7→ |x|.

Refinement Criterion With a given toleranceε, we would prefer to useperiodical
threshold refinementto avoid unnecessarily precise refinements.

Unit Removal Although there is a removal functionality built into theadjust pro-
cedure, there are cases where it does not detect obviously unnecessary units, i.e. units
whose removal does not affect the output significantly. They may have been necessary
for earlier stages of the training or resulted from inappropriate initialisation. Two kinds
of these unnecessary units are:

Dead units: Several neighbouring units may not be winners for any occurring input.
Due to the nature of the input spaceDf , this can happen if units have been
generated in an earlier stage of the training and later refinement has inserted
surrounding units absorbing all inputs. The edges connecting the dead units to
the rest of the network will eventually be removed by theadjust procedure, but
since none of these units ever receives any input, the edges between them will
not age and not be removed, and thus neither the units themselves. We would
like dead units to be removed.

Idempotent units:Multiple units may have been moved or generated in an area with
constant or negligibly varying output and trained to have accordingly similar
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output weights. Since inputs are scattered in the whole area, the edges between
these idempotent units are always renewed, thus the units will never be removed.
With Gaussian output functions, these units are unavoidable to a certain extent,
but they can occur even with the winner-takes-all behaviour described above. We
would like to reduce the number of idempotent units, preferably keeping central
units of the respective area, in order to ensure that the area is not taken over by
other, unsuitable units.

Internal Topology While in general the topology learned by SGNG offers interesting
information about the input space, it is not of much help in our application domain. We
would like to get rid of the administrative overhead necessary for dealing with edges.

6.3 A Fine Blend

In this section we will present a network architecture which tries to combine the previ-
ous two approaches so as to fulfil the wish lists from Sections 6.1.6 and 6.2.6. One main
point in this Fine Blend is that the domain knowledge is shifted from the fixed internal
parameters of Cuboid Networks into the input metric. In this way we enable the hidden
units to move around in the input space by adapting theirweightsIn vectors, making
the network more flexible and less susceptible to damage. Furthermore, we give up the
attempt to incorporate some semantic intention into the output adjustment procedure by
only allowing to decrease a unit’s output. Additionally, we introduce a utility measure
which enables us to remove units without the need of an internal topology.

In this way we keep the flexibility of SGNG while still specialising on our appli-
cation domain and preserving the use of domain knowledge in the training process. A
more complete comparison of properties is given in Table 1.

We will need the notions of largest exclusive and smallest inclusive hyper-intervals.
In order to avoid ambiguities, we first have to restrict the class of hyper-intervals we
are talking about.

Definition 6.5. A hyper-intervalH ∈ Rm is calledhyper-square of levell ∈ N if
H = Dl,i with l = (l, . . . , l) and0 ≤ i < 2l. For precision restrictions in real
implementations, we only define the hyper-squares up to some levellmax ∈ N.

Now we can define the two notions mentioned above.

Definition 6.6. The largest exclusive hyper-squareof a vectoru ∈ D0 and a set of
vectorsV = {v1, . . . ,vk} ⊆ Rm, denoted byHex(u, V ), either does not exist or is
the hyper-squareH of least level for whichu ∈ H andV ∩H = ∅.

An example for non-existingHex is illustrated in Figure 11.

Definition 6.7. The smallest inclusive(or smallest common) hyper-squareof a non-
empty set of vectorsU = {u1, . . . ,uk} ⊆ D0, denoted byHin(U), is the hyper-
squareH of greatest level for whichU ⊆ H.

In the normal case, both the inputs to the network and theweightsInvectors of the
hidden units are∈ D0. If we have to deal with a corrupted vector6∈ D0, we treat it
equivalently to the euclidically closest vector inD0.
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in1

in2

← D(l+1,l+1),i′

← D(l,l),i
×u

×v1

Figure 11: Two-dimensional example whereHex(u, {v1}) does not exist.

Algorithms 11 and 12 show how to computeHex andHin.

6.3.1 Definition of the Hidden Layer

The hidden units use the Radial Basis Input Function from Algorithm 2 and the follow-
ing parameters and output function:

• TheweightsIn from the input units to the hidden units encode the hidden units’
positions in the input space.

• Thescalingparameter is not used.

• As distance function for all hidden units we use the function defined in Algo-
rithm 13. As mentioned above, corrupted vectors6∈ D0 are treated equivalently
to the euclidically closest vector∈ D0.

The distance measure works as follows: Given some network input and some
unit’s position in the input space (encoded by itsweightsIn vector), the first
rough measure is their smallest common hyper-square. The greater its level, i.e.
the smaller the hyper-square, the smaller the distance should be. This rough
measure is then refined by a distinction of three cases13, illustrated in Figure 12:

1. Both vectors also lie in (different) hyper-squares of greater level. In this
case, their distance should be greatest among these cases.

2. One of the vectors lies in a hyper-square of greater level, while the other
does not. In this case, their distance should be in the medium range among
these cases.

3. None of the vectors lie in any deeper hyper-square. In this case, their dis-
tance should be smallest.

Finally, the Euclidean distance is used as a last refinement of the distance mea-
sure.

