Complexity Theory

Polynomial Space

Daniel Borchmann, Markus Krötzsch

Computational Logic

2015-12-01

(c)(1)

```
@(@)2015 Daniel Borchmann, Markus Krötzsch
```


Complexity Theory
2015-12-01
Polynomial Space

The Class PSpace

We defined PSpace as:

$$
\operatorname{PSPACE}=\bigcup_{d \geq 1} \operatorname{DSPACE}\left(n^{d}\right)
$$

and we observed that

$$
\mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE}=\mathrm{NPSPACE} \subseteq \text { ExpTime. }
$$

We can also define a corresponding notion of PSpace-hardness:
Definition 11.1

- A language \mathcal{H} is PSpace-hard, if $\mathcal{L} \leq_{p} \mathcal{H}$ for every language $\mathcal{L} \in$ PSpace.
- A language C is PSpace-complete, if C is PSpace-hard and $C \in$ PSpace.

Deciding QBF Validity

```
True QBF
    Input: A quantified Boolean formula }\varphi\mathrm{ .
Problem: Is }\varphi\mathrm{ true (valid)?
```

Observation
We can assume that the quantified formula is in CNF or 3-CNF (same transformations possible as for propositional logic formulae)

Consider a propositional logic formula φ with variables X_{1}, \ldots, X_{ℓ} :
Example 11.2
The QBF $\exists X_{1} \cdots \exists X_{\ell . \varphi}$ is true if and only if φ is satisfiable.
Example 11.3
The QBF $\forall X_{1}, \cdots \forall X_{\ell . \varphi}$ is true if and only if φ is a tautology.

Theorem 11.4
True QBF is PSpace-complete.
Proof.

- True QBF \in PSpace:

Give an algorithm that runs in polynomial space.

- True QBF is PSpace-hard:

Proof by reduction from the word problem for polynomially space-bounded TMs.

The Power of QBF

Solving True QBF in PSpace

```
    & ( }\varphi\mathrm{ ) {
        f \varphi has no quantifiers :
        return "evaluation of \varphi"
        se if \varphi=\existsX.\psi :
        lse if }\varphi=\forallX.\psi 
        return (TrueQBF(\psi[X/T]) AND TrueQBF(\psi[X/\perp]))
```

- Evaluation in line 03 can be done in polynomial space

Recursions in lines 05 and 07 can be executed one after the other, reusing space
Maximum depth of recursion = number of variables (linear)
\leadsto polynomial space algorithm

Review: Encoding Configurations

Use propositional variables for describing configurations:
Q_{q} for each $q \in Q$ means " \mathcal{M} is in state $q \in Q$ "
P_{i} for each $0 \leq i<p(n)$ means "the head is at Position i "
$S_{a, i}$ for each $a \in \Gamma$ and $0 \leq i<p(n)$ means "tape cell i contains Symbol a"
Represent configuration $\left(q, p, a_{0} \ldots a_{p(n)}\right)$
by assigning truth values to variables from the set

$$
\bar{C}:=\left\{Q_{q}, P_{i}, S_{a, i} \mid q \in Q, \quad a \in \Gamma, \quad 0 \leq i<p(n)\right\}
$$

using the truth assignment β defined as
$\beta\left(Q_{s}\right):=\left\{\begin{array}{ll}1 & s=q \\ 0 & s \neq q\end{array} \quad \beta\left(P_{i}\right):=\left\{\begin{array}{ll}1 & i=p \\ 0 & i \neq p\end{array} \quad \beta\left(S_{a, i}\right):= \begin{cases}1 & a=a_{i} \\ 0 & a \neq a_{i}\end{cases}\right.\right.$

Review: Validating Configurations

For an assignment β defined on variables in \bar{C} define

$$
\operatorname{conf}(\bar{C}, \beta):=\left\{\begin{array}{ll}
& \beta\left(Q_{q}\right)=1 \\
\left(q, p, w_{0} \ldots w_{p(n)}\right) \mid & \beta\left(P_{p}\right)=1 \\
& \beta\left(S_{w_{i}, i}\right)=1 \text { for all } 0 \leq i<p(n)
\end{array}\right\}
$$

Note: β may be defined on other variables besides those in \bar{C}.
Lemma 11.5
If β satisfies $\operatorname{Conf}(\bar{C})$ then $|\operatorname{conf}(\bar{C}, \beta)|=1$.
We can therefore write $\operatorname{conf}(\bar{C}, \beta)=(q, p, w)$ to simplify notation.

