
LTL over Description Logic Axioms

Franz Baader∗
TU Dresden, Germany

baader@inf.tu-dresden.de

Silvio Ghilardi
Universit̀a degli Studi di Milano, Italy

ghilardi@dsi.unimi.it

Carsten Lutz
TU Dresden, Germany

lutz@inf.tu-dresden.de

Abstract

Most of the research on temporalized Description Log-
ics (DLs) has concentrated on the case where tempo-
ral operators can occur within DL concept descriptions.
In this setting, reasoning usually becomes quite hard
if rigid roles, i.e., roles whose interpretation does not
change over time, are available. In this paper, we con-
sider the case where temporal operators are allowed to
occur only in front of DL axioms (i.e., ABox assertions
and general concept inclusion axioms), but not inside
of concepts descriptions. As the temporal component,
we use linear temporal logic (LTL) and in the DL com-
ponent we consider the basic DLALC. We show that
reasoning in the presence of rigid roles becomes con-
siderably simpler in this setting.

Introduction
In many applications of Description Logics (DLs) (Baader
et al. 2003), such as the use of DLs as ontology lan-
guages or conceptual modeling languages, being able to rep-
resent dynamic aspects of the application domain would be
quite useful. This is, for instance, the case if one wants
to use DLs as conceptual modeling languages for temporal
databases (Artaleet al. 2002). Another example are medi-
cal ontologies, where the faithful representation of concepts
would often require the description of temporal patterns. As
a simple example, consider the concept “Concussion with
no loss of consciousness,” which is modeled as a primitive
(i.e., not further defined) concept in the medical ontology
SNOMED CT.1 As argued in (Schulz, Marḱo, & Suntis-
rivaraporn 2006), a correct representation of this concept
should actually say that, after the concussion, the patient re-
mained conscious until the examination.

Since the expressiveness of pure DLs is not sufficient
to describe such temporal patterns, a plethora of tempo-
ral extensions of DLs have been investigated in the litera-
ture.2 These include approaches as diverse as the combina-

∗Supported by NICTA, Canberra Research Lab.
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1see http://www.ihtsdo.org/our-standards/
2For a more thorough survey of the literature on temporalized

DLs, see the technical report accompanying this paper (Baader,
Ghilardi, & Lutz 2008) and the survey papers (Artale & Franconi

tion of DLs with Halpern and Shoham’s logic of time inter-
vals (Schmiedel 1990), formalisms inspired by action log-
ics (Artale & Franconi 1998), the treatment of time points
and intervals as a concrete domains (Lutz 2001), and the
combination of standard DLs with standard (propositional)
temporal logics into logics with a two-dimensional seman-
tics, where one dimension is for time and the other for the
DL domain (Schild 1993; Wolter & Zakharyaschev 1999;
Gabbayet al. 2003). In this paper, we follow the last ap-
proach, where we use the basic DLALC (Schmidt-Schauß
& Smolka 1991) in the DL component and linear tempo-
ral logic (LTL) (Pnueli 1977) in the temporal component.
However, even after the DL and the temporal logic to be
combined have been fixed, there remain several degrees of
freedom when defining the resulting temporalized DL.

On the one hand, one must decide which pieces of syntax
temporal operators can be applied to. Temporal operators
may be allowed to be used as concept constructors, as re-
quired by the above example of a concussion with no loss
of consciousness, which could be defined using the until-
operatorU of LTL as follows:

∃finding.Concussion u (1)

Conscious U ∃procedure.Examination.

Alternatively or in addition, temporal operators may be
applied to TBox axioms (i.e., general concept inclusions,
GCIs) and/or to ABox assertions. For example, the tem-
poralized TBox axiom

32(UScitizen v ∃insured by.HealthInsurer)

says that there is a future time point from which on US citi-
zens will always have health insurance, and the formulaΨ:

3
(
(∃finding.Concussion)(BOB) ∧ (2)

Conscious(BOB)U(∃procedure.Examination)(BOB)
)

says that, sometime in the future, Bob will have a concussion
with no loss of consciousness between the concussion and
the examination.

On the other hand, one must decide whether one wants
to have rigid concepts and/or roles, i.e., concepts/roles
whose interpretation does not vary over time. For exam-
ple, the conceptHuman and the rolehas father should

2000; 2001; Lutz, Wolter, & Zakharyaschev 2008).

probably be rigid since a human being will stay a hu-
man being and have the same father over his/her life-time,
whereasConscious should be a flexible concept (i.e., not
rigid) since someone that is conscious at the moment need
not always by conscious. Similarly,insured by should
be modeled as a flexible role. Using a logic that can-
not enforce rigidity of concepts/roles may result in un-
intended models, and thus prevent certain useful infer-
ences to be drawn. For example, the concept description
∃has father.Humanu3 (∀has father.¬Human) is only un-
satisfiable if bothhas father andHuman are rigid.

The combination of (extensions of)ALC and LTL in
which temporal operators can be applied to concept descrip-
tions, TBox axioms, and ABox assertions has been studied
by Wolter, Zakharyaschev, and others (see, e.g., (Wolter &
Zakharyaschev 1999; Gabbayet al. 2003)). In particular,
it is known that the basic reasoning problems such as satis-
fiability are EXPSPACE-complete. In this setting, rigid con-
cepts can be defined, but rigid roles cannot. In fact, as shown
in (Gabbayet al. 2003), the addition of rigid roles causes un-
decidability even w.r.t. a global TBox (i.e., where the same
TBox axioms must hold at all time points). Decidability can
be regained by dropping TBoxes altogether, but the deci-
sion problem is still hard for non-elementary time. Decid-
able combinations of DLs and temporal logics that allow for
rigid roles can be obtained by strongly restricting either the
temporal component (Artale, Lutz, & Toman 2007) or the
DL component (Artaleet al. 2007).

In this paper, we follow a different approach for regain-
ing decidability in the presence of rigid roles: temporal op-
erators are allowed to occur only in front of axioms (i.e.,
ABox assertions and TBox axioms), but not inside concept
descriptions. We show that reasoning becomes simpler in
this setting: with rigid roles, satisfiability is decidable (more
precisely: 2-EXPTIME-complete); without rigid roles, the
complexity decreases to NEXPTIME-complete; and with-
out any rigid symbols, it decreases further to EXPTIME-
complete (i.e., the same complexity as reasoning inALC
alone). We also consider two other ways of decreasing the
complexity of satisfiability to EXPTIME. On the one hand,
satisfiability without rigid roles (but with rigid concepts) be-
comes EXPTIME-complete if GCIs can occur only as global
axioms that must hold in every temporal world. Note that, in
this case, ABox assertions arenotassumed to be global, i.e.,
the valid ABox assertions may vary over time. On the other
hand, satisfiability with rigid concepts and roles becomes
EXPTIME-complete if the temporal component is restricted
appropriately by replacing the temporal operators until (U)
and next (X) of LTL with diamond (3), which expresses
“sometime in the future.”

The situation we concentrate on in this paper (i.e., where
temporal operators are allowed to occur only in front of ax-
ioms) has been considered before only for the case where
there are no rigid concepts or roles. The combination ap-
proach introduced in (Finger & Gabbay 1992) yields a de-
cision procedure for this case, whose worst-case complex-
ity is, however, non-optimal. Our EXPTIME upper bound
for this case actually also follows from more general results
in (Gabbayet al. 2003) (see the remark following Theo-

rem 14.15 on page 605 there). However, also in (Gabbayet
al. 2003), the setting where temporal operators are allowed
to occur only in front of axioms is considered only in the
absence of rigid symbols.