The intention with this measure is the following: A unit that is positioned in
some hyper-square and not in any deeper one should be considered a default unit
for that hyper-square. It should be responsible for inputs from that hyper-square,

13note that with embedding base2, only the first case would be left



60 6 IMPLEMENTED NETWORK ARCHITECTURES

Algorithm 11 : ComputingHex

Input : u ∈ D0

V ⊆ Rm

Output : Hex(u, V )
Parameters: Maximum levellmax ∈ N
l← 01

H ← D02

while V ∩H 6= ∅ andl ≤ lmax do3

if there isi with 0 ≤ i < 2(l+1,...,l+1) andu ∈ H ′ = D(l+1,...,l+1),i then4

l← l + 15

H ← H ′6

else7

return failure8

end9

end10

if V ∩H = ∅ then return hyper-squareH of levell11

else return failure12

Algorithm 12 : ComputingHin

Input : U ⊆ D0 with U 6= ∅
Output : Hin(U)

Parameters: Maximum levellmax ∈ N
l← 01

H ← D02

while l ≤ lmax do3

if there isi with 0 ≤ i < 2(l+1,...,l+1) andU ⊆ H ′ = D(l+1,...,l+1),i then4

l← l + 15

H ← H ′6

else7

return hyper-squareH of levell8

end9

end10

return hyper-squareH of levell11
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except for inputs from deeper hyper-squares containing another unit. A unit con-
tained in some deeper hyper-square should only be responsible for inputs from
higher hyper-squares if they do not have any default units and if the input is not
from a different deeper hyper-square containing another unit. This behaviour is
guaranteed by the case distinction without the need of directly comparing differ-
ent units’ positions.

The kinds of receptive areas resulting from thisdistance function are illustrated
in Figure 13.

The above case distinction could be refined by not only distinguishing whether
the vectors lie in different deeper hyper-squares, but also how big the depth dif-
ference is. However, since the units’ positions are not fixed and determined but
expected to change, this measure is only meant as a rough estimation anyway, so
we do not make this effort.

• The outputFunction uses winner-takes-all behaviour: The unit with the least
activation outputs1, all other units output0. Obviously this function cannot be
computed by each unit separately. This may seem to impede parallelisability of
the computation. However, since the output units have to wait for all hidden units
to finish their computation anyway, this is not a major issue.

6.3.2 Transformation

Algorithm 14 shows how to build a Fine Blend computing a function which coincides
with g on Df . Compared to Cuboid Networks, this is a restriction because we do
not guarantee that the network function coincides withg on the whole domain ofg.
This is due to the fact that since we dropped the use of thescaling parameter we can
no longer scale the units’ receptive area independently in each dimension. Thus, we
consider a partition of the input space consisting only of hyper-squares, which possibly
is a more fine-grained subset of the domain ofg. This is legitimate since the input
space we consider still is a superset ofDf , the set of all embedded interpretations.
The number of units in the transformed network obviously is greater or equal to the
number of units in a corresponding Cuboid Network, and in the worst case the increase
is exponential in the number of dimensions; however, here we have the advantage that
over time unnecessary units are detected and removed. In the early phase of training
a transformed network, it is thus a good idea to use strict criteria for utility in order to
faster get rid of the unnecessary units and soften them in the course of the training.

Theorem 6.8. The networkN obtained from Algorithm 14 coincides withg onDf .

Proof. Let l′ = max l as in the algorithm, and letx ∈ Df . Thenx is contained in
exactly one hyper-squareH of level l′. The algorithm positioned exactly one unitu
insideH. Thus,

Hin({x, weightsInu}) ≥ l′,
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Algorithm 13 : Thedistance function for the Fine Blend
Input : Inputsx,y ∈ D0

Output : Distance∈ R
if x = y then return 01

H ← Hin({x,y})2

l← level ofH3

if Hin({x}) andHin({y}) are of greater level thanHin({x,y}) then4

malus← 2
35

else ifHin({x}) or Hin({y}) is of greater level thanHin({x,y}) then6

malus← 1
37

else8

malus← 09

end10

euclDist← Euclidean distance ofx andy11

maxDist← diameter ofH12

return 1/
(
l + 1−malus− 0.3 · (euclDist/maxDist)

)
13
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Figure 12: Illustration of the three cases in Algorithm 13
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Figure 13: Examples of receptive areas in Fine Blend.
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Algorithm 14 : The Transformation Algorithm into a Fine Blend
Input : The functiong : Dl → Rm

Output : A Fine BlendN computingg for inputs fromDf

InitialiseN with m input and output units and an empty hidden layer1

l′ ← max l2

foreachhyper-squareH =
∏m

j=1[aj , cj ] of levell′ do3

Add a hidden unitu to N with4

weightsInu = 1
2 (a + c)5

weightsOutu = g(x) for somex ∈ H6

end7

return N8

and according to Algorithm 13, we have

distance(x, weightsInu) ≤ 1
l′ + 1− 2

3 − 0.3
<

1
l′

.

Any other unitu′ 6= u is positioned in a different hyper-square, and since the hyper-
squares are disjoint, we have that

l′′ = Hin({x, weightsInu′}) < l′

and therefore

distance(x, weightsInu′) ≥
1

l′′ + 1
≥ 1

l′
sincel′, l′′ ∈ N.

