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Abstract

Most of the research on temporalized Description Log-
ics (DLs) has concentrated on the case where tempo-
ral operators can occur within DL concept descriptions.
In this setting, reasoning usually becomes quite hard
if rigid roles, i.e., roles whose interpretation does not
change over time, are available. In this paper, we con-
sider the case where temporal operators are allowed to
occur only in front of DL axioms (i.e., ABox assertions
and general concept inclusion axioms), but not inside
of concepts descriptions. As the temporal component,
we use linear temporal logic (LTL) and in the DL com-
ponent we consider the basic DLLC. We show that
reasoning in the presence of rigid roles becomes con-
siderably simpler in this setting.
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tion of DLs with Halpern and Shoham’s logic of time inter-
vals (Schmiedel 1990), formalisms inspired by action log-
ics (Artale & Franconi 1998), the treatment of time points
and intervals as a concrete domains (Lutz 2001), and the
combination of standard DLs with standard (propositional)
temporal logics into logics with a two-dimensional seman-
tics, where one dimension is for time and the other for the
DL domain (Schild 1993; Wolter & Zakharyaschev 1999;
Gabbayet al. 2003). In this paper, we follow the last ap-
proach, where we use the basic DILC (Schmidt-Schau3

& Smolka 1991) in the DL component and linear tempo-
ral logic (LTL) (Pnueli 1977) in the temporal component.
However, even after the DL and the temporal logic to be
combined have been fixed, there remain several degrees of

freedom when defining the resulting temporalized DL.
. On the one hand, one must decide which pieces of syntax
Introduction temporal operators can be applied to. Temporal operators

In many applications of Description Logics (DLs) (Baader May be allowed to be used as concept constructors, as re-
et al. 2003), such as the use of DLs as ontology lan- quired by the above example of a concussion with no loss
guages or conceptual modeling languages, being able to rep-Of consciousness, which could be defined using the until-
resent dynamic aspects of the application domain would be OP€ratotU of LTL as follows:

quite useful. This is, for instance, the case if one wants Jfinding.Concussion 1 1)

to use DLs as conceptual modeling languages for temporal Conscious U Jorocedure. Examination

databases (Artalet al. 2002). Another example are medi- P ' '
cal ontologies, where the faithful representation of concepts Alternatively or in addition, temporal operators may be
would often require the description of temporal patterns. As applied to TBox axioms (i.e., general concept inclusions,
a simple example, consider the concept “Concussion with GCIs) and/or to ABox assertions. For example, the tem-
no loss of consciousness,” which is modeled as a primitive poralized TBox axiom

(o dinher tefnec) soncept i e mede) loooy - oc(Uscien = Snured by et
rivaraporn 2006), a correct representation of this concept says that there is a future time point from which on US citi-
should actually say that, after the concussion, the patient re- zens will always have health insurance, and the formdula
mained conscious until the examination. O((EIfinding.Concussion)(BOB) A @

Since the expressiveness of pure DLs is not sufficient
Conscious(BOB)U(3procedure.Examination)(BOB))

to describe such temporal patterns, a plethora of tempo-

ral extensions of DLs have been investigated in the litera- L . .

ture2 These include approaches as diverse as the combina-32YS that, sometime in the future, Bob will have a concussion
with no loss of consciousness between the concussion and
the examination.

On the other hand, one must decide whether one wants

Intelligence (www.aaai.org). All rights reserved. to have rigid concepts and/or roles, i.e., concepts/roles

'see http://www.ihtsdo.org/our-standards/ whose interpretation does not vary over time. For exam-

2For a more thorpugh survey of the Iiter.ature_on temporalized ple, the concepHuman and the rolehas_father should
DLs, see the technical report accompanying this paper (Baader,

Ghilardi, & Lutz 2008) and the survey papers (Artale & Franconi  2000; 2001; Lutz, Wolter, & Zakharyaschev 2008).
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probably be rigid since a human being will stay a hu-
man being and have the same father over his/her life-time,
whereasConscious should be a flexible concept (i.e., not

rem 14.15 on page 605 there). However, also in (Galgbay
al. 2003), the setting where temporal operators are allowed
to occur only in front of axioms is considered only in the

rigid) since someone that is conscious at the moment need absence of rigid symbols.

not always by conscious. Similarlyinsured_by should

be modeled as a flexible role. Using a logic that can-
not enforce rigidity of concepts/roles may result in un-
intended models, and thus prevent certain useful infer-

Obviously, the temporalized DLs we investigate in this
paper cannot be used to define temporal concepts such as
(1) for concussion with no loss of consciousness. However,
they are nevertheless useful in ontology-based applications

ences to be drawn. For example, the concept description since they can be used to reason about a temporal sequence

Jhas_father.Human M < (Vhas_father.—Human) is only un-
satisfiable if botthas_father andHuman are rigid.
The combination of (extensions ofA£C and LTL in

which temporal operators can be applied to concept descrip-

tions, TBox axioms, and ABox assertions has been studied
by Wolter, Zakharyaschev, and others (see, e.g., (Wolter &
Zakharyaschev 1999; Gabbay al. 2003)). In particular,

it is known that the basic reasoning problems such as satis-

fiability are ExPSPACE-complete. In this setting, rigid con-

of ABoxes w.r.t. a (global or temporalized) TBox. For exam-
ple, in an emergency ward, the vital parameters of a patient
are monitored in short intervals (sometimes not longer than
10 minutes), and additional information is available from
the patient record and added by doctors and nurses. Using
concepts defined in a medical ontology like SNOMED CT,
a high-level view of the medical status of the patient at a
given time point can be given by an ABox. Obviously, the
sequence of ABoxes obtained this way can be described us-

cepts can be defined, but rigid roles cannot. In fact, as shown ing temporalized ABox assertions. Critical situations, which

in (Gabbayet al. 2003), the addition of rigid roles causes un-
decidability even w.r.t. a global TBox (i.e., where the same
TBox axioms must hold at all time points). Decidability can
be regained by dropping TBoxes altogether, but the deci-
sion problem is still hard for non-elementary time. Decid-
able combinations of DLs and temporal logics that allow for
rigid roles can be obtained by strongly restricting either the
temporal component (Artale, Lutz, & Toman 2007) or the
DL component (Artalest al. 2007).

In this paper, we follow a different approach for regain-
ing decidability in the presence of rigid roles: temporal op-
erators are allowed to occur only in front of axioms (i.e.,
ABox assertions and TBox axioms), but not inside concept
descriptions. We show that reasoning becomes simpler in
this setting: with rigid roles, satisfiability is decidable (more
precisely: 2-EPTIME-complete); without rigid roles, the
complexity decreases to NETIME-complete; and with-
out any rigid symbols, it decreases further taPE IME-
complete (i.e., the same complexity as reasoningl£C
alone). We also consider two other ways of decreasing the
complexity of satisfiability to EPTIME. On the one hand,
satisfiability without rigid roles (but with rigid concepts) be-
comes EPTIME-complete if GCls can occur only as global
axioms that must hold in every temporal world. Note that, in
this case, ABox assertions aretassumed to be global, i.e.,
the valid ABox assertions may vary over time. On the other
hand, satisfiability with rigid concepts and roles becomes
ExPTIME-complete if the temporal component is restricted
appropriately by replacing the temporal operators ut)l (
and next X) of LTL with diamond (), which expresses
“sometime in the future.”