Obviously, the temporalized DLs we investigate in this
paper cannot be used to define temporal concepts such as
(1) for concussion with no loss of consciousness. However,
they are nevertheless useful in ontology-based applications
since they can be used to reason about a temporal sequence
of ABoxes w.r.t. a (global or temporalized) TBox. For exam-
ple, in an emergency ward, the vital parameters of a patient
are monitored in short intervals (sometimes not longer than
10 minutes), and additional information is available from
the patient record and added by doctors and nurses. Using
concepts defined in a medical ontology like SNOMED CT,
a high-level view of the medical status of the patient at a
given time point can be given by an ABox. Obviously, the
sequence of ABoxes obtained this way can be described us-
ing temporalized ABox assertions. Critical situations, which
require the intervention of a doctor, can then be described by
a formula in our temporalized DL, and recognized using the
reasoning procedures developed in this paper. For example,
given a formulaφ encoding a sequence of ABoxes describ-
ing the medical status of Bob, starting at some time point
t0, and the formulaψ defined in(2), we can check whether
Bob sometime aftert0 had a concussion with no loss of con-
sciousness by testingφ ∧ ¬ψ for unsatisfiability.

Basic definitions
The temporalized DLALC-LTL introduced in this paper
combines the basic DLALC with linear temporal logic
(LTL). We start by recalling the relevant definitions for
ALC.

Definition 1. LetNC , NR, andNI respectively be disjoint
sets ofconcept names, role names, and individual names.
The set ofALC-concept descriptionsis the smallest set such
that

• all concept names areALC-concept descriptions;

• if C,D areALC-concept descriptions andr ∈ NR, then
¬C, C t D, C u D, ∃r.C, and∀r.C areALC-concept
descriptions.

A general concept inclusion axiom (GCI)is of the form
C v D, whereC,D are ALC-concept descriptions, and
an assertionis of the forma : C or (a, b) : r whereC is
anALC-concept description,r is a role name, anda, b are
individual names. We call both GCIs and assertionsALC-
axioms. A Boolean combination ofALC-axioms is called a
BooleanALC-knowledge base, i.e.,

• everyALC-axiom is a BooleanALC-knowledge base;

• if B1 andB2 are BooleanALC-knowledge bases, then so
areB1 ∧ B2, B1 ∨ B2, and¬B1.

AnALC-TBox is a conjunction of GCIs, and anALC-ABox
is a conjunction of assertions.

According to this definition, TBoxes and ABoxes are spe-
cial kinds of Boolean knowledge bases. However, note that

they are often written as sets of axioms rather than as con-
junctions of these axioms. The semantics ofALC is defined
through the notion of an interpretation.

Definition 2. An interpretationis a pairI = (∆I , ·I) where
thedomain∆I is a non-empty set, and·I is a function that
assigns to every concept nameA a setAI ⊆ ∆I , to every
role namer a binary relationrI ⊆ ∆I ×∆I , and to every
individual namea an elementaI ∈ ∆I . This function is
extended toALC-concept descriptions as follows:

• (C uD)I = CI ∩DI , (C tD)I = CI ∪DI , (¬C)I =
∆I \ CI ;

• (∃r.C)I = {x ∈ ∆I | there is ay ∈ ∆I with (x, y) ∈ rI
andy ∈ CI};

• (∀r.C)I = {x ∈ ∆I | for all y ∈ ∆I , (x, y) ∈ rI

impliesy ∈ CI}.
The interpretationI is amodelof theALC-axiomsC v D,
a : C, and (a, b) : r iff it respectively satisfiesCI ⊆ DI ,
aI ∈ CI , and (aI , bI) ∈ rI . The notion of a model is
extended to BooleanALC-knowledge bases as follows:

• I is a model ofB1 ∧ B2 iff it is a model ofB1 andB2;
• I is a model ofB1 ∨ B2 iff it is a model ofB1 or B2;
• I is a model of¬B1 iff it is not a model ofB1.

We say that the BooleanALC-knowledge baseB is consis-
tent iff it has a model. The concept descriptionC is sat-
isfiable w.r.t. the GCID1 v D2 iff there is a modelI of
D1 v D2 withCI 6= ∅.

In Description Logics, it is often assumed that the inter-
pretations satisfy theunique name assumption (UNA), i.e.,
different individual names are interpreted by different ele-
ments of the domain.

For LTL, we use the variant with anon-strict until(U) and
a next(X) operator. Instead of first introducing the proposi-
tional temporal logic LTL, we directly define our new tem-
poralized DL, calledALC-LTL. The difference to LTL is
thatALC-axioms replace propositional letters.

Definition 3. ALC-LTL formulae are defined by induction:

• if α is anALC-axiom, thenα is anALC-LTL formula;
• if φ, ψ areALC-LTL formulae, then so areφ ∧ ψ, φ ∨ ψ,
¬φ, φUψ, andXφ.

As usual, we usetrue as an abbreviation forA(a) ∨
¬A(a), 3φ as an abbreviation fortrueUφ (diamond, which
should be read as “sometime in the future”), and2φ as an
abbreviation for¬3¬φ (box, which should be read as “al-
ways in the future”). The semantics ofALC-LTL is based
on ALC-LTL structures, which are sequences ofALC-
interpretations over the same non-empty domain∆ (con-
stant domain assumption). We assume that every individ-
ual name stands for a unique element of∆ (rigid individual
names), and we make the unique name assumption.

Definition 4. An ALC-LTL structure is a sequenceI =
(Ii)i=0,1,... of ALC-interpretationsIi = (∆, ·Ii) obeying
the UNA (calledworlds) such thataIi = aIj for all individ-
ual namesa and all i, j ∈ {0, 1, 2, . . .}. Given anALC-LTL
formulaφ, anALC-LTL structureI = (Ii)i=0,1,..., and a

time pointi ∈ {0, 1, 2, . . .}, validity ofφ in I at timei (writ-
tenI, i |= φ) is defined inductively:

I, i |= C v D iff CIi ⊆ DIi

I, i |= a : C iff aIi ∈ CIi

I, i |= (a, b) : r iff (aIi , bIi) ∈ rIi

I, i |= φ ∧ ψ iff I, i |= φ andI, i |= ψ
I, i |= φ ∨ ψ iff I, i |= φ or I, i |= ψ
I, i |= ¬φ iff not I, i |= φ
I, i |= Xφ iff I, i+ 1 |= φ
I, i |= φUψ iff there isk ≥ i such thatI, k |= ψ

andI, j |= φ for all j, i ≤ j < k

As mentioned above, for some concepts and roles it is not
desirable that their interpretation changes over time. Thus,
we will sometimes assume that a subset of the set of concept
and role names can be designated as being rigid. We will
call the elements of this subsetrigid concept namesandrigid
role names. Concept and role names that do not belong to
this subset will be calledflexible.

Definition 5. We say that theALC-LTL structureI =
(Ii)i=0,1,... respects rigid concept names (role names)iff
AIi = AIj (rIi = rIj) holds for all i, j ∈ {0, 1, 2, . . .}
and all rigid concept namesA (rigid role namesr).

The satisfiability problem in ALC-LTL
Depending on whether rigid concept and role names are con-
sidered or not, we obtain different variants of the satisfiabil-
ity problem.

Definition 6. Let φ be anALC-LTL formula and assume
that a subset of the set of concept and role names has been
designated as being rigid.

• We say thatφ is satisfiable w.r.t. rigid namesiff there is an
ALC-LTL structureI respecting rigid concept and role
names such thatI, 0 |= φ.

• We say thatφ is satisfiable w.r.t. rigid conceptsiff there is
anALC-LTL structureI respecting rigid concept names
such thatI, 0 |= φ.

• We say thatφ is satisfiable without rigid names(or simply
satisfiable) iff there is anALC-LTL structureI such that
I, 0 |= φ.

In this paper, we show that the complexity of the satisfia-
bility problem forALC-LTL strongly depends on which of
the above cases one considers. Note that it does not really
make sense to consider satisfiability w.r.t. rigid role names,
but without rigid concept names, as a separate case when in-
vestigating the complexity of the satisfiability problem. In
fact, rigid concepts can be simulated by rigid roles: just
introduce a new rigid role namerA for each rigid concept
nameA, and then replaceA by ∃rA.>.