Thus,u is the winner unit and its output1 scaled byweightsOutu becomes the output
of the whole network. Becausel′ is defined to be the maximum of all levels inl, H is
contained in some hyper-interval ofDl and thusg is constant onH. Together with the
definition ofweightsOutu in Algorithm 14, this yields the claim.

6.3.3 Training

In the following, we describe how we set up each of the components of the training
framework described in Section 5.2.

Procedureadjust The adjustment procedure used by Algorithm 3 is defined in Al-
gorithm 15 for the Fine Blend. The interesting point here is that the winner unit is
not moved towards the input as with SGNG, but towards the centre of the smallest
hyper-square including the unit and the input. This is in line with the definition of the
distance function and the intention that units should be positioned in the centre of the
hyper-square for which they are responsible.
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Algorithm 15 : Theadjust procedure for the Fine Blend
Input : Input vectorin

Desired output vectoroutdes
Uses: Fine BlendN with unitsU

Input weight vectorsweightsIn
Output weight vectorsweightsOut

Parameters: Position adaptation rateµ ∈ [0, 1]
Output adaptation rateη ∈ [0, 1]

Determine winner unitu for in1

c← centre ofHin({u, in})2

weightsInu ← µ · c + (1− µ) · weightsInu3

weightsOutu ← η · outdes + (1− η) · weightsOutu4

Error Computer Assuming that we are given a tolerance vectorε ∈ Rm (otherwise
the required changes are obvious), we use the general Error Computer from Algo-
rithm 4 with the following parameters for the same reasons as in Section 6.1.3, where
applicable:

• deviation: standard Deviation Computer from Algorithm 5 with

– differenceToDeviation: x 7→ |x|
– ε: as given

– discardDeviationLessThanEpsilon: true

– computeDeviationRelativeToEpsilon: true

• errorNorm: x 7→ max |x|

• squareError: false

Error Information We use theaccumulated erroras described in Section 5.2.3, re-
ducing and increasing only the winner unit’s error. The issue that this may lead to ob-
solete error information is counteracted by the detection and removal of inutile units,
which also include units that have not received any inputs for a long period of time, as
described below in the paragraph about Utility Information.

Initialisation Information Each unitu maintains, for each dimensionj ∈ {1, . . . ,m}
and each directiond ∈ {up, down},

• an accumulated errorerrorj,d(u) and

• a pseudo-learned14 initialisation vectorinit j,d(u)

14as described in Section 5.2.4
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The idea is that each unit stores information about examples encountered in sub-hyper-
squares of its receptive area, which will then be used in refinement to decide where a
refining unit should be placed and what its initial output should be. In order to avoid
a number of pieces of information exponential in the number of dimensions, and since
with moving units this approach can only be a rough estimation anyway, we distinguish
only for each dimension separately whether the example input was above or below the
unit’s position.

Concretely, allerror values are initialised with0 and all init vectors with the re-
spective unit’s output, and with each example presented to the network, Algorithm 16
is invoked.

Algorithm 16 : TheInfinit update procedure for the Fine Blend
Input : Input vectorin

Desired output vectoroutdes
Uses: Fine BlendN

Error ComputerEC : Rm × Rm → R
Input weight vectorsweightsIn
errorj,d values andinit j,d vectors (Initialisation Information)

Parameters: Output adaptation rateη ∈ [0, 1]
Error reduction factorerrorRed

Determine winner unitu for in1

p← weightsInu2

foreachdimensionj ∈ {1, . . . ,m} do3

errorj,up(u)← (1− errorRed) · errorj,up(u)4

errorj,down(u)← (1− errorRed) · errorj,down(u)5

if inj < pj then6

init j,down ← η · outdes + (1− η) · init j,down(u)7

errorj,down(u)← errorj,down(u) + EC(N(in), outdes)8

else9

init j,up ← η · outdes + (1− η) · init j,up(u)10

errorj,up(u)← errorj,up(u) + EC(N(in), outdes)11

end12

end13

Cases are conceivable where this may lead to cyclic behaviour, i.e. where due to
the imprecise and ambiguous error information a refining unit will repeatedly be placed
in a position where it is not necessary and removed again for being inutile. This can be
remedied by using2m error values, one for each element of{up, down}m. However,
during our tests we did not encounter this problem.

Utility Information Each unitu maintains a utility valueutility(u), initially 1,
which decreases over time and increases only when the unit makes a significant con-
tribution to the network’s output. A winner unit’s contribution is determined by com-
puting the difference between the error made by a hypothetical network without the
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winner unit and the network’s actual error. If this difference is negative it is discarded,
since the winner unit is then considered still to be in the adjustment phase and utility
reduction is taken care of already. Otherwise, it is added to the winner unit’s utility. If
a unit’s utility drops below a given thresholdutilityThreshold, the unit is considered
inutile and will be removed (unless it is the only remaining unit).

In certain cases this method can cause all idempotent units to be removed at the
same time, while we obviously would like to retain at least one of them. For example,
when for some reason an unnecessary refinement is performed in which two idempo-
tent units are generated, their utilities will reach the threshold simultaneously. This is
counteracted by a small random variation in the initial utility value.