The situation we concentrate on in this paper (i.e., where
temporal operators are allowed to occur only in front of ax-

require the intervention of a doctor, can then be described by
a formula in our temporalized DL, and recognized using the
reasoning procedures developed in this paper. For example,
given a formulap encoding a sequence of ABoxes describ-
ing the medical status of Bob, starting at some time point
to, and the formula) defined in(2), we can check whether
Bob sometime aftefy had a concussion with no loss of con-
sciousness by testinggA — for unsatisfiability.

Basic definitions

The temporalized DLALC-LTL introduced in this paper

combines the basic DLALC with linear temporal logic

(LTL). We start by recalling the relevant definitions for
ALC.

Definition 1. Let N¢, Ng, and Ny respectively be disjoint
sets ofconcept namegole namesand individual names
The set ofALC-concept descriptionis the smallest set such
that

¢ all concept names argd LC-concept descriptions;

e if C, D are ALC-concept descriptions ande Ng, then
-C,CUD,CnD, Ir.C, andVr.C are ALC-concept
descriptions.

A general concept inclusion axiom (GCH of the form
C C D, whereC, D are ALC-concept descriptions, and
an assertionis of the forma : C or (a,b) : r whereC'is
an ALC-concept descriptiory; is a role name, and, b are
individual names. We call both GCls and assertiof8C-
axioms A Boolean combination oflLC-axioms is called a
BooleanALC-knowledge baseé.e.,

e everyALC-axiom is a Booleatd LC-knowledge base;

ioms) has been considered before only for the case where e if B; and B, are Boolean4L£C-knowledge bases, then so

there are no rigid concepts or roles. The combination ap-
proach introduced in (Finger & Gabbay 1992) yields a de-

cision procedure for this case, whose worst-case complex-

ity is, however, non-optimal. Our>@TIME upper bound
for this case actually also follows from more general results
in (Gabbayet al. 2003) (see the remark following Theo-

are By A By, By V By, and—;.

An ALC-TBoxis a conjunction of GCls, and adLC-ABox
is a conjunction of assertions.

According to this definition, TBoxes and ABoxes are spe-
cial kinds of Boolean knowledge bases. However, note that



they are often written as sets of axioms rather than as con-

junctions of these axioms. The semanticsA#C is defined
through the notion of an interpretation.

Definition 2. Aninterpretatioris a pairZ = (AZ,-Z) where
thedomainAZ is a non-empty set, and is a function that
assigns to every concept namea setA? C A7, to every
role namer a binary relationr? C AZ x A%, and to every
individual namea an element? ¢ AZ. This function is
extended to4dLC-concept descriptions as follows:

e (CND)Y =cCTnDI, (CuD)?=CcTuD?, (-C) =
AI \ CI;

o (Ir.0)f = {z € AT |thereis ay € AT with (x,y) € r*
andy € C7};

o (vr.0)t = {z € AT |forally € AZ, (z,y) € r*
impliesy € C7}.

The interpretatior? is amodelof the ALC-axiomsC C D,
a : C, and(a,b) : riff it respectively satisfie§€Z C DZ,
at € CT, and (aZ,b%) € rZ. The notion of a model is
extended to Boolead LC-knowledge bases as follows:

e T is amodel of3; A B iff it is a model ofB; and Bs;
e 7 is amodel of3; Vv B iff it is a model of3; or Bs;
e 7 is a model of- iff it is not a model of3;.

We say that the Boolead LC-knowledge bas# is consis-
tentiff it has a model. The concept descripti6his sat-
isfiablew.r.t. the GCID; T D, iff there is a modell of
Dy T Dy with CT £ ().

In Description Logics, it is often assumed that the inter-
pretations satisfy thenique name assumption (UNAg.,
different individual names are interpreted by different ele-
ments of the domain.

For LTL, we use the variant with@on-strict until(U) and
anext(X) operator. Instead of first introducing the proposi-
tional temporal logic LTL, we directly define our new tem-
poralized DL, calledALC-LTL. The difference to LTL is
that ALC-axioms replace propositional letters.

Definition 3. ALC-LTL formulae are defined by induction:

e if ais an ALC-axiom, thenx is an ALC-LTL formula;
o if ¢, are ALC-LTL formulae, then so are A ¢, ¢ V 1,
=, pUrp, and Xo.

As usual, we userue as an abbreviation for(a) V
—A(a), ©¢ as an abbreviation farueU¢ (diamond which
should be read as “sometime in the future”), and as an
abbreviation for-0—¢ (box which should be read as “al-
ways in the future”). The semantics gfCC-LTL is based
on ALC-LTL structures, which are sequences 4iC-
interpretations over the same non-empty domair{con-
stant domain assumption). We assume that every individ-
ual name stands for a unique elementofrigid individual
names), and we make the unique name assumption.

Definition 4. An ALC-LTL structureis a sequenc§ =
(Z;)i=o0.1,... of ALC-interpretationsZ; = (A,-Z¢) obeying
the UNA (calledworlds) such thatz?: = o/ for all individ-
ual names:and allé, j € {0,1,2,...}. Given anALC-LTL
formula ¢, an ALC-LTL structured = (Z;);=0,1,..., and a

time point; € {0,1,2,...}, validity of¢ in J at time: (writ-
tenJ,i = ¢) is defined inductively:

JiECCD iff ¢% C D%

JiEa:C iff afi € C%i

J,i = (a,b) :r iff (ai,b%) € T

JikEoAy i JikE¢andd, il
JikEovy iff JikE¢ordikEqy

J,i = —¢ iff notJ,i ¢

3,0 = Xo iff Ji+1F¢

3,1 = oUy iff thereisk > i suchthatd, k = ¢

andJ,j =o¢forall j,i <j<k

As mentioned above, for some concepts and roles it is not
desirable that their interpretation changes over time. Thus,
we will sometimes assume that a subset of the set of concept
and role names can be designated as being rigid. We will
call the elements of this subs@id concept nameandrigid
role names Concept and role names that do not belong to
this subset will be calleflexible

Definition 5. We say that theALC-LTL structureJ =
(Z;)i=0,1,... respects rigid concept names (role namiés)
Ali = A%i (rTi = r%3) holds for alli,j € {0,1,2,...}
and all rigid concept named (rigid role names-).