Another dimension that influences the complexity of the
satisfiability problem is whether GCIs occur globally or lo-
cally in the formula. Intuitively, a GCI occurs globally if it
must hold in every world of theALC-LTL structure.

Definition 7. We say thatφ is anALC-LTL formulawith
global GCIsiff it is of the formφ = 2B ∧ ϕ whereB is a
conjunction ofALC-axioms andϕ is anALC-LTL formula

that does not contain GCIs. We denote the fragment ofALC-
LTL that contains onlyALC-LTL formulae with global GCIs
byALC-LTL|gGCI.

Note that saying, in the above definition, thatB is acon-
junction of ALC-axioms just means thatB is a TBox to-
gether with an ABox. We could have restrictedB to being
a conjunction of GCIs (i.e., a TBox) since assertionsα in B
could be moved as conjuncts2α toϕ.3 However, it turns out
to be more convenient to allow also ABox assertions to occur
in the “global part”2B of φ. Also note that it is important
to restrictB to being aconjunctionof ALC-axioms rather
than an arbitrary BooleanALC-knowledge base. In fact,
the lower complexity for the case of satisfiability w.r.t. rigid
concepts obtained in this case (see Table 1 below) would not
hold without this restriction (see Corollary 6.8 in (Baader,
Ghilardi, & Lutz 2008)).

Instead of restricting toALC-LTL formulae with global
GCIs, we can also restrict the temporal component, by con-
sidering the fragmentALC-LTL |3 ofALC-LTL in which 3

is the only temporal operator. In this fragment, neitherU nor
X is definable.

Definition 8. ALC-LTL|3 formulae are defined by induc-
tion:

• if α is anALC-axiom, thenα is anALC-LTL|3 formula;
• if φ, ψ areALC-LTL|3 formulae, then so areφ∧ψ, φ∨ψ,
¬φ, and3φ.

The semantics ofALC-LTL |3 formulae is defined as in
the case ofALC-LTL. In particular, the interpretation of the
diamond operator is defined as

I, i |= 3φ iff there isk ≥ i such thatI, k |= φ.

Table 1 summarizes the results of our investigation of the
complexity of the satisfiability problem inALC-LTL and its
fragments.

Reasoning with rigid names
In this section, we investigate the complexity of the satis-
fiability problem inALC-LTL and ALC-LTL |gGCI if rigid
concepts and roles are available.

Theorem 9. Satisfiability w.r.t. rigid names is2-EXPTIME-
complete both inALC-LTL and inALC-LTL|gGCI.

2-EXPTIME-hardness for satisfiability w.r.t. rigid names
and with global GCIs (i.e., inALC-LTL |gGCI) can be shown
by a (quite intricate) reduction of the word problem for ex-
ponentially space bounded alternating Turing machines (see
the Appendix). Obviously, this also yields 2-EXPTIME-
hardness for the more general case with arbitrary GCIs (i.e.,
in ALC-LTL).

In the following, we prove the complexity upper bound
for ALC-LTL. Obviously, this also establishes the same up-
per bound for the restricted case ofALC-LTL |gGCI. Thus, let
φ be anALC-LTL formula to be tested for satisfiability w.r.t.

3This is the reason why we talk aboutALC-LTL formulaewith
global GCIs in this case, rather than aboutALC-LTL formulae
with global axioms.

rigid names. We build itspropositional abstraction̂φ by re-
placing eachALC-axiom by a propositional variable such
that there is a1–1 relationship between theALC-axioms
α1, . . . , αn occurring inφ and the propositional variables
p1, . . . , pn used for the abstraction. We assume in the fol-
lowing thatpi was used to replaceαi (i = 1, . . . , n).

Consider a setS ⊆ P({p1, . . . , pn}), i.e., a set of subsets
of {p1, . . . , pn}. Such a set induces the following (proposi-
tional) LTL formula:

φ̂S := φ̂ ∧2

 ∨
X∈S

 ∧
p∈X

p ∧
∧

p6∈X

¬p


If φ is satisfiable in anALC-LTL structureI = (Ii)i=0,1,...,
then there is anS ⊆ P({p1, . . . , pn}) such thatφ̂S is sat-
isfiable in a propositional LTL structure. In fact, for each
ALC-interpretationIi of I, we define the set

Xi := {pj | 1 ≤ j ≤ n andIi satisfiesαj},
and then takeS = {Xi | i = 0, 1, . . .}. We say that
S is inducedby theALC-LTL structureI = (Ii)i=0,1,....
The fact thatI satisfiesφ implies that its propositional ab-
straction satisfieŝφS , where thepropositional abstraction
Î = (wi)i=0,1,... of I is defined such that worldwi makes
variablepj true iff Ii satisfiesαj . However, guessing such
a setS ⊆ P({p1, . . . , pn}) and then testing whether the
induced propositional LTL formulâφS is satisfiable is not
sufficient for checking satisfiability w.r.t. rigid names of the
ALC-LTL formula φ. We must also check whether the
guessed setS can indeed be induced by someALC-LTL
structure that respects the rigid concept and role names.

To this purpose, assume that a setS = {X1, . . . , Xk} ⊆
P({p1, . . . , pn}) is given. For everyi, 1 ≤ i ≤ k, and every
flexibleconcept nameA (flexiblerole namer) occurring in
α1, . . . , αn, we introduce a copyA(i) (r(i)). We callA(i)

(r(i)) theith copy ofA (r). TheALC-axiomα(i)
j is obtained

fromαj by replacing every occurrence of a flexible name by
its ith copy. The setsXi (1 ≤ i ≤ k) induce the following
BooleanALC-knowledge bases:

Bi :=
∧

pj∈Xi

α
(i)
j ∧

∧
pj 6∈Xi

¬α(i)
j

Lemma 10. TheALC-LTL formula φ is satisfiable w.r.t.
rigid names iff there is a setS = {X1, . . . , Xk} ⊆
P({p1, . . . , pn}) such that the propositional LTL formula
φ̂S is satisfiable and the BooleanALC-knowledge base
B :=

∧
1≤i≤k Bi is consistent.

Proof. For the “only if” direction, recall that we have
already seen how anALC-LTL structureI = (Iι)ι=0,1,...

satisfyingφ can be used to define a setS ⊆ P({p1, . . . , pn})
such that̂φS is satisfiable. LetS = {X1, . . . , Xk}. For each
ι = 0, 1, . . . there is an indexiι ∈ {1, . . . , k} such thatIι

induces the setXiι , i.e.,

Xiι = {pj | 1 ≤ j ≤ n andIι satisfiesαj},
and, conversely, for eachi ∈ {1, . . . , k} there is an indexι ∈
{0, 1, 2, . . .} such thati = iι. Let ι1, . . . , ιk ∈ {0, 1, 2, . . .}

W.r.t. rigid names W.r.t. rigid concepts Without rigid names
ALC-LTL 2-EXPTIME-complete NEXPTIME-complete EXPTIME-complete
ALC-LTL |gGCI 2-EXPTIME-complete EXPTIME-complete EXPTIME-complete
ALC-LTL |3 EXPTIME-complete EXPTIME-complete EXPTIME-complete

Table 1: Complexity of the satisfiability problem inALC-LTL and its fragments.

be such thatiι1 = 1, . . . , iιk
= k. TheALC-interpretation

Ji is obtained fromIιi
by interpreting theith copy of each

flexible name like the original flexible name, and by for-
getting about the interpretations of the flexible names. By
our construction ofJi and our definition of the Boolean
ALC-knowledge baseBi, we have thatJi is a model of
Bi. Recall that the interpretationsIι1 , . . . , Iιk

(and thus also
J1, . . . ,Jk) all have the same domain. In addition, the in-
terpretations of the rigid names coincide inIι1 , . . . , Iιk

(and
thus also inJ1, . . . ,Jk) and the flexible symbols have been
renamed. Thus, the unionJ of J1, . . . ,Jk is a well-defined
ALC-interpretation, and it is easy to see that it is a model of
B =

∧
1≤i≤k Bi.