In average, the more units a network has, the less often each unit wins and is able
to make a contribution. Thus, using a constant utility reduction factor would decrease
the units’ average lifetime as the number of units increases. While this effect may
be useful to restrict the size of a network, other, more direct and controlled means to
achieve this should be used if necessary. We will therefore compensate for this effect
by fixing a number of examples for which a unit should be allowed to be the winner
without making a significant contribution. In each application of theInfutil update
procedure, we multiply this relative number of examples with the current number of
units to obtain an absolute number of examples. Then we compute a utility factor
which would decrease the initial utility of1 to utilityThreshold after this absolute
number of examples has been presented to the network.

The whole utility information update procedure is given in Algorithm 17. Note that
the output of the network without the winner unit can easily be obtained by determining
the output of the second winner in the original network, i.e. the unit with the second
least activation.

Algorithm 17 : TheInfutil update procedure for the Fine Blend
Input : Input vectorin

Desired output vectoroutdes
Uses: Fine BlendN with unitsU

Error ComputerEC : Rm × Rm → R
utility(u) for any unitu (Utility Information)

Parameters: Relative numberk ∈ R+ of examples to survive
utilityThreshold ∈ [0, 1]

k′ ← k · |U|1

φ← k′
√

utilityThreshold2

foreachunit u′ ∈ U do utility(u′)← φ · utility(u′)3

Determine winner unitu for in4

Let N ′ beN without unitu, or x 7→ 0 if |U| = 15

c← EC(N ′(in), outdes)− EC(N(in), outdes)6

if c > 0 then utility(u)← utility(u) + c7
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Refinement Criterion As with Cuboid Networks, we use theperiodical threshold
refinementdescribed in Section 5.2.6.

6.3.4 Refinement

While theweightsIn adjustment facilitates a certain kind of expansion of the network
by allowing units to move to positions where they are responsible for larger areas of
the input space, refinement should take care of densifying the network in areas where
a great error is caused. Therefore, when a unitu is selected for refinement, we try to
figure out the area it is responsible for and a suitable position to add a new unit.

If u occupies a hyper-square on its own, then the largest such hyper-square is con-
sidered to beu’s responsibility area. Otherwise, we take the smallest hyper-square that
still containsu. Now u is moved to the centre of this area, and theerror information
gathered byu is used to determine a sub-hyper-square in whose centre a new unit is
placed. The average of allinit vectors which might stem from this sub-hyper-square is
used to initialise the output of the new unit.

The exact procedure is specified in Algorithm 18.

6.3.5 Properties

Robustness As in Sections 6.1.5 and 6.2.5, we consider the effects of damage to a
hidden unitu. Similar to SGNG, any damage tou or the connection weights can be
repaired by further training, since all of these values are learned anyway. Failing units
can be replaced, and holes in the input space as with Cuboid Networks cannot occur
due to the winner-takes-all behaviour. The effects of damage are quite obvious:

• u fails: u’s receptive area is taken over by other units, thus the specific results
learned for inputs fromu’s receptive area are lost.

• weightsIn corrupted: u’s position in the input space is changed. While this
may cause no changes at all in the network function, generally it can alteru’s
receptive area, thus assigning different outputs to inputs that were contained in
rec(u) before and are no longer, and vice versa.

• weightsOutcorrupted:u’s output is changed.

Noise Noise is generally handled gracefully, since unnecessary adjustments or refine-
ments can be undone in the further training process.

Initialisation Issues We consider the three ways of initialising a network as intro-
duced in Section 6.1.5.

• Basicinitialisation yields a network to be trained from scratch, consisting of one
hidden unit positioned in the centre of the input space with an output of half the
maximum embedded interpretation.
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Algorithm 18 : Therefine procedure for the Fine Blend

Uses: Fine BlendN with unitsU

Input weight vectorsweightsIn
Output weight vectorsweightsOut
Error InformationInferror

errorj,d values andinit j,d vectors (Initialisation Information)
utility(u) for any unitu (Utility Information)

Determine unitu ∈ U with maximum error according toInferror1

pos← weightsInu2

P ←
{

weightsInv

∣∣v ∈ U \ {u}
}

3

if Hex(pos, P ) existsthen4

H ← Hex(pos, P )5

else6

H ← Hin({pos})7

end8

c← centre ofH9

Determine the (unique) hyper-squareH ′ ⊆ H with centrec′10

such that11

level ofH ′ = 1 + level ofH12

and for allj ∈ {1, . . . ,m}13

c′j < cj iff errorj,down(u) > errorj,up(u)14

out← 015

foreach j ∈ {1, . . . ,m} do16

if c′j < cj then17

out← out + init j,down(u)18

else19

out← out + init j,up(u)20

end21

end22

weightsInu ← c23

Add a hidden unitu′ to U with24

weightsInu′ = c′25

weightsOutu′ = 1
m · out26

ResetInferror, Infinit, Infutil for u andu′27
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• Roughinitialisation has the advantage that the error produced by the network will
be smaller in the early phase of training than with basic initialisation. However,
due to the large number of units produced by the transformation algorithm pre-
sented in Section 6.3.2, it is advisable not to use a too fine-grained approximation
for the transformation algorithm, since otherwise the gain in initial accuracy is
paid for by an excessive number of units that have to be removed in the early
phase of training.

• Inappropriateinitialisation can lengthen the training process, but due to its flex-
ible structure, a Fine Blend can adapt without producing unnecessarily many
units.

6.3.6 Wish Lists Reviewed

In this section, we will review the wish lists from Sections 6.1.6 and 6.2.6, explaining
for each item how we have satisfied it.