The satisfiability problem in ALC-LTL

Depending on whether rigid concept and role names are con-
sidered or not, we obtain different variants of the satisfiabil-
ity problem.

Definition 6. Let ¢ be an ALC-LTL formula and assume
that a subset of the set of concept and role names has been
designated as being rigid.

e \We say thab is satisfiable w.r.t. rigid namef there is an
ALC-LTL structureJ respecting rigid concept and role
names such thdx, 0 |= ¢.

e \We say that is satisfiable w.r.t. rigid conceptf there is

an ALC-LTL structureJ respecting rigid concept names

such thatd, 0 = ¢.

e We say that is satisfiable without rigid namésr simply
satisfiablg iff there is anALC-LTL structureJ such that

3,0 E ¢.

In this paper, we show that the complexity of the satisfia-
bility problem for ALC-LTL strongly depends on which of
the above cases one considers. Note that it does not really
make sense to consider satisfiability w.r.t. rigid role names,
but without rigid concept names, as a separate case when in-
vestigating the complexity of the satisfiability problem. In
fact, rigid concepts can be simulated by rigid roles: just
introduce a new rigid role name, for each rigid concept
nameA, and then replacd by 3r4.T.

Another dimension that influences the complexity of the
satisfiability problem is whether GCls occur globally or lo-
cally in the formula. Intuitively, a GCI occurs globally if it
must hold in every world of thel LC-LTL structure.

Definition 7. We say thaw is an ALC-LTL formulawith
global GClsiff it is of the form¢ = OB A ¢ whereB is a
conjunction ofALC-axioms andp is an ALC-LTL formula



that does not contain GCls. We denote the fragmentdf -
LTL that contains onlyd LC-LTL formulae with global GCls
by AEC-LTL‘QGQ.

Note that saying, in the above definition, tiats acon-
junction of ALC-axioms just means thd$ is a TBox to-
gether with an ABox. We could have restrict8do being
a conjunction of GCls (i.e., a TBox) since assertiorig B
could be moved as conjundisy to ¢.> However, it turns out
to be more convenient to allow also ABox assertions to occur
in the “global part"’0B5 of ¢. Also note that it is important
to restrict B to being aconjunctionof ALC-axioms rather
than an arbitrary Boolearl £LC-knowledge base. In fact,
the lower complexity for the case of satisfiability w.r.t. rigid

rigid names. We build itpropositional abstractior by re-
placing each4LC-axiom by a propositional variable such
that there is al—1 relationship between thglLC-axioms
ai,...,q, occurring ing and the propositional variables
p1,---,pn Used for the abstraction. We assume in the fol-
lowing thatp; was used to replace; (: = 1,...,n).

Consider asef C P({p1,...,pn}), i.€., a set of subsets
of {p1,...,pn}. Such a set induces the following (proposi-
tional) LTL formula:

(ES ::(g/\\j

V

Xes

AN

peEX PEX

concepts obtained in this case (see Table 1 below) would not If ¢ is satisfiable in aALC-LTL structured = (Z;)i=o,1,...,

hold without this restriction (see Corollary 6.8 in (Baader,
Ghilardi, & Lutz 2008)).

Instead of restricting toALC-LTL formulae with global
GCls, we can also restrict the temporal component, by con-
sidering the fragment LC-LTL |, of ALC-LTL in which &
is the only temporal operator. In this fragment, neitteror
Xis definable.

Definition 8. ALC-LTL|s formulae are defined by induc-
tion:
e if ais an.ALC-axiom, theny is an ALC-LTL|¢ formula;
o if ¢, 1) are ALC-LTL|., formulae, then so ar@ A1), oV,
—¢, and < ¢.
The semantics 0fALC-LTL |, formulae is defined as in

the case ofALC-LTL. In particular, the interpretation of the
diamond operator is defined as

J,i E<©¢ iff thereisk > isuchthad, k E ¢.

Table 1 summarizes the results of our investigation of the
complexity of the satisfiability problem id £LC-LTL and its
fragments.

Reasoning with rigid names

In this section, we investigate the complexity of the satis-
fiability problem in ALC-LTL and ALC-LTL |gac; if rigid
concepts and roles are available.

Theorem 9. Satisfiability w.r.t. rigid names i2-EXPTIME-
complete both iALC-LTL and in ALC-LTL|4ccl-

2-ExPTIME-hardness for satisfiability w.r.t. rigid names
and with global GCls (i.e., iIALC-LTL |gacr) can be shown
by a (quite intricate) reduction of the word problem for ex-

then there is a8 C P({p1,...,pn}) Such thatggg is sat-
isfiable in a propositional LTL structure. In fact, for each
ALC-interpretatioriZ; of J, we define the set

X = {p; | 1 <j < nandZ satisfiesy, },

and then takeS = {X; | ¢ 0,1,...}. We say that
S is inducedby the ALC-LTL structured = (Z;);=o,1,....
The fact thati satisfiesp implies that its propositional ab-
straction satisfie®s, where thepropositional abstraction
J = (wi)i=0,1,... of J is defined such that world; makes
variablep; true iff Z; satisfiesa;. However, guessing such
a setS € P({p1,-..,pn}) and then testing whether the

induced propositional LTL formulas is satisfiable is not
sufficient for checking satisfiability w.r.t. rigid names of the
ALC-LTL formula ¢. We must also check whether the
guessed sef can indeed be induced by soreCC-LTL
structure that respects the rigid concept and role names.

To this purpose, assume that aSet {X;,..., X;} C
P({p1,-...,pn}) is given. For every,1 < i < k, and every
flexibleconcept named (flexiblerole namer) occurring in
ai,...,an, we introduce a copy® (r("). We call A®)
(D) theith copy ofA (). TheAEC-axiomay) is obtained
from «; by replacing every occurrence of a flexible name by
its ith copy. The setX; (1 < ¢ < k) induce the following
BooleanALC-knowledge bases:

— (9 ()
B; = /\ a;” A /\ o
pj€X; P X
Lemma 10. The ALC-LTL formula ¢ is satisfiable w.r.t.

rigid names iff there is a se§ = {Xi,..., X} C
P{p1,--.,pn}) such that the propositional LTL formula

¢s is satisfiable and the Booleard LC-knowledge base

ponentially space bounded alternating Turing machines (see B := A1 <i<i Bi is consistent.

the Appendix). Obviously, this also yields 2xETIME-
hardness for the more general case with arbitrary GCls (i.e.,
in ALC-LTL).

In the following, we prove the complexity upper bound
for ALC-LTL. Obviously, this also establishes the same up-
per bound for the restricted casedLC-LTL |gccr. Thus, let
¢ be an4dLC-LTL formula to be tested for satisfiability w.r.t.

3This is the reason why we talk abadiCC-LTL formulagwith
global GClsin this case, rather than abotCC-LTL formulae
with global axioms.

