1. A Primer in Programming Language Semantics

Lecture on Models of Concurrent Systems

(Summer 2022)

Stephan Mennicke

Apr 5, 2022

What is Computation?

P: x := 1; Q: x := 2; x := x + 1;

- What does **P** compute? What does **Q** compute? Are **P** and **Q** equivalent?
- What is needed to argue for this, formally?
- How to overcome the underspecification of the questions above?

Organization

Sessions in Presence

Tuesday, DS3 (11:10–12:40), APB E005 Wednesday, DS3 (11:10–12:40), APB E005

Exercises

In the spirit of this course: interleaved with the lectures.

Web Page

https://iccl.inf.tu-dresden.de/web/Concurrency_Theory_(SS2022)

Lecture Notes

Slides of current lecture will be Online.

Goals and Prerequisites

Learning Goals

- Semantics of concurrent programming languages
 - What is a process?
 - When are two processes equivalent?
- Advanced features of concurrent processes
- The coinductive proof method

Prerequisites

- No particular prior course needed
- Semantics of programming languages helpful
- General mathematical and theoretical computer science skills necessary

Stephan Mennicke

What is Computation?

P: x := 1; Q: x := 2; x := x + 1;

- What does P compute? What does Q compute? Are P and Q equivalent?
- What is needed to argue for this, formally?
 - →→ Semantics of Programming Languages
- How to overcome the underspecification of the questions above?

Recap: TheoLog@TUD

LOOP-Programme: Syntax

Definition: Die Programmiersprache LOOP basiert auf einer unendlichen Menge **V** von Variablen und der Menge \mathbb{N} der natürlichen Zahlen. LOOP-Programme sind induktiv definiert:

• Die Ausdrücke

 $\mathbf{x} := \mathbf{y} + n$ und $\mathbf{x} := \mathbf{y} - n$ (Wertzuweisung)

sind LOOP-Programme für alle $\mathbf{x}, \mathbf{y} \in \mathbf{V}$ und $n \in \mathbb{N}$.

• Wenn P1 und P2 LOOP-Programme sind, dann ist

P₁; P₂ (Hintereinanderausführung)

ein LOOP-Programm.

• Wenn P ein LOOP-Programm ist, dann ist

LOOP x DO P END (Schleife)

ein LOOP-Programm, für jede Variable $\mathbf{x} \in \mathbf{V}$.

Vereinfachung: Wir erlauben ; in Programmen durch Zeilenumbrüche zu ersetzen Markus Krötzsch. 19. April 2021 Theoretische Informatik und Loaik Folie 6 von 32

Stephan Mennicke

WHILE Programs

Definition 1.1: The language **WHILE** is based on a universe \mathcal{V} of variables, which are assigned values from the set of integers \mathbb{Z} . A **WHILE** program is an expression derived from the following grammar:

 $P ::= \mathbf{x} := a \mid P; P \mid \text{IF } b \text{ THEN } P \text{ ELSE } P \text{ END } \mid \text{WHILE } b \text{ DO } P \text{ END}$

where $\mathbf{x} \in \mathcal{V}$, $n \in \mathbb{Z}$, and a are arithmetic expression of the form

$$a ::= \mathbf{x} \mid n \mid a + a \mid a - a \mid a * a$$

and b are Boolean expression of the form

$$b$$
 ::= true $| a = a | a != a | a <= a |$ not $b | b$ and b

State Functions

We call a function $s:\mathcal{V}\rightarrow\mathbb{Z}$ a state function.

Arithmetic and Boolean expressions are evaluated over state functions. Let A and B the set of all arithmetic and Boolean expressions as defined before. A state function changes in the course of evaluating assignments of WHILE programs.

Define semantic functions $\mathcal{A}[\![\cdot]\!]: \mathbf{A} \times (\mathcal{V} \to \mathbb{Z}) \to \mathbb{Z}$ and $\mathcal{B}[\![\cdot]\!]: \mathbf{B} \times (\mathcal{V} \to \mathbb{Z}) \to \mathbf{2}$.

$$\mathcal{A}[\![\mathbf{x}]\!]s = s(x) \qquad \qquad \mathcal{A}[\![n]\!]s = n \\ \mathcal{A}[\![a_1 + a_2]\!]s = \mathcal{A}[\![a_1]\!]s + \mathcal{A}[\![a_2]\!]s \qquad \qquad \mathcal{A}[\![a_1 - a_2]\!]s = \mathcal{A}[\![a_1]\!]s - \mathcal{A}[\![a_2]\!]s \\ \mathcal{A}[\![a_1 * a_2]\!]s = \mathcal{A}[\![a_1]\!]s \cdot \mathcal{A}[\![a_2]\!]s$$

We assume no association or distributivity for the arithmetic operators. We would use brackets to make the order of evaluation explicit.