Flexibility (6.1.6) The scaling parameters used by Cuboid Networks to determine
the size of the hidden units’ receptive areas are not necessary here, and the connection
weightsweightsIn from the input units to the hidden units, which encode the cen-
tres of the receptive areas and which were computed explicitly for Cuboid Networks,
are learned by Fine Blend. The use of domain knowledge has been shifted into the
distance function of the hidden units’ input function. We have thus gained the desired
flexibility and enabled the hidden units to adapt their positions in the input space, while
still exploiting our domain knowledge.

Robustness (6.1.6) The increased flexibility remedies two sources of fragility with
Cuboid Networks, namely corruption of thescaling and of theweightsIn vectors.
While the former have been abolished completely, the latter are now repaired auto-
matically because they are obtained through training anyway. The awkward conse-
quences of unit failure described in Section 6.1.5 are not an issue here: Due to the
winner-takes-all behaviour, the mentioned holes in the input space cannot occur, and
the failing units are automatically replaced through refinement or by moving existing
units. Unnecessary refinements possibly caused by damage are detected and undone.

The increased flexibility and the unit removal mechanism thus make the Fine Blend
less susceptible to damage and noise, and enable it to recover from their effects.

Unit Removal (6.1.6, 6.2.6) The utility controlled unit removal mechanism detects
and removes unnecessary units which may have been used in earlier stages of train-
ing, wrongly generated as a consequence of damage to the network, or resulted from
inappropriate initialisation. This also holds for the specific cases of unnecessary units
described in 6.2.6: Through the global decay of all units’ utilities over time, dead units
will at some point be detected and removed; and since the utility increase for the winner
unit depends on its contribution to the network output, the utility of idempotent units
does not increase, so they are detected and removed as well. The requirement that one
unit should be retained is taken into account by a slightly random initialisation of the
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utility values. Although the retained unit is not necessarily the central unit, the specific
input function we use for the hidden units decreases the chance that an unsuitable unit
from some other area takes over the area cleared of idempotent units.

Output Function (6.2.6) The Fine Blend uses thewinner-takes-allbehaviour, which
is well-suited for computing partially constant functions and drastically reduces the
number of hidden units needed in our specific application.

Error Computer (6.2.6) The general Error Computer utilising the tolerance vector
ε is used, allowing to discard negligibly small errors and thus helping to reach a stable
network topology in always-on scenarios as described in Section 5.2.8.

Refinement Criterion (6.2.6) Theperiodical threshold refinementis used, avoiding
unnecessarily precise refinements in favour of a stable network topology in always-on
scenarios.

Internal Topology (6.2.6) The Fine Blend does not use an internal topology on the
hidden units. In addition to the reduced administrative overhead as compared to SGNG,
the caveat for robustness described in Section 6.2.5 is thus not an issue here.
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7 Evaluation

7.1 Statistics

In this section, we will compare the systems described in Section 6 using statistics
gathered from the implementation. All simulations use our running example program
for rough initialisation and training, and an incorrect program for inappropriate ini-
tialisation and semantic noise. For convenience, the example program and the multi-
dimensional level mapping are listed again in Figure 14, along with the incorrect pro-
gram.

Correct program:

e(0).
o(X)← ¬e(X).
e(s(X))← o(X).

Incorrect program:

o(X)← e(X).
e(s(X))← ¬o(X).

Multi-dimensional level mapping:

‖e(sn(0))‖ := n + 1 dim(e(sn(0))) := 1
‖o(sn(0))‖ := n + 1 dim(o(sn(0))) := 2

Figure 14: The correct program along with the incorrect program and the level map-
ping, as used for the statistics.

In Table 2, all parameters used in the simulations are listed. They were partially
chosen through comparing simulations, but since there are many degrees of freedom,
this could not be done exhaustively. Some parameters were chosen intuitively, or in the
case of SGNG, inspired by [Fri98], without claiming optimality for our application.
Therefore, all comparisons can be considered subjective, and tweaking the parameters
might improve the results to some extent.

Note that we use base4 for the embedding because the resulting values are rep-
resented more straightforwardly in the computer’s binary floating point numbers than
with the base3 used for the examples so far.

The simulations always follow the same scheme: First the network is initialised
with basic, rough, or inappropriate initialisation, the latter using the incorrect program.
Then it is trained with examples randomly generated from the correct program, i.e.
pairs consisting of an embedded interpretation which randomly contains atoms up to
the specified greatest input levels, and the embedded consequence. The training exam-
ples are modified either by no, numeric, or semantic noise, as defined in Section 5.2. In
case of semantic noise, the wrong examples are generated from the incorrect program,
using the same method as for correct examples.