Proof. For the “only if” direction, recall that we have
already seen how ad LC-LTL structured = (Z,),=0.1,...
satisfyinge can be used to define asetC P({p1,...,pn})
such thatps is satisfiable. LeS = {X;, ..., X }. Foreach
¢t =0,1,...thereis anindex, € {1,...,k} such thatZ,
induces the sek; , i.e.,

Xi, = {p; |1 <j < nandZ, satisfiesy; },

and, conversely, for eaghe {1,...,k} thereisanindex €
{0,1,2,...} such that = i,. Letsy,..., ¢ € {0,1,2,...}



W.r.t. rigid names

W.r.t. rigid concepts

Without rigid name

ALC-LTL

2-ExPTIME-complete

NEXPTIME-complete

EXPTIME-complete

ALCTTLgea

2-ExPTIME-complete

ExXPTIME-complete

ExXPTIME-complete

ALCCTL o

EXPTIME-complete

EXPTIME-complete

EXPTIME-complete

Table 1: Complexity of the satisfiability problem #CC-LTL and its fragments.

be such that,, = 1,...,4,, = k. The ALC-interpretation

J. is obtained front,, by interpreting theth copy of each
flexible name like the original flexible name, and by for-
getting about the interpretations of the flexible names. By
our construction of7; and our definition of the Boolean
ALC-knowledge basds;, we have that7; is a model of
B;. Recall that the interpretatiods, , . . .
., Ji) all have the same domain. In addition, the in-

VT
terpretations of the rigid names coi
thus also in7y, ..
renamed. Thus, the unigf of 71, .

B = /\19‘31@ B;.

To show the “if” direction, assume that there is a set

S = {Xl,...,Xk} Q P({p1,...,
satisfiable and3 := A, B; is
(w,),=0,1,... be a propositional LTL

ncideip, ..., Z,, (and

., Ji) and the flexible symbols have been
.., Ji is awell-defined
ALC-interpretation, and it is easy to see that it is a model of

pn}) such that$s is
consistent. Lefl =

structure satisfindAg;,

and let7 be anALC-interpretation satisfying. By the def-

inition of $S, for every worldw, there is exactly one index

i, € {1,...,k} such thatw, satisfies

Aor A e

PEX;, PEXi,

Fori € {1,...,k}, we use thedLC-

interpretation” satis-

fying B to define andLC-interpretation7; as follows: 7;

interprets the rigid names likg, and it interprets the flexi-
ble names just ag interprets theth copies of them. Note
that the interpretationg/; are over the same domain and
respect the rigid symbols, i.e., they interpret them identi-
cally. We can now define ad LC-LTL structure respecting

rigid symbols and satisfying as follows:J := (Z,),—0.1....

whereZ, := 7;,.

It remains to show that this lemma provides us with a de-

O

cision procedure for satisfiability itdLC-LTL w.r.t. rigid

names that runs in deterministic double-exponential time.

First, note that there ar@?"
P({pl,...

of B= Algigk Bz

many subsetsS of

,pn}) to be tested, where is of course lin-
early bounded by the size @f. For each of these subsets
S = {Xi,..., Xk}, whose cardinalityk is bounded by

2", we need to check satisfiability efs and consistency

The size of$3 is at most exponential in the size ¢f

and the complexity of the satisfiability problem in proposi-

tional LTL is in PSPACE, and thus in

Consequently, satisfiability afs can be tested in double-

exponential time in the size af.

particular in & TIME.

,Z,, (and thus also

The BooleandL£C-knowledge bas# is a conjunction of
k < 2™ BooleanALC-knowledge baseB;, where the size
of eachB; is polynomial in the size of. The consistency
problem for Boolean4d£C-knowledge base is ¥TIME-
complete (see, e.g., Theorem 2.27 in (Gabéiagl. 2003)).
Consequently, consistency Bfcan also be tested in double-
exponential time in the size of the input formula

Overall, we thus have double-exponentially many tests,

where each test takes double-exponential time. This pro-
vides us with a double-exponential bound for testing satisfi-
ability in ALC-LTL w.r.t. rigid names based on Lemma 10.

The hardness proof given in the Appendix shows that this
double-exponential upper bound is indeed optimal. How-
ever, to get an intuition for what actually makes the prob-
lem so hard, let us analyze in more detail where the al-
gorithm sketched above needs to spend double-exponential
time. The algorithm needs

1. to consider2?” many subsetsS =
P({ph cee 7pn});

2. for each such subset t@%ﬁ for satisfiability;

{X17~-~>Xk} of

3. testB = A\, B; for consistency.

The main culprit is 3. Intuitively, the presence of rigid
roles enforces that the consistency test for the conjunction
Ni<i<x Bi needs to be done for the whole conjunction,
and cannot be reduced to separate test for the conjuncts (or
some enriched versions of the conjuncts). Thus, the Boolean
ALC-knowledge base to be tested for consistency is expo-
nentially large. Since the consistency problem for Boolean
ALC-knowledge bases isXPTIME-complete, testing this
knowledge base for consistency requires in the worst-case
double-exponential time. In contrast, 2. is actually harmless.
According to what we have said above, it needs exponential
space, but we will see in the next section that this can even
be reduced to exponential time. Finally, 1. also does not re-
ally require double-exponential time since one could guess
an appropriate sef within NExPTIME.

Reasoning with rigid concepts

In this section, we consider the case where rigid concept
names are available, but not rigid role names. First, note
that, in contrast to temporal DLs where temporal opera-
tors may occur inside of concept descriptions, rigid con-
cept names cannot easily be expressed within the logic with-
out rigid concept names. In fact, the GCAsC OA and

—-A C O-A express thaid must be interpreted in a rigid
way. However, they are not allowed by the syntax4C-

LTL since the box is applied directly to a concept, and not to



an axiom. We will show below that, fod LC-LTL, the pres-

ence of rigid concept names indeed increases the complex-

ity of the satisfiability problem, unless GCls are restricted to
being global. First, we treat the case of arbitrary GCls, and
then the special case of global GCls.

Theorem 11. Satisfiability inALC-LTL w.r.t. rigid concepts
is NExPTIME-complete.

A detailed proof of the lower bound, by reduction of the
27 +1.pounded domino problem (Bger, Gadel, & Gure-
vich 1997; Tobies 1999), can be found in (Baader, Ghi-
lardi, & Lutz 2008). In the proof of the upper bound, we
want to reuse Lemma 10. Obviously, we can guess a set

= {Xy,..., X} € P({p1,---,pn}), within NEXP-
TIME. However, there aréwvo obstacleon our way to a
NEXPTIME decision procedure.