To show the “if” direction, assume that there is a set
S = {X1, . . . , Xk} ⊆ P({p1, . . . , pn}) such thatφ̂S is
satisfiable andB :=

∧
1≤i≤k Bi is consistent. Let̂I =

(wι)ι=0,1,... be a propositional LTL structure satisfyinĝφS ,
and letJ be anALC-interpretation satisfyingB. By the def-
inition of φ̂S , for every worldwι there is exactly one index
iι ∈ {1, . . . , k} such thatwι satisfies∧

p∈Xiι

p ∧
∧

p6∈Xiι

¬p.

For i ∈ {1, . . . , k}, we use theALC-interpretationJ satis-
fying B to define anALC-interpretationJi as follows:Ji

interprets the rigid names likeJ , and it interprets the flexi-
ble names just asJ interprets theith copies of them. Note
that the interpretationsJi are over the same domain and
respect the rigid symbols, i.e., they interpret them identi-
cally. We can now define anALC-LTL structure respecting
rigid symbols and satisfyingφ as follows:I := (Iι)ι=0,1,...

whereIι := Jiι
. ❏

It remains to show that this lemma provides us with a de-
cision procedure for satisfiability inALC-LTL w.r.t. rigid
names that runs in deterministic double-exponential time.

First, note that there are22n

many subsetsS of
P({p1, . . . , pn}) to be tested, wheren is of course lin-
early bounded by the size ofφ. For each of these subsets
S = {X1, . . . , Xk}, whose cardinalityk is bounded by
2n, we need to check satisfiability of̂φS and consistency
of B =

∧
1≤i≤k Bi.

The size ofφ̂S is at most exponential in the size ofφ,
and the complexity of the satisfiability problem in proposi-
tional LTL is in PSPACE, and thus in particular in EXPTIME.
Consequently, satisfiability of̂φS can be tested in double-
exponential time in the size ofφ.

The BooleanALC-knowledge baseB is a conjunction of
k ≤ 2n BooleanALC-knowledge basesBi, where the size
of eachBi is polynomial in the size ofφ. The consistency
problem for BooleanALC-knowledge base is EXPTIME-
complete (see, e.g., Theorem 2.27 in (Gabbayet al. 2003)).
Consequently, consistency ofB can also be tested in double-
exponential time in the size of the input formulaφ.

Overall, we thus have double-exponentially many tests,
where each test takes double-exponential time. This pro-
vides us with a double-exponential bound for testing satisfi-
ability in ALC-LTL w.r.t. rigid names based on Lemma 10.

The hardness proof given in the Appendix shows that this
double-exponential upper bound is indeed optimal. How-
ever, to get an intuition for what actually makes the prob-
lem so hard, let us analyze in more detail where the al-
gorithm sketched above needs to spend double-exponential
time. The algorithm needs

1. to consider22n

many subsetsS = {X1, . . . , Xk} of
P({p1, . . . , pn});

2. for each such subset testφ̂S for satisfiability;

3. testB =
∧

1≤i≤k Bi for consistency.

The main culprit is 3. Intuitively, the presence of rigid
roles enforces that the consistency test for the conjunction∧

1≤i≤k Bi needs to be done for the whole conjunction,
and cannot be reduced to separate test for the conjuncts (or
some enriched versions of the conjuncts). Thus, the Boolean
ALC-knowledge base to be tested for consistency is expo-
nentially large. Since the consistency problem for Boolean
ALC-knowledge bases is EXPTIME-complete, testing this
knowledge base for consistency requires in the worst-case
double-exponential time. In contrast, 2. is actually harmless.
According to what we have said above, it needs exponential
space, but we will see in the next section that this can even
be reduced to exponential time. Finally, 1. also does not re-
ally require double-exponential time since one could guess
an appropriate setS within NEXPTIME.

Reasoning with rigid concepts
In this section, we consider the case where rigid concept
names are available, but not rigid role names. First, note
that, in contrast to temporal DLs where temporal opera-
tors may occur inside of concept descriptions, rigid con-
cept names cannot easily be expressed within the logic with-
out rigid concept names. In fact, the GCIsA v 2A and
¬A v 2¬A express thatA must be interpreted in a rigid
way. However, they are not allowed by the syntax ofALC-
LTL since the box is applied directly to a concept, and not to

an axiom. We will show below that, forALC-LTL, the pres-
ence of rigid concept names indeed increases the complex-
ity of the satisfiability problem, unless GCIs are restricted to
being global. First, we treat the case of arbitrary GCIs, and
then the special case of global GCIs.

Theorem 11. Satisfiability inALC-LTL w.r.t. rigid concepts
is NEXPTIME-complete.

A detailed proof of the lower bound, by reduction of the
2n+1-bounded domino problem (B̈orger, Gr̈adel, & Gure-
vich 1997; Tobies 1999), can be found in (Baader, Ghi-
lardi, & Lutz 2008). In the proof of the upper bound, we
want to reuse Lemma 10. Obviously, we can guess a set
S = {X1, . . . , Xk} ⊆ P({p1, . . . , pn}), within NEXP-
TIME. However, there aretwo obstacleson our way to a
NEXPTIME decision procedure.

First, the propositional LTL formulâφS is of size expo-
nential in the size ofφ. Thus, a direct application of the
PSPACEdecision procedure for satisfiability in propositional
LTL would only yield an EXPSPACE upper bound, which is
not good enough. However, note that the only effect of the
box-formula inφ̂ bS is to restrict the worldsw in a proposi-

tional LTL structure satisfyinĝφ to being induced by one
of the elements of̂S. One way of deciding satisfiability of a
propositional LTL formulâφ is to construct a B̈uchi automa-
tonAbφ that accepts the propositional LTL structures satisfy-

ing φ̂. To be more precise, letΣ := P({p1, . . . , pn}). Then
a given propositional LTL structurêI = (wι)ι=0,1,... can be
represented by an infinite wordX0X1 . . . overΣ, whereXι

consists of the propositional variables thatwι makes true.
The Büchi automatonAbφ is built such that it accepts exactly
those infinite words overΣ that represent propositional LTL
structures satisfyinĝφ. Consequently,̂φ is satisfiable iff the
language accepted byAbφ is non-empty. The size ofAbφ is

exponential in the size of̂φ, and the emptiness test for Büchi
automata is polynomial in the size of the automaton. The au-
tomatonAbφ can now easily be modified into one accepting
exactly the words representing propositional LTL structures
satisfyingφ̂ bS . In fact, we just need to remove all transitions

that use a letter fromΣ \ Ŝ. Obviously, this modification
can be done in time polynomial in the size ofAbφ, and thus

in time exponential in the size of̂φ. The size of the resulting
automaton is obviously still only exponential in the size of
φ̂, and thus its emptiness can be tested in time exponential
in the size ofφ̂ (and hence ofφ).

The second obstacle is the fact thatB =
∧

1≤i≤k Bi is of
exponential size, and thus testing it directly for consistency
using the known EXPTIME decision procedure for satisfia-
bility of BooleanALC-knowledge bases would provide us
with a double-exponential time bound. Instead of testing the
consistency ofB directly we reduce this test tok separate
consistency tests, each requiring time exponential in the size
of φ. Before we can do this, we need another guessing step.
Assume thatA1, . . . , Ar are all the rigid concept names oc-
curring inφ, and thata1, . . . , as are all the individual names

occurring inφ. We guess a setT ⊆ P({A1, . . . , Ar}) and
a mappingt : {a1, . . . , as} → T . Again, this guess can
clearly be done within NEXPTIME.