After each presented example, the current number of units as well as the average
of the component-wise maximum of the error relative toε made by the network with
respect to the reference set is logged. The reference set here consists of all examples
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Common Parameters
Base used for embedding 4
Tolerance vectorε (0.0025, 0.0025)
Greatest relevant output levels

used for rough initialisation (3, 3)
used for inappropriate initialisation (3, 3)
resulting fromε (4,4)

Greatest input levels
used for reference set in error computation (6, 5)
used for training example generation (6, 6)

Maximum numeric noise ±(0.00065, 0.00065)
Semantic noise ratio 0.01
Cycle length for periodical threshold refinement100

Parameters for Cuboid Networks
Error reduction factorerrorRed 0.3
Threshold for periodical threshold refinement 0.3333
learningRate 0.3

Parameters for SGNG
Winner position adaptation rateµw 0.05
Neighbour position adaptation rateµn 0.0006
Output adaptation rateη 0.3
Maximum age for edgesamax 88
Proportionality factor for width parameterσ 0.7
Error reduction factor for all unitserrorRed 0.0005
Error reduction factor for parentsα 0.5
Bias unit enabled

Common Parameters for Fine Blend
Maximum levellmax 12
Position adaptation rateµ 0.05
Output adaptation rateη 0.3
Error reduction factorerrorRed 0.3
Threshold for periodical threshold refinement 0.3333
utilityThreshold 0.2

Parameters for Fine Blend 1
Relative numberk of examples to survive 7

Parameters for Fine Blend 2
Relative numberk of examples to survive 3

Table 2: Parameters used for the statistics.
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from the correct program up to the specified greatest input level. In our case, the
reference set is a strict subset of the set of potential training examples. The diagrams
always show the error as dashed line in a logarithmic scale ranging from0.01 to 100,
along with the number of units as continuous line, both plotted against the number of
examples presented.

7.1.1 Cuboid Networks

We will first compare the variants of Cuboid Networks in order to find out whether
they are, in terms of performance, sufficiently similar to regard only one of them in the
further comparisons.

Figure 15 compares the hierarchical refinement options of adding one child at a
time (AddOneChild) and adding all children in one step (AddAllChildren). The prop-
erty mentioned in Section 6.1.4 is confirmed: The former option takes more refinement
steps, while the latter option adds more units. Apart from that, the performance is
very similar. With noise as well as with other initialisation methods, the situation is
the same. This holds also for the comparison of the two splitting refinement options,
splitting either one dimension at a time (SplitOneDimension) or all dimensions in one
step (SplitAllDimensions).

Figure 15: Comparison of AddOneChild and AddAllChildren, basic initialisation, no
noise.

Figure 16 shows an exemplary comparison of SplitOneDimension and AddOneChild.
Again, the performances are very similar. The differences are:
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• The former stabilises faster than the latter. The reason is that the former needs
less refinement steps than the latter to achieve the same input space granularity.

• The former produces less units than the latter. This is due to the fact that with
hierarchical refinement the new units are added, while with splitting refinement
the new units replace the old unit.

See Figure 17 for an illustration of the reasons.
Again, the other initialisation methods and noisy examples yield similar results.

Therefore, we will only consider one variant of Cuboid Networks from now on. The
remaining architectures are not hierarchical and add only one unit in each refinement
step. In order to achieve fair comparisons, we will thus choose the Cuboid Network
variant which has the same properties, i.e. SplitOneDimension.

Figure 16: Comparison of SplitOneDimension and AddOneChild, basic initialisation,
no noise.

Figure 18 compares the various initialisation methods using SplitOneDimension
without noise. While the difference between rough and inappropriate initialisation is
very clear in the beginning, they stabilise almost equally fast, and both perform better
than basic initialisation. This suggests that the critical issue is the generation of a
sufficient number of units rather than their adjustment. Since the number of initially
generated units does not suffice, all units have to be refined anyway, and thus their
initially wrong output values with inappropriate initialisation do not matter.

Figure 19 shows the same comparison with semantic noise. Initially, the different
initialisation methods have an effect, but the network is able to compensate for the
inappropriate initialisation. However, the number of units increases excessively, as
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(a)

(b)

Figure 17: SplitOneDimension (a) needs3 refinement steps to achieve the same input
space granularity as AddOneChild (b) with4 refinement steps. The former ends up
with 4 units, the latter with5.

Figure 18: Comparison of the initialisation methods using SplitOneDimension, no
noise. The numbers of units coincide for rough and inappropriate initialisation.
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anticipated in Section 6.1.5, and the noise disturbs the network enough to keep the
error on a relatively high level.

Figure 19: Comparison of the initialisation methods using SplitOneDimension, seman-
tic noise. The numbers of units coincide for rough and inappropriate initialisation.

7.1.2 Fine Blend

For the Fine Blend, we use two setups: One with softer utility criteria (FineBlend 1)
and one with stricter (FineBlend 2). The difference between these two setups becomes
clear in Figure 20: Starting from rough initialisation, the former further decreases the
error, paying with an increased number of units. The latter significantly decreases the
number of units, paying with an increased error.

7.1.3 Fine Blend versus SGNG

Figure 21 compares FineBlend 1 with SGNG. Both start off similar, but soon SGNG
fails to improve further. The excessively increasing number of units is partly due to
the use of periodical refinement without threshold, but this should not be the cause
for the constantly high error level. As mentioned above, the choice of parameters is
rather subjective, and even though some testing was done to find them, they might be
far from optimal. However, finding the optimal parameters for SGNG is beyond the
scope of this thesis, and from the arguments in Section 6.2.6 it should be clear that it is
not perfectly suited for our specific application. We will therefore concentrate on the
remaining architectures in the following.
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Figure 20: Comparison of FineBlend 1 and FineBlend 2, rough initialisation, numeric
noise.