First, the propositional LTL formulas is of size expo-
nential in the size ofp. Thus, a direct application of the
P SpacEedecision procedure for satisfiability in propositional
LTL would only yield an EXPSPACE upper bound, which is
not good enough. However, note that the only effect of the

box-formula in¢g is to restrict the worldsv in a proposi-
tional LTL structure satisfyingg to being induced by one
of the elements of. One way of deciding satisfiability of a

propositional LTL formulag is to construct a Bchi automa-
ton A(g that accepts the propositional LTL structures satisfy-

ing 6. To be more precise, l&t := P{{p1,.--,pn}). Then

a given propositional LTL structur® = (w,),=¢1,... can be
represented by an infinite workly X . .. over, whereX,
consists of the propositional variables that makes true.
The Bichi automator:lélq5 is built such that it accepts exactly
those infinite words ovex. that represent propositional LTL

structures satlsfym@ Consequentlyj) is satisfiable iff the
language accepted bﬁﬂ is non-empty. The size oﬂA is

exponential in the size q? and the emptiness test fo'rlehi
automata is polynomial in the size of the automaton. The au-
tomatonAqA5 can now easily be modified into one accepting
exactly the words representing propositional LTL structures
satisfyingq%. In fact, we just need to remove all transitions

that use a letter fronk \ S. Obviously, this modification
can be done in time polynomial in the sizeAlfg, and thus

in time exponential in the size @f. The size of the resulting
automaton is obviously still only exponential in the size of
¢, and thus its emptiness can be tested in time exponential
in the size ofp (and hence o).

The second obstacle is the fact tifat= A, ., B; is of
exponential size, and thus testing it directly for consistency
using the known EPTIME decision procedure for satisfia-
bility of Boolean.AL£C-knowledge bases would provide us
with a double-exponential time bound. Instead of testing the
consistency of3 directly we reduce this test th separate
consistency tests, each requiring time exponential in the size
of ¢. Before we can do this, we need another guessing step.
Assume thatd,, ..., A, are all the rigid concept names oc-
curring ing, and thatzl, ..., as are all the individual names

occurring ing. We guess a s C P({4,,...,4,}) and
a mappingt : {ai,...,as} — 7. Again, this guess can
clearly be done within NEPTIME.

Given 7 and t, we extend the knowledge basés
to knowledge basesb’ (7,t) as follows. ForY C
H, .. ﬁ let Cy be the concept descriptiofiy :=

AN —A. We defineB; (7, t) as

AeY

BiA N a:Cy/\TEJ/?lTC’y/\ /\ ~(T E-Cy)

t(a)=Y YeT

Since we consider the case where only concept nhames can
be rigid, we know that the BooleadLC-knowledge bases

B; are built over disjoint sets of role names. The only names
shared among the knowledge baggsre the rigid concept
names.

Lemma 12. The BooleanALC-knowledge bases

Ni<i<x Bi is consistent iff there is a setl

P({Ay,...,A,}) and a mapping: : {ai,...,as} —

such that the Boolean knowledge bad&$7,t) for i
., k are separately consistent.

Proof. For the “only if” direction, assume thaf
Ai<;<i Bi has amodel = (A, 7). LetT consist of those
setsY C {A4,,...,A,} such that there is & € A with
d € (Cy)%, and lett be the mapping satisfyinga) = Y iff
a® € (Cy)%. Itis easy to see that, with this choiceBfand
t, all the knowledge basds;(7,t) fori = 1,...,k haveZ
as model.

To show the “if” direction, assume that there is a%eC
P{A1,...,A.}) and a mapping : {ai,...,as} — T
such that the Boolean knowledge bad&$7,t) for i =

.,k have modelg; = (A;,-Z¢). We can assume with-
out loss of generalitythat

¢ the domaing)\; are countably infinite, and

e in each model;, the setsy” € 7 are realized by count-
ably infinitely many individuals, i.e., there are countably
infinitely many elementd € A; such thatl € (Cy )%:.

Consequently, the domaids; are partitioned into the count-
ably infinite setsA\;(Y") (for Y € T), which are defined as
follows:

SN

A(Y):={de A |de (Cy)}

In addition, for each individual name € {a1,...,as} we
have

ati € Ai(t(a))
We are now ready to define the modek (A, -7) of B. As

the domain off we take the domain dfy, i.e., A := A;.
Accordingly, we defineA(Y) := A;(Y) forall Y € 7.
Because of the properties stated above, there exist bijections
m; « A; — A such that

“This is an easy consequence of the fact that Boold#it-
knowledge bases always have a finite model and that the countably
infinite disjoint union of a model of a Boolead £C-knowledge
base is again a model of this knowledge base.



e the restriction ofr; to A;(Y) is a bijection between
A;(Y)andA(Y);

e 7; respects individual names, i.er;(aZi) = ot holds
foralla € {a1,...,as}. (Note that we have the unique
name assumption for individual names.)

We us these bijections to define the interpretation function

T of T as follows:

o If Ais aflexible concept name, théhcontains its copies
A® fori = 1,...,k. Their interpretation is defined as
follows: _

(AT .= {n(d) | d € AT:}.
o All role namesr are flexible, ands contains their copies

r® fori = 1,...,k. Their interpretation is defined as
follows:

(rO)F = {(n(d), 7(e)) | (d,e) € 7},

o If Aisarigid concept names, then we define

AT = AT
o If ais an individual name, then we define
al :=ah

To prove the lemma, it remains to show tiais a model of
all the knowledge basd3; (i = 1, ..., k). This is an imme-
diate consequence of the fact thatis an isomorphism be-
tweenZ; andZ w.r.t. the concept and role names occurring
in B;. The isomorphism condition is satisfied for flexible
concepts and roles by our definition & and for individ-
ual names by our assumptions on Now, let A be a rigid
concept name. We must show thiae A% iff 7;(d) € AT
holds for alld € A;. SinceA, is partitioned into the sets
A;(Y) forY € T, we know that there is ® € 7 such that

d € Ay(Y), i.e.,d € (Cy)¥. In addition, we know that
mi(d) € A(Y), i.e.,m(d) € (Cy)r = (Cy)E. This im-
plies thatd € A% iff A € Y iff m;(d) € AZ, which finishes
the proof thatr; is an isomorphism betweeéf andZ. Con-
sequentlyZ is a model ofB = A, Bi, which in turn
finishes the proof of the lemma. O

To complete the proof of Theorem 11, we must show that
the consistency dB;(7, t) can be decided in time exponen-
tial in the size of the input formula. Note that this is not
trivial. In fact, while the size of3; A /\t(a):Y a:Cylis
polynomial in the size of, the cardinality of7, and thus
the size of

T;Y|?|TOY AN\ (T E-Cy), €)

YeT
can be exponential in the size of Decidability of the con-
sistency of3;(7, t) in time exponential in the size af is,

of 7 is at most exponential in, and the size of eachi € 7

is linear inn. We say thaf3 is consistent w.rt7 iff it has

a model that is also a model ¢8). The following lemma
can be shown by an adaptation of the proof of Theorem 2.27
in (Gabbayet al. 2003), which shows that the consistency
problem for Booleamd £LC-knowledge bases is ineTIME

(see (Baader, Ghilardi, & Lutz 2008) for details).