Given T and t, we extend the knowledge basesBi

to knowledge baseŝBi(T , t) as follows. For Y ⊆
{A1, . . . , Ar}, let CY be the concept descriptionCY :=

u
A∈Y

A uu
A 6∈Y

¬A. We defineB̂i(T , t) as

Bi ∧
∧

t(a)=Y

a : CY ∧ > v t
Y ∈T

CY ∧
∧

Y ∈T
¬(> v ¬CY)

Since we consider the case where only concept names can
be rigid, we know that the BooleanALC-knowledge bases
Bi are built over disjoint sets of role names. The only names
shared among the knowledge basesBi are the rigid concept
names.

Lemma 12. The BooleanALC-knowledge baseB :=∧
1≤i≤k Bi is consistent iff there is a setT ⊆

P({A1, . . . , Ar}) and a mappingt : {a1, . . . , as} → T
such that the Boolean knowledge basesB̂i(T , t) for i =
1, . . . , k are separately consistent.

Proof. For the “only if” direction, assume thatB =∧
1≤i≤k Bi has a modelI = (∆, ·I). Let T consist of those

setsY ⊆ {A1, . . . , Ar} such that there is ad ∈ ∆ with
d ∈ (CY)I , and lett be the mapping satisfyingt(a) = Y iff
aI ∈ (CY)I . It is easy to see that, with this choice ofT and
t, all the knowledge baseŝBi(T , t) for i = 1, . . . , k haveI
as model.

To show the “if” direction, assume that there is a setT ⊆
P({A1, . . . , Ar}) and a mappingt : {a1, . . . , as} → T
such that the Boolean knowledge basesB̂i(T , t) for i =
1, . . . , k have modelsIi = (∆i, ·Ii). We can assume with-
out loss of generality4 that

• the domains∆i are countably infinite, and

• in each modelIi, the setsY ∈ T are realized by count-
ably infinitely many individuals, i.e., there are countably
infinitely many elementsd ∈ ∆i such thatd ∈ (CY)Ii .

Consequently, the domains∆i are partitioned into the count-
ably infinite sets∆i(Y) (for Y ∈ T), which are defined as
follows:

∆i(Y) := {d ∈ ∆i | d ∈ (CY)Ii}

In addition, for each individual namea ∈ {a1, . . . , as} we
have

aIi ∈ ∆i(t(a))

We are now ready to define the modelI = (∆, ·I) of B. As
the domain ofI we take the domain ofI1, i.e., ∆ := ∆1.
Accordingly, we define∆(Y) := ∆1(Y) for all Y ∈ T .
Because of the properties stated above, there exist bijections
πi : ∆i → ∆ such that

4This is an easy consequence of the fact that BooleanALC-
knowledge bases always have a finite model and that the countably
infinite disjoint union of a model of a BooleanALC-knowledge
base is again a model of this knowledge base.

• the restriction ofπi to ∆i(Y) is a bijection between
∆i(Y) and∆(Y);

• πi respects individual names, i.e.,πi(aIi) = aI1 holds
for all a ∈ {a1, . . . , as}. (Note that we have the unique
name assumption for individual names.)

We us these bijections to define the interpretation function
·I of I as follows:

• If A is a flexible concept name, thenB contains its copies
A(i) for i = 1, . . . , k. Their interpretation is defined as
follows:

(A(i))I := {π(d) | d ∈ AIi}.
• All role namesr are flexible, andB contains their copies
r(i) for i = 1, . . . , k. Their interpretation is defined as
follows:

(r(i))I := {(π(d), π(e)) | (d, e) ∈ rIi}.

• If A is a rigid concept names, then we define

AI := AI1

• If a is an individual name, then we define

aI := aI1

To prove the lemma, it remains to show thatI is a model of
all the knowledge basesBi (i = 1, . . . , k). This is an imme-
diate consequence of the fact thatπi is an isomorphism be-
tweenIi andI w.r.t. the concept and role names occurring
in Bi. The isomorphism condition is satisfied for flexible
concepts and roles by our definition of·I , and for individ-
ual names by our assumptions onπi. Now, letA be a rigid
concept name. We must show thatd ∈ AIi iff πi(d) ∈ AI

holds for alld ∈ ∆i. Since∆i is partitioned into the sets
∆i(Y) for Y ∈ T , we know that there is aY ∈ T such that
d ∈ ∆i(Y), i.e., d ∈ (CY)Ii . In addition, we know that
πi(d) ∈ ∆(Y), i.e., πi(d) ∈ (CY)I1 = (CY)I . This im-
plies thatd ∈ AIi iff A ∈ Y iff πi(d) ∈ AI , which finishes
the proof thatπi is an isomorphism betweenIi andI. Con-
sequently,I is a model ofB =

∧
1≤i≤k Bi, which in turn

finishes the proof of the lemma. ❏

To complete the proof of Theorem 11, we must show that
the consistency of̂Bi(T , t) can be decided in time exponen-
tial in the size of the input formulaφ. Note that this is not
trivial. In fact, while the size ofBi ∧

∧
t(a)=Y a : CY is

polynomial in the size ofφ, the cardinality ofT , and thus
the size of

> v t
Y ∈T

CY ∧
∧

Y ∈T
¬(> v ¬CY), (3)

can be exponential in the size ofφ. Decidability of the con-
sistency ofB̂i(T , t) in time exponential in the size ofφ is,
however, an immediate consequence of the next lemma. To
formulate this lemma, we need to introduce one more no-
tation. Let B̂ be a BooleanALC-knowledge base of size
n, A1, . . . , Ar concept names occurring in̂B, and T ⊆
P({A1, . . . , Ar}). Note that this implies that the cardinality

of T is at most exponential inn, and the size of eachY ∈ T
is linear inn. We say thatB̂ is consistent w.r.t.T iff it has
a model that is also a model of(3). The following lemma
can be shown by an adaptation of the proof of Theorem 2.27
in (Gabbayet al. 2003), which shows that the consistency
problem for BooleanALC-knowledge bases is in EXPTIME
(see (Baader, Ghilardi, & Lutz 2008) for details).

Lemma 13. Let B̂ be a BooleanALC-knowledge base of
sizen, A1, . . . , Ar concept names occurring in̂B, andT ⊆
P({A1, . . . , Ar}). Then, consistency of̂B w.r.t. T can be
decided in time exponential inn.

Overall, this completes the proof of Theorem 11. In fact,
after two NEXPTIME guesses, all we have to do arek (i.e.,
exponentially many) EXPTIME consistency tests.

Restricting GCIs to global ones decreases the complexity
of the satisfiability problem.

Theorem 14. Satisfiability inALC-LTL|gGCI w.r.t. rigid
concepts isEXPTIME-complete.

EXPTIME-hardness is an easy consequence of the well-
known fact that concept satisfiability inALC w.r.t. a single
GCI is EXPTIME-complete:C is satisfiable w.r.t.D1 v D2

iff a : C ∧2(D1 v D2) is satisfiable.
To prove the EXPTIME upper bound, we consider an

ALC-LTL formula φ = 2B ∧ ϕ, whereB is a conjunction
ofALC-axioms andϕ is anALC-LTL formula that does not
contain GCIs. We say thatB is φ-exhaustiveif, for every in-
dividual namea and every rigid concept nameA occurring
in φ, eithera : A or a : ¬A occurs as a conjunct inB. We
can assume without loss of generality thatB isφ-exhaustive.
In fact, given an arbitrary BooleanALC-knowledge baseB,
we can build all theφ-exhaustive knowledge basesB′ that
are obtained fromB by conjoining to it, for every individ-
ual namea and every rigid concept nameA occurring inφ,
eithera : A or a : ¬A. Obviously,φ = 2B ∧ ϕ is sat-
isfiable w.r.t. rigid concepts iff2B′ ∧ ϕ is satisfiable w.r.t.
rigid concepts for one of the extensionB′ of B obtained this
way. Since the size of each such an extension is polyno-
mial and there are only exponentially many such extensions,
it is sufficient to show that testing satisfiability of2B′ ∧ ϕ
w.r.t. rigid concepts forφ-exhaustive knowledge basesB′ is
in EXPTIME.

