
1. A Primer in Programming Language Semantics

Lecture on Models of Concurrent Systems
(Summer 2022)

Stephan Mennicke

Apr 5, 2022



What is Computation?

P: x := 1;
x := x + 1;

Q: x := 2;

• What does P compute? What does Q compute? Are P and Q equivalent?

• What is needed to argue for this, formally?

• How to overcome the underspecification of the questions above?

Stephan Mennicke Concurrency Theory 2/34



Organization

Tuesday, DS3 (11:10–12:40), APB E005
Wednesday, DS3 (11:10–12:40), APB E005

Sessions in Presence

In the spirit of this course: interleaved with the lectures.

Exercises

https://iccl.inf.tu-dresden.de/web/Concurrency_Theory_(SS2022)

Web Page

Slides of current lecture will be Online.

Lecture Notes

Stephan Mennicke Concurrency Theory 3/34

https://iccl.inf.tu-dresden.de/web/Concurrency_Theory_(SS2022)


Goals and Prerequisites

• Semantics of concurrent programming languages
• What is a process?
• When are two processes equivalent?

• Advanced features of concurrent processes

• The coinductive proof method

Learning Goals

• No particular prior course needed

• Semantics of programming languages helpful

• General mathematical and theoretical computer science skills necessary

Prerequisites

Stephan Mennicke Concurrency Theory 4/34



What is Computation?

P: x := 1;
x := x + 1;

Q: x := 2;

• What does P compute? What does Q compute? Are P and Q equivalent?

• What is needed to argue for this, formally?
 Semantics of Programming Languages

• How to overcome the underspecification of the questions above?

Stephan Mennicke Concurrency Theory 5/34



Recap: TheoLog@TUD

LOOP-Programme: Syntax

Definition: Die Programmiersprache LOOP basiert auf einer unendlichen Menge V
von Variablen und der Menge N der natürlichen Zahlen. LOOP-Programme sind induk-
tiv definiert:

• Die Ausdrücke

x := y + n und x := y - n (Wertzuweisung)

sind LOOP-Programme für alle x, y ∈ V und n ∈ N.

• Wenn P1 und P2 LOOP-Programme sind, dann ist

P1; P2 (Hintereinanderausführung)

ein LOOP-Programm.

• Wenn P ein LOOP-Programm ist, dann ist

LOOP x DO P END (Schleife)

ein LOOP-Programm, für jede Variable x ∈ V.

Vereinfachung: Wir erlauben ; in Programmen durch Zeilenumbrüche zu ersetzen
Markus Krötzsch, 19. April 2021 Theoretische Informatik und Logik Folie 6 von 32

Stephan Mennicke Concurrency Theory 6/34



WHILE Programs

Definition 1.1: The language WHILE is based on a universe V of variables, which are
assigned values from the set of integers Z. A WHILE program is an expression derived
from the following grammar:

P ::= x := a P;P IF b THEN P ELSE P END WHILE b DO P END

where x ∈ V, n ∈ Z, and a are arithmetic expression of the form

a ::= x n a + a a - a a * a

and b are Boolean expression of the form

b ::= true a = a a != a a <= a not b b and b

Stephan Mennicke Concurrency Theory 7/34



State Functions

We call a function s : V → Z a state function.

Arithmetic and Boolean expressions are evaluated over state functions. Let A and B the set of
all arithmetic and Boolean expressions as defined before. A state function changes in the
course of evaluating assignments of WHILE programs.

Define semantic functions AJ·K : A× (V → Z)→ Z and BJ·K : B× (V → Z)→ 2.

AJxKs = s(x) AJnKs = n

AJa1 + a2Ks = AJa1Ks+AJa2Ks AJa1 - a2Ks = AJa1Ks−AJa2Ks
AJa1 * a2Ks = AJa1Ks · AJa2Ks

We assume no association or distributivity for the arithmetic operators. We would use brackets
to make the order of evaluation explicit.