Lemma 13. Let B be a BooleandLC-knowledge base of
sizen, Ay, ..., A, concept names occurring i, and7 C

P({A1,...,A.}). Then, consistency & w.r.t. 7 can be
decided in time exponential in

Overall, this completes the proof of Theorem 11. In fact,
after two NEXPTIME guesses, all we have to do drédi.e.,
exponentially many) EPTIME consistency tests.

Restricting GCls to global ones decreases the complexity
of the satisfiability problem.

Theorem 14. Satisfiability in ALC-LTL|geci W.r.t. rigid
concepts i€EXPTIME-complete.

ExPTIME-hardness is an easy consequence of the well-
known fact that concept satisfiability iIALC w.r.t. a single
GClis ExPTIME-complete:C is satisfiable w.rtD; C Dy
iff a: C AO(D; C D») is satisfiable.

To prove the EPTIME upper bound, we consider an
ALC-LTL formula ¢ = OB A ¢, where5 is a conjunction
of ALC-axioms andp is anALC-LTL formula that does not
contain GCls. We say th#t is ¢-exhaustivéf, for every in-
dividual namea and every rigid concept nam#é occurring
in ¢, eithera : A ora : =A occurs as a conjunct i. We
can assume without loss of generality tlds ¢-exhaustive.

In fact, given an arbitrary Boolead£C-knowledge bas#,
we can build all thep-exhaustive knowledge basgs that
are obtained fronB by conjoining to it, for every individ
ual namer and every rigid concept namé occurring ing,
eithera : Aora : ~A. Obviously,¢p = OB A ¢ is sat-
isfiable w.r.t. rigid concepts iffiB’ A ¢ is satisfiable w.r.t.
rigid concepts for one of the extensi# of B obtained this
way. Since the size of each such an extension is polyno-
mial and there are only exponentially many such extensions,
it is sufficient to show that testing satisfiability of3’ A ¢
w.r.t. rigid concepts fop-exhaustive knowledge basBsis

in EXPTIME.

Following the approach used in the proof of Theorem 9,
we abstract every ABox assertiery occurring inyp by a
propositional variablep;, thus building the propositional

LTL-formula . Next, we compute the sé&t which consists
of thoseX C {pi,...,p,} for which the BooleanALC-

knowledge base
B A /\ Oéj/\ /\ ey

pj€X pjgX

BX =

however, an immediate consequence of the next lemma. To is consistent. This computation can be done in exponential

formulate this lemma, we need to introduce one more no-
tation. LetB be a BooleandLC-knowledge base of size
n, Ay,..., A, concept names occurring iﬁ, and7 C
P({A,...,A.}). Note that this implies that the cardinality

time since it requires exponentially manyx®&Tl IME consis-
tency tests.

Lemma 15. Let¢ = OBAp be such tha8 is a¢-exhaustive
conjunction ofALC-axioms andp is an ALC-LTL formula



not containing GClIs. Then is satisfiable w.r.t. rigid con-
cepts iff the propositional LTL formula

Ao\ (A pin N\ —pi)

Xe8 pieX P EX

P35

is satisfiable.

The proof of this lemma can again be found in (Baader,
Ghilardi, & Lutz 2008). Note that this actually completes
the proof of Theorem 14. In fact, as shown in the proof of
Theorem 11, satisfiability gb s can be decided in exponen-
tial time.

Reasoning without rigid names

In this section, we consider the case where we have no rigid

names at all.

Theorem 16. Satisfiability without rigid names itALC-
LTL and inALC-LTL|ggcr is EXPTIME-complete.

ExPTIME-hardness is again an easy consequence of the setS = {Xy,..

fact that concept satisfiability il LC w.r.t. a single GCl is
ExPTIME-complete. As already mentioned in the introduc-
tion, the EXPTIME upper bound follows from more general
results proved in Chapter 11 of (Gabbetyal. 2003) (see
the remark following Theorem 14.14 on page 605 of (Gab-
bayet al. 2003)). A direct proof of the upper bound, which
is similar to the proof of Theorem 14, is given in (Baader,
Ghilardi, & Lutz 2008).

Restricting the temporal component

In this section, we consider the fragmeALC-LTL | of
ALC-LTL, in which < is the only temporal operator. Our
aim is to show that satisfiability il £C-LTL | w.r.t. rigid
names is in EPTIME. The main reason for this is that we
can restrict the attention td LC-LTL structures respecting
rigid concept and role names that consist of at most poly-
nomially many distinctALC-interpretations. Theveightof

the ALC-LTL structured = (Z;);—o,1.... is defined to be the
cardinality of the sefZ; | i = 0,1,...}.°

Lemma 17. Let ¢ be an ALC-LTL|, formula of sizem.

If ¢ is satisfiable w.r.t. rigid names, then there is dC-
LTL structureJ respecting rigid concept and role names of
weight at most¢| + 2 such thaty, 0 = ¢.

The proof of this fact, which can be found in (Baader,
Ghilardi, & Lutz 2008), is a straightforward generalization
to ALC-LTL | of a very similar proof for LT, the restric-
tion of propositional LTL to its diamond fragment (see, e.g.,
Lemma 6.40 in (Blackburn, de Rijke, & Venema 2001)).
Based on this lemma, the following modified version of
Lemma 10 can be shown.

Lemma 18. Let ¢ be an ALC-LTL|, formula of sizem.
Then,¢ is satisfiable w.r.t. rigid names iff there is a set=
{X1,..., X} CP{p1,...,pn}) of cardinalityk < m+2

®Recall that all thed£C-interpretations within onel£C-LTL

structure have the same domain. For this reason, we can use exact

equality of interpretations rather than equality up to isomorphism
when defining the weight of ad LC-LTL structure.

such that the propositional LTk formuIanbg is satisfiable
and the BooleamdLC-knowledge bas8 := A, ..., B; is
consistent. T

Proof. The “if” direction of this lemma is an immediate
consequence of Lemma 10. For the “only if” direction, we
can use the proof of the “only if” direction Lemma 10. The
only difference is that we start with aALC-LTL structure
J respecting rigid concept and role nanoésveight at most
|¢| + 2 such thafy, 0 |= ¢. The existence of such a structure
is guaranteed by Lemma 17. It is easy to see that then the
setS = {Xi,...,X,} induced by this structure is indeed
of cardinalityk < |¢| + 2. 0

It remains to show that this lemma provides us with a de-
cision procedure for satisfiability W LC-LTL | w.r.t. rigid
names that runs in deterministic exponential time. There
are< 2m(m+2) subsetsS C P({p1,...,pn}) of cardinality
< m + 2 to be considered, and the size of each such sub-
., X%} is polynomial inm. Thus, the size
of both¢s andB = A, B; is polynomial inm. Since
satisfiability in propositional LTL is in PSAcEand the con-
sistency problems for Boolead£C-knowledge bases is in
ExPTIME, this shows that satisfiability id LC-LTL | w.r.t.
rigid names is in EPTIME.