Following the approach used in the proof of Theorem 9,
we abstract every ABox assertionαi occurring inϕ by a
propositional variablepi, thus building the propositional
LTL-formula ϕ̂. Next, we compute the set̂S, which consists
of thoseX ⊆ {p1, . . . , pn} for which the BooleanALC-
knowledge base

BX := B ∧
∧

pj∈X

αj ∧
∧

pj 6∈X

¬αj

is consistent. This computation can be done in exponential
time since it requires exponentially many EXPTIME consis-
tency tests.

Lemma 15. Letφ = 2B∧ϕ be such thatB is aφ-exhaustive
conjunction ofALC-axioms andϕ is anALC-LTL formula

not containing GCIs. Thenφ is satisfiable w.r.t. rigid con-
cepts iff the propositional LTL formula

ϕ̂ bS := ϕ̂ ∧2(
∨

X∈ bS
(

∧
pj∈X

pj ∧
∧

pj 6∈X

¬pj))

is satisfiable.

The proof of this lemma can again be found in (Baader,
Ghilardi, & Lutz 2008). Note that this actually completes
the proof of Theorem 14. In fact, as shown in the proof of
Theorem 11, satisfiability of̂ϕ bS can be decided in exponen-
tial time.

Reasoning without rigid names
In this section, we consider the case where we have no rigid
names at all.

Theorem 16. Satisfiability without rigid names inALC-
LTL and inALC-LTL|gGCI is EXPTIME-complete.

EXPTIME-hardness is again an easy consequence of the
fact that concept satisfiability inALC w.r.t. a single GCI is
EXPTIME-complete. As already mentioned in the introduc-
tion, the EXPTIME upper bound follows from more general
results proved in Chapter 11 of (Gabbayet al. 2003) (see
the remark following Theorem 14.14 on page 605 of (Gab-
bayet al. 2003)). A direct proof of the upper bound, which
is similar to the proof of Theorem 14, is given in (Baader,
Ghilardi, & Lutz 2008).

Restricting the temporal component
In this section, we consider the fragmentALC-LTL |3 of
ALC-LTL, in which 3 is the only temporal operator. Our
aim is to show that satisfiability inALC-LTL |3 w.r.t. rigid
names is in EXPTIME. The main reason for this is that we
can restrict the attention toALC-LTL structures respecting
rigid concept and role names that consist of at most poly-
nomially many distinctALC-interpretations. Theweightof
theALC-LTL structureI = (Ii)i=0,1,... is defined to be the
cardinality of the set{Ii | i = 0, 1, . . .}.5

Lemma 17. Let φ be anALC-LTL|3 formula of sizem.
If φ is satisfiable w.r.t. rigid names, then there is anALC-
LTL structureJ respecting rigid concept and role names of
weight at most|φ|+ 2 such thatJ, 0 |= φ.

The proof of this fact, which can be found in (Baader,
Ghilardi, & Lutz 2008), is a straightforward generalization
toALC-LTL |3 of a very similar proof for LTL|3, the restric-
tion of propositional LTL to its diamond fragment (see, e.g.,
Lemma 6.40 in (Blackburn, de Rijke, & Venema 2001)).
Based on this lemma, the following modified version of
Lemma 10 can be shown.

Lemma 18. Let φ be anALC-LTL|3 formula of sizem.
Then,φ is satisfiable w.r.t. rigid names iff there is a setS =
{X1, . . . , Xk} ⊆ P({p1, . . . , pn}) of cardinalityk ≤ m+2

5Recall that all theALC-interpretations within oneALC-LTL
structure have the same domain. For this reason, we can use exact
equality of interpretations rather than equality up to isomorphism
when defining the weight of anALC-LTL structure.

such that the propositional LTL|3 formula φ̂S is satisfiable
and the BooleanALC-knowledge baseB :=

∧
1≤i≤k Bi is

consistent.

Proof. The “if” direction of this lemma is an immediate
consequence of Lemma 10. For the “only if” direction, we
can use the proof of the “only if” direction Lemma 10. The
only difference is that we start with anALC-LTL structure
I respecting rigid concept and role namesof weight at most
|φ|+ 2 such thatJ, 0 |= φ. The existence of such a structure
is guaranteed by Lemma 17. It is easy to see that then the
setS = {X1, . . . , Xk} induced by this structure is indeed
of cardinalityk ≤ |φ|+ 2. ❏

It remains to show that this lemma provides us with a de-
cision procedure for satisfiability inALC-LTL |3 w.r.t. rigid
names that runs in deterministic exponential time. There
are≤ 2m(m+2) subsetsS ⊆ P({p1, . . . , pn}) of cardinality
≤ m + 2 to be considered, and the size of each such sub-
setS = {X1, . . . , Xk} is polynomial inm. Thus, the size
of both φ̂S andB =

∧
1≤i≤k Bi is polynomial inm. Since

satisfiability in propositional LTL is in PSPACEand the con-
sistency problems for BooleanALC-knowledge bases is in
EXPTIME, this shows that satisfiability inALC-LTL |3 w.r.t.
rigid names is in EXPTIME.

EXPTIME-hardness of satisfiability inALC-LTL |3 (even
without any rigid names) is again an easy consequence of
the fact that concept satisfiability inALC w.r.t. a single GCI
is EXPTIME-complete.

Theorem 19. Satisfiability inALC-LTL|3 w.r.t. rigid names
is anEXPTIME-complete problem. The same is true for sat-
isfiability w.r.t. rigid concepts and without rigid names.

Conclusion
The faithful modelling of dynamically changing environ-
ments with a temporalized DL often requires the availability
of rigid concepts and roles. We have shown that decidability
and an elementary complexity upper bound can be achieved
also in the presence of rigid roles by restricting the appli-
cation of temporal operators to DL axioms. This is a big
advance over the case where temporal operators can occur
inside concept descriptions, in which rigid roles cause unde-
cidability in the presence of a TBox and hardness for non-
elementary time even without a TBox.

The decision procedures we have described in this paper
were developed for the purpose of showing worst-case com-
plexity upper bounds. The major topic for future work is to
optimize them such that they can be used in practice, where
we will first concentrate on the application scenario sketched
in the introduction.

References
Artale, A., and Franconi, E. 1998. A temporal description
logic for reasoning about actions and plans.JAIR9.

Artale, A., and Franconi, E. 2000. A survey of temporal
extensions of description logics.AMAI 30.

Artale, A., and Franconi, E. 2001. Temporal description
logics. InHandbook of Time and Temporal Reasoning in
AI. The MIT Press.

Artale, A.; Franconi, E.; Wolter, F.; and Zakharyaschev,
M. 2002. A temporal description logic for reasoning over
conceptual schemas and queries. InProc. JELIA’2002,
Springer LNCS 2424.

Artale, A.; Kontchakov, R.; Lutz, C.; Wolter, F.; and Za-
kharyaschev, M. 2007. Temporalising tractable description
logics. InProc. TIME’07, IEEE Press.

Artale, A.; Lutz, C.; and Toman, D. 2007. A description
logic of change. InProc. IJCAI’07, AAAI Press.

Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2003.The Description
Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press.

Baader, F.; Ghilardi, S.; and Lutz, C. 2008. LTL over de-
scription logic axioms. LTCS-Report 08-01, TU Dresden,
Germany.
See http://lat.inf.tu-dresden.de/research/reports.html.