Semantic Functions (cont'd)

 $\begin{array}{rcl} \mathcal{B}\llbracket \texttt{true} \rrbracket s &= & \top & \mathcal{B}\llbracket \texttt{not} \ b_1 \rrbracket s &= & \neg \mathcal{B}\llbracket b_1 \rrbracket s \\ \mathcal{B}\llbracket b_1 \ \texttt{and} \ b_2 \rrbracket s &= & \mathcal{B}\llbracket b_1 \rrbracket s \land \mathcal{B}\llbracket b_2 \rrbracket s & \mathcal{B}\llbracket b_1 \ \texttt{or} \ b_2 \rrbracket s &= & \mathcal{B}\llbracket b_1 \rrbracket s \lor \mathcal{B}\llbracket b_2 \rrbracket s \\ \end{array}$ We would derive further Boolean operators as well as the keyword false as usual. To determine the semantics of the other operators, we apply $\mathcal{A}\llbracket \cdot \rrbracket$ to the operands.

$$\mathcal{B}\llbracket a_1 = a_2 \rrbracket s = \begin{cases} \top & \text{if } \mathcal{A}\llbracket a_1 \rrbracket s = \mathcal{A}\llbracket a_2 \rrbracket s \\ \bot & \text{otherwise.} \end{cases}$$
$$\mathcal{B}\llbracket a_1 \mathrel{!=} a_2 \rrbracket s = \begin{cases} \top & \text{if } \mathcal{A}\llbracket a_1 \rrbracket s \neq \mathcal{A}\llbracket a_2 \rrbracket s \\ \bot & \text{otherwise.} \end{cases}$$

In other words, $\mathcal{B}[\![a_1] = a_2]\!]s = \mathcal{B}[\![not (a_1 = a_2)]\!]s$. Other comparison operators (like <= for \leq) are implemented similarly.

Semantics of WHILE Programs

In **structural operational semantics**, we define transition rules between the **configurations** of a program according to the structure (syntax) of it.

A WHILE configuration is a pair $\langle P, s \rangle$ where $P \in WHILE$ and s is a state function. Furthermore, a state function s is a configuration, called a **terminal configuration**. We start a program P in an initial configuration $\langle P, s_0 \rangle$ with some state function s_0 (e.g., $s_0(x) = 0$ for all $x \in \mathcal{V}$). We will make use of a special WHILE statement: skip which just performs a step without changing the state function (e.g., skip = x := x).

The first rule performs the assignment x := a, changing the value of x to the value of $\mathcal{A}[\![a]\!]s$:

(ASS) $(x := a, s) \Rightarrow s[x \mapsto \mathcal{A}[a]s]$

Note, rule (ASS) has an empty hypothesis, meaning that the rule performs unconditionally.

Stephan Mennicke

Semantics of WHILE Programs (cont'd)

The next two rules handle the cases for sequential composition P_1 ; P_2 . Either P_1 terminates and P_2 takes up its state function, or P_1 computes and intermediate step.

$$(\mathsf{SEQ1}) \frac{\langle P_1, s \rangle \Rightarrow s'}{\langle P_1; P_2, s \rangle \Rightarrow \langle P_2, s' \rangle}$$
$$(\mathsf{SEQ2}) \frac{\langle P_1, s \rangle \Rightarrow \langle P'_1, s' \rangle}{\langle P_1; P_2, s \rangle \Rightarrow \langle P'_1; P_2, s' \rangle}$$

For branching we implement a case distinction, depending on whether the Boolean expression evaluates to \top (true) or \perp (false).

Stephan Mennicke

Semantics of WHILE Programs (FINISH)

For a while-loop we can build on the constructs we already have:

 $(\mathsf{WHILE}) \quad \hline \\ \langle \mathsf{WHILE} \ b \ \mathsf{DO} \ P \ \mathsf{END}, s \rangle \Rightarrow \langle \mathsf{IF} \ b \ \mathsf{THEN} \ P \text{; } \mathsf{WHILE} \ b \ \mathsf{DO} \ P \ \mathsf{END} \ \mathsf{ELSE} \ \mathsf{skip} \ \mathsf{END}, s \rangle$

The semantics of a **WHILE** program P is defined as

$$\mathcal{S}\llbracket P \rrbracket s := \begin{cases} s' & \text{if } \langle P, s \rangle \Rightarrow^* s' \\ undefined & \text{otherwise.} \end{cases}$$

Thus, $\mathcal{S}[\![\cdot]\!] : \mathbf{WHILE} \times (\mathcal{V} \to \mathbb{Z}) \to (\mathcal{V} \to \mathbb{Z})$ is (expectedly) a partial function.

What is Computation?

P: x := 1; Q: x := 2; x := x + 1;

- What does P compute? What does Q compute? Are P and Q equivalent?
 → S[[P]]s = s[x → 2] and S[[Q]]s = s[x → 2]
 → P and Q are equivalent under S[[·]].
- What is needed to argue for this, formally? ~> Semantics of Programming Languages
- How to overcome the underspecification of the questions above?
 → For all variable valuations s: V → N, does S[[P]]s = S[[Q]]s hold? or For all contexts C[·], are C[P] and C[Q] equivalent in the above-mentioned sense?
- Class over? But title mentions the word concurrent!
 → What about languages with explicit parallel operator, as in P₁ | P₂?