Figure 21: Comparison of FineBlend 1 and SGNG, basic initialisation, no noise.
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7.1.4 Fine Blend versus Cuboid Networks

In this section, we will first compare the impact of the different initialisation meth-
ods in settings without noise and then examine the effects of noise in two exemplary
experiments.

Figure 22 shows the effects of basic, rough, and inappropriate initialisation for
FineBlend 1 and SplitOneDimension without noise. The following observations can
be made:

• The initialisation method does not affect the final outcome to a significant extent.

• With rough and with inappropriate initialisation, both networks stabilise signifi-
cantly faster than with basic initialisation. This is mainly due to the fact that less
units need to be generated.

• With rough initialisation, both networks stabilise only slightly faster than with
inappropriate initialisation. This is due to the fact that the time needed to gener-
ating the necessary number of units, which is the same with both initialisations,
outweighs the time needed to adjust the inappropriate initial output values.

• In the early phase of training, the difference between rough and inappropriate
initialisation is clear: Both networks start with a significantly lower error. The
early error peak in SplitOneDimension is probably due to premature refinements,
i.e. there have not been sufficiently many examples to learn the correct output
values for refining units.

• SplitOneDimension needs significantly longer than FineBlend 1 to correct the
inappropriate initialisation. After the correction is done, the performance of both
networks is very similar to the setting with rough initialisation.

• FineBlend 1 in all settings produces less units than SplitOneDimension, but also
a higher relative error. However, the absolute error is still less thanε.

The effects of numeric noise are compared in Figure 23. FineBlend 1 is able to sta-
bilise with a relatively low number of units and an error below1. SplitOneDimension
needs longer to reduce the error and is far less stable. At least it ceases to produce new
units in the end, which is probably due to the fact that the noise values are lower than
ε, so there is some state of the network where the noise only produces errors that are
neglected.

In our semantic noise setting, however, this is not the case, and thus the missing
unit removal mechanism of SplitOneDimension results in a constantly increasing num-
ber of units. Figure 24 shows the results for this settings, comparing FineBlend 1,
FineBlend 2, and SplitOneDimension. Obviously, the effect of completely wrong ex-
amples is much stronger than that of numerically slightly modified ones. Even with an
ever-increasing number of units, SplitOneDimension has a constantly high error, while
in both Fine Blend setups the struggle between insertion and removal of spurious units
is clearly visible. Here, the stricter utility criteria of FineBlend 2 show to advantage: A
constantly very small number of units is paid for with a rather slight increase in error
(remember the error scale is logarithmic).
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(a) basic initialisation

(b) rough initialisation

(c) inappropriate initialisation

Figure 22: Comparison of the initialisation methods using FineBlend 1 and
SplitOneDimension, no noise.
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Figure 23: Comparison of FineBlend 1 and SplitOneDimension, inappropriate initiali-
sation, numeric noise.

Figure 24: Comparison of FineBlend 1, FineBlend 2, and SplitOneDimension, basic
initialisation, semantic noise.
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7.1.5 Unit Failure

Figure 25 shows the effects of unit failure. This is simulated by randomly removing
one third of the units of a fairly trained network, and then continuing training as if
nothing had happened. The statistics are only presented for the Fine Blend, since the
current implementations of the Cuboid Network training methods do not allow for unit
removal. From Section 6.1.5, it should be clear that the Cuboid Networks are generally
not able to recover from this kind of damage. In contrast, the Fine Blend proves to
handle the damage gracefully.

Figure 25: The effects of unit failure on FineBlend 1, rough initialisation, no noise.
One third of the units were removed after5000 examples.

All results shown so far confirm that the Fine Blend outperforms the two other
architectures in our specific application and fulfils both wish lists, as stated in Sec-
tion 6.3.6.

7.1.6 Iterating Random Inputs

One of our original aims was to obtain connectionist systems for logic programs which,
when iteratively feeding their output back as input, settle to a stable state correspond-
ing to an approximation of the fixed point of the program’s single-step operator, if the
fixed point exists. In our running example, a unique fixed point is known to exist (see
Example 3.4, Lemma 3.5, and the end of Section 2.1). Also, iterating the approxima-
tions we dealt with is guaranteed to approximate this fixed point, because our program
is acyclic with respect to our multi-dimensional level mapping and we used the same
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greatest relevant output level for both dimensions (see Lemma 3.17). Since we proved
the transformation algorithms to be correct, the interesting case is how networks trained
from scratch behave.

We proceed as follows:

1. Train a network using the parameters given in Table 2 and the programs given in
Figure 14, until the error caused by the network on the reference set described
in Section 7.1 is1. This means that, in average, network outputs are in theε-
neighbourhood of the desired output.

2. Transform the obtained network into a recurrent one by connecting the outputs
to the inputs.

3. Choose a random input vector∈ D0 (which is not necessarily a valid embedded
interpretation) and use it as initial input to the network.

4. Iterate the network computation until the network reaches a stable state, i.e. until
the outputs stay inside theε-neighbourhood of the embedded fixed point ofTP .

For our example program, the unique fixed point ofTP is

{e(0), o(s(0)), e(s2(0)), o(s3(0)), e(s4(0)), . . . },

(see Section 2.1), and its embedded value is

(0.10101010 . . .4 , 0.01010101 . . .4) = ( 4
15 , 1

15 ) ≈ (0.2666667, 0.0666667).