Observations:

- $\operatorname{conf}(\bar{C}, \beta)$ is a potential configuration of \mathcal{M}, but it may not be reachable from the start configuration of \mathcal{M} on input w.
- Conversely, every configuration $\left(q, p, w_{1} \ldots w_{p(n)}\right)$ induces a satisfying assignment β or which $\operatorname{conf}(\bar{C}, \beta)=\left(q, p, w_{1} \ldots w_{p(n)}\right)$.

Review: Validating Configurations

We define a formula $\operatorname{Conf}(\bar{C})$ for a set of configuration variables

$$
\bar{C}=\left\{Q_{q}, P_{i}, S_{a, i} \mid q \in Q, \quad a \in \Gamma, \quad 0 \leq i<p(n)\right\}
$$

as follows:

$$
\operatorname{CoNF}(\bar{C}):=\quad \text { "the assignment is a valid configuration": }
$$

$$
\bigvee_{q \in Q}\left(Q_{q} \wedge \bigwedge_{q^{\prime} \neq q} \neg Q_{q^{\prime}}\right) \quad \text { "TM in exactly one state } q \in Q \text { " }
$$

$$
\wedge \bigvee_{p<p(n)}\left(P_{p} \wedge \bigwedge_{p^{\prime} \neq p} \neg P_{p^{\prime}}\right) \quad \text { "head in exactly one position } p<p(n) \text { " }
$$

$\wedge \bigwedge_{0 \leq i<p(n)} \bigvee_{a \in \Gamma}\left(S_{a, i} \wedge \bigwedge_{b \neq a \in \Gamma} \neg S_{b, i}\right) \quad$ "exactly one $a \in \Gamma$ in each cell"

$$
\begin{aligned}
& \text { Complexity Theory } \\
& \text { Polynomial Space }
\end{aligned}
$$

2015-12-01 \#10

Review: Transitions Between Configurations

Consider the following formula $\operatorname{Next}\left(\bar{C}, \bar{C}^{\prime}\right)$ defined as

$$
\operatorname{Conf}(\bar{C}) \wedge \operatorname{Conf}\left(\bar{C}^{\prime}\right) \wedge \operatorname{NoChange}\left(\bar{C}, \bar{C}^{\prime}\right) \wedge \operatorname{Change}\left(\bar{C}, \bar{C}^{\prime}\right)
$$

NoChange $:=\bigvee_{0 \leq p<p(n)}\left(P_{p} \wedge \bigwedge_{i \neq p, a \in \Gamma}\left(S_{a, i} \rightarrow S_{a, i}^{\prime}\right)\right)$

$$
\text { ChANGE }:=\bigvee_{0 \leq p<p(n)}\left(P_{p} \wedge \bigvee_{\substack{q \in Q \\ a \in \Gamma}}\left(Q_{q} \wedge S_{a, p} \wedge \bigvee_{\left(q^{\prime}, b, D\right) \in \delta(q, a)}\left(Q_{q^{\prime}}^{\prime} \wedge S_{b, p}^{\prime} \wedge P_{D(p)}^{\prime}\right)\right)\right)
$$

where $D(p)$ is the position reached by moving in direction D from p.
Lemma 11.6
For any assignment β defined on $\bar{C} \cup \bar{C}^{\prime}$:

$$
\beta \text { satisfies } \operatorname{Next}\left(\bar{C}, \bar{C}^{\prime}\right) \quad \text { if and only if } \quad \operatorname{conf}(\bar{C}, \beta) \vdash_{\mathcal{M}} \operatorname{conf}\left(\bar{C}^{\prime}, \beta\right)
$$

Review: Start and End

Defined so far:

- $\operatorname{Conf}(\bar{C}): \bar{C}$ describes a potential configuration
- $\operatorname{Next}\left(\bar{C}, \bar{C}^{\prime}\right): \operatorname{conf}(\bar{C}, \beta) \vdash_{\mathcal{M}} \operatorname{conf}\left(\bar{C}^{\prime}, \beta\right)$

Start configuration: Let $w=w_{0} \cdots w_{n-1} \in \Sigma^{*}$ be the input word

$$
\operatorname{START}_{\mathcal{M}, w}(\bar{C}):=\operatorname{ConF}(\bar{C}) \wedge Q_{q_{0}} \wedge P_{0} \wedge \bigwedge_{i=0}^{n-1} S_{w_{i}, i} \wedge \wedge_{i=n}^{p(n)-1} S_{\square, i}
$$

Then an assignment β satisfies $\operatorname{START}_{\mathcal{M}, w}(\bar{C})$ if and only if \bar{C} represents the start configuration of \mathcal{M} on input w.
Accepting stop configuration:

$$
\operatorname{Acc-Conf}(\bar{C}):=\operatorname{Conf}(\bar{C}) \wedge Q_{\text {qaccept }}
$$

Then an assignment β satisfies Acc-Conf (\bar{C}) if and only if \bar{C} represents an accepting configuration of \mathcal{M}.