Blackburn, P.; de Rijke, M.; and Venema, Y. 2001.Modal
Logic. Cambridge University Press.

Börger, E.; Gr̈adel, E.; and Gurevich, Y. 1997.The Classi-
cal Decision Problem. Springer-Verlag.

Chandra, A.; Kozen, D.; and Stockmeyer, L. 1981. Alter-
nation.JACM28.

Finger, M., and Gabbay, D. 1992. Adding a temporal di-
mension to a logic system.JoLLI 2.

Gabbay, D.; Kurusz, A.; Wolter, F.; and Zakharyaschev,
M. 2003. Many-dimensional Modal Logics: Theory and
Applications. Elsevier.

Lutz, C.; Wolter, F.; and Zakharyaschev, M. 2008. Tempo-
ral description logics: A survey. InProc. TIME’08, IEEE
Press.

Lutz, C. 2001. Interval-based temporal reasoning with
general TBoxes. InProc. IJCAI’01, AAAI Press.

Pnueli, A. 1977. The temporal logic of programs. InProc.
FOCS’77.

Schild, K. 1993. Combining terminological logics with
tense logic. InProc. EPIA’93, Springer LNCS 727.

Schmidt-Schauß, M., and Smolka, G. 1991. Attributive
concept descriptions with complements.AIJ 48.

Schmiedel, A. 1990. A temporal terminological logic. In
Proc. AAAI’90, AAAI Press.

Schulz, S.; Marḱo, K.; and Suntisrivaraporn, B. 2006.
Complex occurrents in clinical terminologies and their rep-
resentation in a formal language. InProc. 1st European
Conference on SNOMED CT (SMCS’06).

Tobies, S. 1999. A NEXPTIME-complete description logic
strictly contained in C2. In Proc. CSL’99, Springer LNCS
1683.

Wolter, F., and Zakharyaschev, M. 1999. Temporalizing
description logics. InProc. FroCoS’98, Wiley.

Appendix
In this appendix, we show the hardness part of Theorem 9.
Note that the proof of the hardness part of Theorem 11 is
simpler than the proof given below. It can be found in
(Baader, Ghilardi, & Lutz 2008).

Lemma 20. Satisfiability in ALC-LTL|gGCI w.r.t. rigid
names is2-EXPTIME-hard.

Proof. The proof is by reduction of the word problem for
exponentially space bounded alternating Turing machines
(ATMs). An ATM is of the formM = (Q,Σ,Γ, q0, Θ),
whereQ = Q∃] Q∀] {qa, qr} is a finite set ofstates,
partitioned intoexistential statesfrom Q∃, universal states
from Q∀, anaccepting stateqa, and arejecting stateqr; Σ
is the input alphabetandΓ ⊇ Σ the work alphabetcon-
taining a blank symbolB /∈ Σ; q0 ∈ Q∃ ∪ Q∀ is the
initial state; and thetransition relationΘ is of the form
Θ ⊆ Q × Γ × Q × Γ × {L,R}. We write Θ(q, σ) for
{(q′, θ,M) | (q, σ, q′, b,M) ∈ Θ}.

A configurationof an ATM is a wordwqw′ with w,w′ ∈
Γ∗ andq ∈ Q. The intended meaning is that the (one-sided
infinite) tape contains the wordww′ with only blanks behind
it, the machine is in stateq, and the head is on the left-most
symbol ofw′. Thesuccessor configurationsof a configura-
tionwqw′ are defined in the usual way in terms of the transi-
tion relationΘ. A halting configurationis of the formwqw′

with q ∈ {qa, qr}. We may assume w.l.o.g. that any con-
figuration other than a halting configuration has at least one
successor configuration. Acomputationof an ATMM on a
wordw is a (finite or infinite) sequence of successive config-
urationsK1,K2, The ATMs considered here have only
finite computations on any input. Since this case is simpler
than the general one, we only define acceptance for ATMs
with finite computations and refer to (Chandra, Kozen, &
Stockmeyer 1981) for the full definition. LetM be such
an ATM. A halting configuration isacceptingiff it is of the
form wqaw

′. For other configurationsK = wqw′, the ac-
ceptance behaviour depends onq: if q ∈ Q∃, thenK is ac-
cepting iff at least one successor configuration is accepting;
if q ∈ Q∀, thenK is accepting iff all successor configura-
tions are accepting. Finally, the ATMM with initial state
q0 acceptsthe inputw iff the initial configurationq0w is ac-
cepting. We useL(M) to denote the language accepted by
M, i.e.,

L(M) = {w ∈ Σ∗ | M acceptsw}.

Theword problemforM is the following decision problem:
given a wordw ∈ Σ∗, doesw ∈ L(M) hold or not?

There exists an exponentially space bounded ATM
M = (Q,Σ,Γ, q0,Θ) whose word problem is 2-EXPTIME-
hard (Chandra, Kozen, & Stockmeyer 1981). Our aim is to
reduce the word problem for this ATMM to satisfiability in
ALC-LTL |gGCI w.r.t. rigid names. We may assume that the
length of every computation ofM onw ∈ Σk is bounded by
22k

, and all the configurationswqw′ in such computations
satisfy |ww′| ≤ 2k. We may also assume w.l.o.g. thatM
never attempts to move to the left when it is on the left-most
tape cell.

Let w = σ0 · · ·σk−1 ∈ Σ∗ be an input toM. We
construct anALC-LTL |gGCI formula φM,w such thatw ∈
L(M) iff φM,w is satisfiable w.r.t. rigid names. In anALC-
LTL structure satisfyingφM,w, each domain element from
∆ describes a single tape cell of a configuration ofM. The
formula φM,w, that will be defined below is actually not
of the syntactic form2B ∧ ϕ (whereB is a conjunction of
ALC-axioms andϕ is anALC-LTL formula that does not
contain GCIs) required forALC-LTL formulae with global
GCIs. Instead,φM,w is a conjunction of formulae of the
form

• 2α whereα is anALC-axiom,

• ψ whereψ is anALC-LTL formula not containing GCIs.

Since2 distributes over conjunction, it is obvious that such
a formula is equivalent to anALC-LTL formula with global
GCIs. In the definition ofφM,w, we use the following sym-
bols:

• a single individual namea that identifies the first tape cell
of the first configuration;

• a singlerigid role namer to represent “going to the next
tape cell in the same configuration” and “going from the
last tape cell in a configuration to the first tape cell in a
successor configuration”;

• the elements ofQ and Γ are viewed asrigid concept
names;

• rigid concept namesA0, . . . , Ak−1 are the bits of a binary
counter that numbers the tape cells in each configuration;

• auxiliary rigid concept nameI andH; I indicates the ini-
tial configuration andH indicates that, in the current con-
figuration, the head is to the left of the current tape cell;

• auxiliary rigid concept namesTq,σ,M for all q ∈ Q, σ ∈
Γ, andM ∈ {L,R}; intuitively, Tq,σ,M is true if, in the
current configuration, the head is on the left neighboring
cell and the machine executes transition(q, σ,M);

• for each element ofQ and Γ, a flexible concept name
which is distinguished from its rigid version by a prime;

• (flexible) concept namesA′0, . . . , A
′
k−1 to realize an or-

thogonal counter (in the sense that it counts along the tem-
poral dimension instead of alongr).

Before giving the formal reduction, let us explain the un-
derlying intuition. As said above, a single configuration is
described as a sequence ofr-successors of length2k of the
individual representing its first tape cell. The tape cells of
a configuration are numbered from0 to 2k − 1, using the
counter realized through the concept namesA0, . . . , Ak−1.
We denote the concept that expresses that the counter has
value i, 0 ≤ i < 2k, by (CA = i); i.e., (CA = 0)
denotes¬A0 u ¬A1 u . . . u ¬Ak−1, (CA = 1) denotes
A0 u ¬A1 u . . . u ¬Ak−1, ..., (CA = 2k − 1) denotes
A0 uA1 u . . . uAk−1.