Theε-neighbourhood is thus{
x ∈ Rm

∣∣0.2641667 < x1 < 0.2691667 and 0.0641667 < x2 < 0.0691667
}

.

Figure 26 compares the results of this process for two FineBlend 1 networks, one
trained without noise and one trained with semantic noise. The graphs represent the
input space and show theε-neighbourhood along with all intermediate results of the
iteration for5 random initial inputs in both cases.

Obviously the computation converges, and it does so fast. After at most6 steps,
the networks are stable in all cases, in fact they are completely stable in the sense that
all outputs stay exactly the same and not only within a given neighbourhood. This
corresponds roughly to the number of applications of our program’sTP required to
fix the significant atoms, which confirms that the training methods really convey our
intention of learningTP .

The only difference between the network trained without noise and the network
trained with semantic noise is that the latter is slightly mistaken with regard to the
target vector, but still it settles to an equally stable state.

These results satisfy our requirements and expectations.
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(a) trained without noise (b) trained with semantic noise

Figure 26: Iterating random inputs, FineBlend 1, basic initialisation. The two dimen-
sions of the input vectors are plotted against each other. Theε-neighbourhood of the
embedded fixed point is shown as a small box.

7.2 Properties in Comparison to ILP

While it would be presumptuous to compare the results we achieved in an area which is
only just emerging from its infancy to the comparatively established techniques of In-
ductive Logic Programming (ILP), there are some distinguishing fundamental proper-
ties that we can describe. For the ILP side, these properties can be found in [NCdW97]
unless cited otherwise.

The most prominent difference lies in the objective of learning. ILP systems are
usually presented with positive and negative example atoms from some model and try
to find a program of which only the positive examples are a logical consequence. De-
pending on the concrete semantics used, this could be regarded as learning a program
via some fixed point of its single-step operator. In our approach of neural-symbolic
integration, also called the Core method, we try to learn only one application of the
single-step operator. Therefore, both the learning target and the kind of training exam-
ples differ fundamentally.

If the necessary kind of examples is available, then the Core method has some
advantages:

• (Mutually) recursive predicates, which are a source of difficulties for a certain
class of ILP systems as pointed out in [Bra99], do not cause any problems at
all. Since we learn only one application of the single-step operator, recursive
predicates can be handled exactly like any other ones.

• Consider the following two simple programs:

p← q.

q.
and

p.

q.
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Both have the same logical consequencesp andq, but with the Core method, we
can capture the causalities.

• For the program

p← ¬q.

q ← ¬p.

different semantics exist, and the logical consequences depend on the chosen
semantics. The Core method is independent of the chosen semantics.

Additionally, there are advantageous properties inherent to the connectionist learn-
ing approach:

• It is designed for incremental learning without the need of storing the examples
encountered.

• Noise can be coped with to a certain degree, as shown in Section 7.

Both issues cause problems for many ILP systems.
Of course there is still the task to extract symbolic information, e.g. a logic pro-

gram, from the systems we construct and train. Some of the advantages and desirable
properties described so far may be lost in this process. But at least they could be estab-
lished up to this stage of the neural-symbolic learning cycle and are not lost a priori.
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8 Conclusion and Future Work

In this thesis, we first extended the results from [Wit05, BHW05] by lifting the real-
valued approximations of covered first-order logic programs to multi-dimensional real
vectors in order to facilitate an implementation on a computer with limited floating
point precision (Section 3). We then tried to construct layered sigmoidal feed-forward
networks approximating the functions obtained previously and came to the conclusion
that this approach is not suitable (Section 4). Consequently, we decided to concentrate
on locally receptive architectures and prepared an implementation, introducing a com-
mon network structure and a general training framework (Section 5). We then designed
a specialised network architecture, reviewed an established general system, and used
ideas from both in order to devise a second specialised architecture; we discussed the
properties of all approaches and described implementations along with the appropriate
transformation and training algorithms (Section 6). Finally, we evaluated the systems
using statistics obtained from the implementations and put our approach in the context
of Inductive Logic Programming (Section 7).

The evaluation confirmed the hypotheses formulated during the design process and
showed that the last architecture outperforms the two previous ones and satisfies our
expectations.

This concludes a prototypical realisation of the representation and training com-
ponents of the neural-symbolic learning cycle [BH05] for covered logic programs.
Besides implementing the remaining components of the cycle, it is also necessary to
further examine the systems presented in this thesis.

The convergence behaviour when iterating values through the network, covered
briefly in Section 7.1.6, should be studied more thoroughly. Furthermore, the tests were
performed using very simple and low-dimensional examples, so it would be desirable
to examine more involved cases closer to the real world. In order to be able to handle
them, more efforts are required to find the right parameters, and some improvements to
the architectures should be considered.

Interesting ideas for extensions include mechanisms to automatically adjust the
learning parameters in the course of the training, or to explicitly limit the maximum
number of units available. To facilitate the extraction of symbolic knowledge from
the connectionist systems, it might be an advantage if common consequences could be
captured even if not all consequences coincide, as described at the end of Section 6.1.4.

Finally, to obtain a frame of reference for judging the performance of these spe-
cialised systems, a comparison to a standard connectionist system trained with back-
propagation would be desirable.
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