ExPTIME-hardness of satisfiability illLC-LTL | (even
without any rigid names) is again an easy consequence of
the fact that concept satisfiability JIALC w.r.t. a single GCI
is ExXPTIME-complete.

Theorem 19. Satisfiability inALC-LTL|c w.r.t. rigid names
is anExPTIME-complete problem. The same is true for sat-
isfiability w.r.t. rigid concepts and without rigid names.

Conclusion

The faithful modelling of dynamically changing environ-
ments with a temporalized DL often requires the availability
of rigid concepts and roles. We have shown that decidability
and an elementary complexity upper bound can be achieved
also in the presence of rigid roles by restricting the appli-
cation of temporal operators to DL axioms. This is a big
advance over the case where temporal operators can occur
inside concept descriptions, in which rigid roles cause unde-
cidability in the presence of a TBox and hardness for non-
elementary time even without a TBox.

The decision procedures we have described in this paper
were developed for the purpose of showing worst-case com-
plexity upper bounds. The major topic for future work is to
optimize them such that they can be used in practice, where
we will first concentrate on the application scenario sketched
in the introduction.
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Appendix

In this appendix, we show the hardness part of Theorem 9.
Note that the proof of the hardness part of Theorem 11 is
simpler than the proof given below. It can be found in
(Baader, Ghilardi, & Lutz 2008).

Lemma 20. Satisfiability in ALC-LTL|gecr W.r.t. rigid
names i2-ExPTIME-hard.

Proof. The proof is by reduction of the word problem for
exponentially space bounded alternating Turing machines
(ATMs). An ATM is of the form M = (Q,%,T, qo, O),
where@ = Q3 W Qv W {q., ¢} is a finite set ofstates
partitioned intoexistential statefrom @3, universal states
from Qv, anaccepting state,, and arejecting statey,.;
is theinput alphabetandI” O X the work alphabetcon-
taining ablank symbolB ¢ %; ¢ € Q3 U Qv is the
initial state; and thdransition relation© is of the form
© C QxI'xQ@xT x{L,R}. We write O(q, o) for
{(¢',0,M) ] (q,0,¢,b, M) € ©}.

A configurationof an ATM is a wordwqw’ with w, w’ €
I'* andqg € @. The intended meaning is that the (one-sided
infinite) tape contains the wordw’ with only blanks behind
it, the machine is in stat¢ and the head is on the left-most
symbol ofw’. Thesuccessor configuratiors a configura-
tion wquw’ are defined in the usual way in terms of the transi-
tion relation®. A halting configuratioris of the formwquw’
with ¢ € {qa,q-}. We may assume w.l.0.g. that any con-
figuration other than a halting configuration has at least one
successor configuration. @omputatiorof an ATM M on a
wordw is a (finite or infinite) sequence of successive config-
urationsKy, K>, .... The ATMs considered here have only
finite computations on any input. Since this case is simpler
than the general one, we only define acceptance for ATMs
with finite computations and refer to (Chandra, Kozen, &
Stockmeyer 1981) for the full definition. Le¥! be such
an ATM. A halting configuration iscceptingiff it is of the
form wq,w’. For other configuration& = wqu’, the ac-
ceptance behaviour dependsqrif ¢ € @3, thenK is ac-
cepting iff at least one successor configuration is accepting;
if ¢ € Qv, thenK is accepting iff all successor configura-
tions are accepting. Finally, the ATMA with initial state
qo acceptghe inputw iff the initial configurationgow is ac-
cepting. We usd (M) to denote the language accepted by
M, e,

L(M) ={w € ¥* | M acceptav}.

Theword problenfor M is the following decision problem:
given a wordw € ¥*, doesw € L(M) hold or not?

There exists an exponentially space bounded ATM
M=(Q,%,T,q, ) whose word problem is 2B TIME-
hard (Chandra, Kozen, & Stockmeyer 1981). Our aim is to
reduce the word problem for this ATM to satisfiability in
ALC-LTL |gecl W.r.t. rigid names. We may assume that the
length of every computation 0¥1 onw € ¥ is bounded by

22" and all the configurationsqw’ in such computations
satisfy |ww’| < 2F. We may also assume w.l.0.g. that
never attempts to move to the left when it is on the left-most
tape cell.



Letw = 09 --0_1 € X* be an input toM. We
construct anALC-LTL |gec formula ¢ a4, Such thatw €
L(M)iff ¢, is satisfiable w.r.t. rigid names. In ahLC-
LTL structure satisfyingp r,.,, €ach domain element from
A describes a single tape cell of a configuration\df The
formula ¢ ¢, that will be defined below is actually not
of the syntactic fornOB A ¢ (whereB is a conjunction of
ALC-axioms andp is an ALC-LTL formula that does not
contain GCIs) required fad LC-LTL formulae with global
GCls. Insteadgp g, is @ conjunction of formulae of the
form

e Oa wherea is an ALC-axiom,
e 1) wherey is an ALC-LTL formula not containing GCls.

SinceO distributes over conjunction, it is obvious that such
a formula is equivalent to ad £LC-LTL formula with global
GCls. In the definition ot ,.,, we use the following sym-
bols:

¢ asingle individual name that identifies the first tape cell
of the first configuration;

a singlerigid role namer to represent “going to the next
tape cell in the same configuration” and “going from the
last tape cell in a configuration to the first tape cell in a
successor configuration”;

the elements ofp andI' are viewed agigid concept
names;

rigid concept named,, ..., Ax_; are the bits of a binary
counter that numbers the tape cells in each configuration;

auxiliaryrigid concept namé andH; I indicates the ini-
tial configuration and{ indicates that, in the current con-
figuration, the head is to the left of the current tape cell;

auxiliary rigid concept name$;, , 5 forall ¢ € Q, 0 €

I, andM € {L, R}; intuitively, T, , s is true if, in the
current configuration, the head is on the left neighboring
cell and the machine executes transitigno, M);

for each element of) andI’, a flexible concept name
which is distinguished from its rigid version by a prime;

(flexible) concept namedy, ..., A} _, to realize an or-
thogonal counter (in the sense that it counts along the tem-
poral dimension instead of alony.

Before giving the formal reduction, let us explain the un-
derlying intuition. As said above, a single configuration is
described as a sequencere$uccessors of lengtt of the
individual representing its first tape cell. The tape cells of
a configuration are numbered fronto 2* — 1, using the
counter realized through the concept namgs. .., Ax_1.