The r-successor of the last tape cell of a given configu-
ration represents the first tape cell of a successor configu-
ration of this configuration. It obtains the number0, i.e.,
the counter realized byA0, . . . , Ak−1 is reset to0, which
simply means that we count modulo2k. Since we have an

alternatingTuring machine, it is not enough to consider one
sequence of configurations. For a configuration with a uni-
versal state, we must consider all successor configurations.
Thus, we do not consider a single sequence ofr-successors,
but rather a tree ofr-successors.

The main problem to solve when defining the reduction
is to ensure that each configuration following a given con-
figuration in the tree ofr-successors is actually a successor
configuration, i.e., tape cells that are not immediately to the
left or right of the head remain unchanged, and the other
tape cells are changed according to the transition relation.
For the first type of cells this means that, given a cell num-
beredi in the current configuration, the next cell with the
same number should carry the same symbol. However, we
cannot remember the valuei of theA-counter when going
down along the sequence ofr-successors since this counter
is incremented (modulo2k) when going to anr-successor.
This is where the temporal dimension comes into play. Here,
we realize anA′-counter, using the (flexible) concept names
A′0, . . . , A

′
k−1, whose value does not change along ther-

dimension, but is incremented (modulo2k) along the tem-
poral dimension. This additional counter, together with the
flexible copies of the symbols fromQ andΓ, can be used to
transfer a symbol from a tape cell in a given configuration to
the corresponding tape cell in a successor configuration (see
below).

In the following, we useφ → ψ as an abbreviation for
¬φ∨ψ,C ⇒ D as an abbreviation for¬CtD, andC ⇔ D
as an abbreviation for(C ⇒ D) u (D ⇒ C).

The reduction formulaφM,w is the conjunction of the fol-
lowing formulae:
We start by setting upI,H, r, and theA-counter:
• I behaves as described, i.e., it marks the initial configura-

tion, whose first tape cell is represented by the individual
a:

2 (a : I)
2

(
I u ¬(CA = 2k − 1) v ∀r.I

)
• H behaves as described, i.e., it marks the tape cells that

are to the right of the head, where the head position is
indicated by having a state concept at this cell:

2

(
(H tt

q∈Q
q) u ¬(CA = 2k − 1) v ∀r.H

)
• there is always anr-successor, except when we meet the

head in a halting configuration:

2 (¬(qa t qr) v ∃r.>)
• the counter realized byA0, . . . , Ak−1 has value0 at a,

and it is incremented alongr (modulo2k):
2 (a : (CA = 0))

2

(
> vu

i<k

(u
j<i

Aj

)
⇒(

(Ai ⇒ ∀r.¬Ai) u (¬Ai ⇒ ∀r.Ai)
))

2

(
> vu

i<k

(t
j<i

¬Aj

)
⇒(

(Ai ⇒ ∀r.Ai) u (¬Ai ⇒ ∀r.¬Ai)
))

Some properties of runs of ATMs can be formalized without
using the temporal dimension:

• The initial configuration is the one induced by the input
w = σ0 . . . σk−1:

2
(
a : ∀ri.σi

)
for i < k

2
(
a : ∀rk.B

)
2

(
I uB u ¬(CA = 2k − 1) v ∀r.B

)
• The computation starts on the left-most tape cell of this

initial configuration in stateq0:

2 (a : q0)

• Each tape cell is labelled with exactly one symbol and at
most one state:

2

(
> vt

σ∈Γ
(σ u ¬ u

θ∈Γ\{σ}
¬θ)

)
2

(
> v u

p,q∈Q,p6=q
¬(p u q)

)
• There is only one head position per configuration:

2

(
H vu

q∈Q
¬q

)
It remains to implement the transitions and to say that sym-
bols not under the head do not change in successor config-
urations. Here we need the temporal dimension. We start
with setting up theA′-counter:

• for every value of theA′-counter realized using the (flexi-
ble) concept namesA′0, . . . , A

′
k−1, there is a time point at

whicha has that value:

2

(∧
i<k

(∧
j<i a : A′j

)
→(

(a : A′i → Xa : ¬A′i) ∧ (a : ¬A′i → Xa : A′i)
))

2

(∧
i<k

(∨
j<i a : ¬A′j

)
→(

(a : A′i → Xa : A′i) ∧ (a : ¬A′i → Xa : ¬A′i)
))

This is basically the same formula as for theA-counter,
but the values of theA′-counter are considered for the
fixed initial individuala, and they are incremented along
the temporal dimension.

• The value of theA′-counter is preserved alongr, i.e., for
all i, 0 ≤ i < k, we require:

2 (A′i v ∀r.A′i)
2 (¬A′i v ∀r.¬A′i)

In summary, we have associated one “temporal slice” with
each counter value of the second counter. In the follow-
ing, we use(CA = CA′) to denote the concept(A0 ⇔
A′0) u . . . u (Ak−1 ⇔ A′k−1), which states that the value
of theA-counter coincides with the value of theA′-counter.
Accordingly, (CA = CA′ + 1 mod 2k) expresses that the
value of theA-counter is equal to the value of theA′-counter

plus 1 (modulo2k), which can be expressed by a recasting
of the incrementation concept given already twice above:

u
i<k

(u
j<i

A′j
)
⇒

(
(A′i ⇒ ¬Ai) u (¬A′i ⇒ Ai)

)
u

u
i<k

(t
j<i

¬A′j
)
⇒

(
(A′i ⇒ Ai) u (¬A′i ⇒ ¬Ai)

)
The concept(CA = CA′ + 2 mod2k), which expresses that
the value of theA-counter is equal to the value of theA′-
counter plus2 (modulo2k), can be defined similarly, using
an auxiliary setA′′0 , . . . , A

′′
k−1 of flexible concept names.

• We can now say that symbols not under the head do not
change:

2

(
σ uu

q∈Q
¬q u (CA = CA′) v ∀r.σ′

)
for all σ ∈ Γ

2 (σ′ u ¬(CA = CA′) v ∀r.σ′) for all σ ∈ Γ
2 (σ′ u (CA = CA′) v σ) for all σ ∈ Γ

• Transitions are implemented in a similar way. The fact
that we have analternatingTuring is taken into account
by enforcing a branching on universal transitions:

2

(
q u σ v t

(p,ν,M)∈Θ(q,σ)
∀r.Tp,ν,M

)
for all q ∈ Q∃, σ ∈ Σ

2

(
q u σ v u

(p,ν,M)∈Θ(q,σ)
∃r.Tp,ν,M

)
for all q ∈ Q∀, σ ∈ Σ

2
(
Tq,σ,M u (CA = CA′ + 1 mod2k) v ∀r.σ′

)
for all σ ∈ Γ, q ∈ Q,M ∈ {L,R}

2 (Tq,σ,R u (CA = CA′) v ∀r.q′) for all σ ∈ Γ, q ∈ Q

2
(
Tq,σ,L u (CA = CA′ + 2 mod2k) v ∀r.q′

)
for all σ ∈ Γ, q ∈ Q

2 (q′ u ¬(CA = CA′) v ∀r.q′) for all q ∈ Q

2 (q′ u (CA = CA′) v q) for all q ∈ Q

It remains to encode the fact that the inputw = σ0 . . . σk−1

is accepted. Since any computation ofM is terminating,
and halting configurations (i.e., configurations with stateqa
or qr) are the only ones without successor configurations,
this can be done as follows:

• We can express the fact that the initial configuration for
inputw is accepting by disallowing the stateqr to occur:

2 (> v ¬qr)

This finishes the definition ofφM,w, which is the conjunc-
tion of the formulae introduced above. It is easy to see that
the size ofφM,w is polynomial ink, and thatφM,w is satis-
fiable w.r.t. rigid names iffw ∈ L(M). ❏