Stephan Mennicke Concurrency Theory 8/34



Semantic Functions (cont’d)

BJtrueKs = > BJnot b1Ks = ¬BJb1Ks
BJb1 and b2Ks = BJb1Ks ∧ BJb2Ks BJb1 or b2Ks = BJb1Ks ∨ BJb2Ks

We would derive further Boolean operators as well as the keyword false as usual.

To determine the semantics of the other operators, we apply AJ·K to the operands.

BJa1 = a2Ks =

{
> if AJa1Ks = AJa2Ks
⊥ otherwise.

BJa1 != a2Ks =

{
> if AJa1Ks 6= AJa2Ks
⊥ otherwise.

In other words, BJa1 != a2Ks = BJnot (a1 = a2)Ks. Other comparison operators (like <= for
≤) are implemented similarly.

Stephan Mennicke Concurrency Theory 9/34



Semantics of WHILE Programs

In structural operational semantics, we define transition rules between the configurations of
a program according to the structure (syntax) of it.

A WHILE configuration is a pair 〈P, s〉 where P ∈WHILE and s is a state function.
Furthermore, a state function s is a configuration, called a terminal configuration. We start a
program P in an initial configuration 〈P, s0〉 with some state function s0 (e. g., s0(x) = 0 for
all x ∈ V). We will make use of a special WHILE statement: skip which just performs a
step without changing the state function (e. g., skip = x := x).

The first rule performs the assignment x := a, changing the value of x to the value of AJaKs:

(ASS)
〈x := a, s〉 ⇒ s[x 7→ AJaKs]

Note, rule (ASS) has an empty hypothesis, meaning that the rule performs unconditionally.

Stephan Mennicke Concurrency Theory 10/34



Semantics of WHILE Programs (cont’d)

The next two rules handle the cases for sequential composition P1;P2. Either P1 terminates
and P2 takes up its state function, or P1 computes and intermediate step.

(SEQ1)
〈P1, s〉 ⇒ s′

〈P1;P2, s〉 ⇒ 〈P2, s
′〉

(SEQ2)
〈P1, s〉 ⇒ 〈P ′1, s′〉

〈P1;P2, s〉 ⇒ 〈P ′1;P2, s
′〉

For branching we implement a case distinction, depending on whether the Boolean expression
evaluates to > (true) or ⊥ (false).

(THEN)
〈IF b THEN P1 ELSE P2 END, s〉 ⇒ 〈P1, s〉

if BJbKs = >

(ELSE)
〈IF b THEN P1 ELSE P2 END, s〉 ⇒ 〈P2, s〉

if BJbKs = ⊥

Stephan Mennicke Concurrency Theory 11/34



Semantics of WHILE Programs (FINISH)

For a while-loop we can build on the constructs we already have:

(WHILE)
〈WHILE b DO P END, s〉 ⇒ 〈IF b THEN P; WHILE b DO P END ELSE skip END, s〉

The semantics of a WHILE program P is defined as

SJP Ks :=

{
s′ if 〈P, s〉 ⇒∗ s′

undefined otherwise.

Thus, SJ·K : WHILE× (V → Z)→ (V → Z) is (expectedly) a partial function.

Stephan Mennicke Concurrency Theory 12/34



What is Computation?

P: x := 1;
x := x + 1;

Q: x := 2;

• What does P compute? What does Q compute? Are P and Q equivalent?
 SJPKs = s[x 7→ 2] and SJQKs = s[x 7→ 2]

 P and Q are equivalent under SJ·K.
• What is needed to argue for this, formally?
 Semantics of Programming Languages

• How to overcome the underspecification of the questions above?
 For all variable valuations s : V→ N, does SJPKs = SJQKs hold? or

For all contexts C[·], are C[P] and C[Q] equivalent in the above-mentioned sense?

• Class over? But title mentions the word concurrent!
 What about languages with explicit parallel operator, as in P1 | P2?

Stephan Mennicke Concurrency Theory 13/34