We denote the concept that expresses that the counter has

valuei,0 < i < 2F, by (Cy = i), i.e, (Ca = 0)
denotes—Ag M —A; M M -Ag_1, (C4 = 1) denotes
Ag M =AM ... =4k 1, ..., (Ca = 2¥ — 1) denotes
AgMMAI M. T AL,

The r-successor of the last tape cell of a given configu-
ration represents the first tape cell of a successor configu-
ration of this configuration. It obtains the numbgri.e.,
the counter realized bylg, ..., Ax_1 is reset to0, which
simply means that we count modus. Since we have an

alternatingTuring machine, it is not enough to consider one
sequence of configurations. For a configuration with a uni-
versal state, we must consider all successor configurations.
Thus, we do not consider a single sequence-sficcessors,

but rather a tree of-successors.

The main problem to solve when defining the reduction
is to ensure that each configuration following a given con-
figuration in the tree of-successors is actually a successor
configuration, i.e., tape cells that are not immediately to the
left or right of the head remain unchanged, and the other
tape cells are changed according to the transition relation.
For the first type of cells this means that, given a cell num-
bered: in the current configuration, the next cell with the
same number should carry the same symbol. However, we
cannot remember the valueof the A-counter when going
down along the sequence ofsuccessors since this counter
is incremented (modul@®) when going to an-successor.
This is where the temporal dimension comes into play. Here,
we realize amd’-counter, using the (flexible) concept names
Aj, ..., Aj_,, whose value does not change along the
dimension, but is incremented (modwb) along the tem-
poral dimension. This additional counter, together with the
flexible copies of the symbols fro@ andT’, can be used to
transfer a symbol from a tape cell in a given configuration to
the corresponding tape cell in a successor configuration (see
below).

In the following, we usep — 1 as an abbreviation for
-¢ V1, C' = D as an abbreviation forC'U D, andC < D
as an abbreviation fqiC = D) N (D = C).

The reduction formul@ a4 ,, is the conjunction of the fol-
lowing formulae:

We start by setting up, H, r, and theA-counter:

e [ behaves as described, i.e., it marks the initial configura-
tion, whose first tape cell is represented by the individual
a:

O(a: 1)
O(IN=(Cy=2"-1)CVrl)
e H behaves as described, i.e., it marks the tape cells that

are to the right of the head, where the head position is
indicated by having a state concept at this cell:

o (wruldon

¢ there is always an-successor, except when we meet the
head in a halting configuration:

-(Cha=2F-1)C Vr.H)

O (~(gaUgr) E3r.T)
the counter realized by, ..., A;_; has value) at q,
and it is incremented along(modulo2*):

O(a:(Ca=0))

(TIZ|_| [14,)=

1<k j<i
((A; = ¥r=A;) N (ﬁAi:>Vr.Ai)))

o(relldd-a) =
((As = VrA) 1 (= A; = VroAy) )



Some properties of runs of ATMs can be formalized without
using the temporal dimension:

e The initial configuration is the one induced by the input
w=0qg...0k—1-
a (a : Vri.ai)
O (a : VT'k.B)
O(IMBMN—(Cy =2"—-1)CVr.B)

fori <k

e The computation starts on the left-most tape cell of this
initial configuration in state:

O(a: qo)

e Each tape cell is labelled with exactly one symbol and at
most one state:

D<TE|_|(JI_I—\ [ ﬁ9)>

oel oer\{o}
Ol TEC |_| =(p
< T p,a€Q.p#q (v q))

e There is only one head position per configuration:

o (1)

q€Q

It remains to implement the transitions and to say that sym-
bols not under the head do not change in successor config-
urations. Here we need the temporal dimension. We start

with setting up thed’-counter:

o for every value of thed’-counter realized using the (flexi-
ble) concept namedy, ..., A, _,, thereis atime point at
which a has that value:

D(/\i<k(/\j<ia : A;) N
((a:AgHXa:—'Ag)A(a;ﬁAgﬂxa:A;)))

D(/\i<k(vj<ia FoAj) —
((a: AL - Xa: A)) A (a:—A; — Xa: ﬂA;)))

This is basically the same formula as for tHecounter,
but the values of thel’-counter are considered for the
fixed initial individual a, and they are incremented along
the temporal dimension.

e The value of thed’-counter is preserved alongi.e., for
alli,0 < i < k, we require:

0O (A} C vr.AL)
0O (—A] C Vr.—A))

In summary, we have associated one “temporal slice” with
each counter value of the second counter. In the follow-
ing, we use(C4 = C}y/) to denote the conceftd, <
Ap) M ...N (Ak—1 & A},_,), which states that the value
of the A-counter coincides with the value of tkE-counter.
Accordingly, (C4 = C4 + 1 mod 2¥) expresses that the
value of thed-counter is equal to the value of t#é-counter

plus 1 (modula2*), which can be expressed by a recasting
of the incrementation concept given already twice above:

':,! (D A)) = (AL = =A;) N (RAL = A;)) 1
|:,! (jlzl —A)) = ((A] = A) N (~4] = - 4)))

The conceptC4 = Ca/ + 2 mod2F), which expresses that
the value of thed-counter is equal to the value of th&-
counter plug2 (modulo2*), can be defined similarly, using
an auxiliary setd(, . .., Ay _, of flexible concept names.

e We can now say that symbols not under the head do not
change:
O(on |€—Q|ﬁql_l (Ca=Cyqa)CVro' ) forallo el
q

O(c' M=(Ca =Cy) EVr.o')
O(c'M(Ca=Cy)LCo)

foralloc eT
foralloc eT

e Transitions are implemented in a similar way. The fact
that we have amlternating Turing is taken into account
by enforcing a branching on universal transitions:

L]

vr.T, . M
(pv,M)eO(g0) M

D(qI_IUE
forallg € Q3,0 € X

[]

O (q Mo C
(p,v,M)€©(q,0)

Hr-Tp,u,Jﬂ

forallg € Qy,0 € X

| (Tq;g’]\,{ I (CA =Cyu +1 mod2k) C V’I".O‘I)
foralloc eT,q e Q,M € {L, R}

O(TyorM(Ca=Ca)CVrg) foralloc €T,qg€Q

0 (Ty0,z 1 (Ca = Car + 2 mod2¥) C Vir.q')
forallo eI',ge @

O(¢' M —=(Ca = Car) CVr.q) forallg e Q

O(¢'M(Ca=Ca)Eq) forallg € @

It remains to encode the fact that the input= o ... o1

is accepted. Since any computation.of is terminating,
and halting configurations (i.e., configurations with state

or g,) are the only ones without successor configurations,
this can be done as follows:

e We can express the fact that the initial configuration for
inputw is accepting by disallowing the stajgto occur:

g (T C _‘qr)

This finishes the definition af 4 .,, which is the conjunc-
tion of the formulae introduced above. It is easy to see that
the size ofp A4, is polynomial ink, and thatp v4 ., is satis-
fiable w.r.t. rigid names ifiv € L(M).