©()® 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-12-01	\#13
Polynomial Space	Polynomial Space		

Putting Everything Together

We define the formula $\varphi_{p, \mathcal{M}, w}$ as follows:

$$
\varphi_{p, \mathcal{M}, w}:=\exists \bar{C}_{1} \cdot \exists \bar{C}_{2} \cdot \operatorname{START}_{\mathcal{M}, w}\left(\bar{C}_{1}\right) \wedge \operatorname{Acc-Conf}\left(\bar{C}_{2}\right) \wedge \operatorname{CaNY}_{\text {IELD }_{d p(n)}}\left(\bar{C}_{1}, \bar{C}_{2}\right)
$$

where we select d to be the least number such that \mathcal{M} has less than $2^{d p(n)}$ configurations in space $p(n)$.

Lemma 11.7
$\varphi_{p, \mathcal{M}, w}$ is satisfiable if and only if \mathcal{M} accepts w in space $p(|w|)$.

Simulating Polynomial Space Computations

For Cook-Levin, we used one set of configuration variables for every computating step: polynomially time \leadsto polynomially many variables

Problem: For polynomial space, we have $2^{O(p(n))}$ possible steps ...

What would Savitch do?

Define a formula Can $\mathcal{Y i e l d}_{i}\left(\bar{C}_{1}, \bar{C}_{2}\right)$ to state that \bar{C}_{2} is reachable from \bar{C}_{1} in at most 2 isteps:

But what is $\bar{C}_{1}=\bar{C}_{2}$ supposed to mean here? It is short for:

$$
\bigwedge_{q \in Q} Q_{q}^{1} \leftrightarrow Q_{q}^{2} \wedge \bigwedge_{0 \leq i<p(n)} P_{i}^{1} \leftrightarrow P_{i}^{2} \wedge \bigwedge_{a \in \Gamma, 0 \leq i<p(n)} S_{\mathrm{a}, i}^{1} \leftrightarrow S_{a, i}^{2}
$$

©(○) 2015 Daniel Borchmann, Markus Krötzsch

Complexity Theory Polynomial Space

Did we do it?

Note: we used only existential quantifiers when defining $\varphi_{p, \mathcal{M}, w}$:

$$
\begin{aligned}
& \operatorname{CanYieldo}_{0}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\left(\bar{C}_{1}=\bar{C}_{2}\right) \vee \operatorname{Next}\left(\bar{C}_{1}, \bar{C}_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \varphi_{p, \mathcal{M}, w}:=\exists \bar{C}_{1} \cdot \exists \bar{C}_{2} \cdot \text { StaRt }_{\mathcal{M}, w}\left(\bar{C}_{1}\right) \wedge \operatorname{Acc}-\operatorname{Conf}\left(\bar{C}_{2}\right) \wedge \operatorname{CaNY}_{\text {IELD }}^{\text {dp }(n)}\left(\bar{C}_{1}, \bar{C}_{2}\right)
\end{aligned}
$$

Now that's quite interesting...

- With only (non-negated) \exists quantifiers, True QBF coincides with Sat
- Sat is in NP
- So we showed that the word problem for PSpace NTMs to be in NP

So we found that NP = PSpace!
Strangely, most textbooks claim that this is not known to be true ...
Are we up for the next Turing Award, or did we make a mistake?

Size

How big is $\varphi_{p, \mathcal{M}, w}$?

$$
\operatorname{Can}_{\operatorname{IELD}}^{0}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\left(\bar{C}_{1}=\bar{C}_{2}\right) \vee \operatorname{Next}\left(\bar{C}_{1}, \bar{C}_{2}\right)
$$

$\operatorname{CanYield}_{i+1}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\exists \bar{C} \cdot \operatorname{Conf}(\bar{C}) \wedge \operatorname{CanYield}_{i}\left(\bar{C}_{1}, \bar{C}\right) \wedge \operatorname{Can}_{\operatorname{Ield}}^{i}\left(\bar{C}, \bar{C}_{2}\right)$
$\varphi_{p, \mathcal{M}, w}:=\exists \bar{C}_{1} \cdot \exists \bar{C}_{2} \cdot$ StaRt $_{\mathcal{M}, w}\left(\bar{C}_{1}\right) \wedge \operatorname{Acc}-\operatorname{Conf}\left(\bar{C}_{2}\right) \wedge \operatorname{CaNY}_{\operatorname{IELD}}^{d p(n)}\left(\bar{C}_{1}, \bar{C}_{2}\right)$
Size of Can Yield $_{i+1}$ is more than twice the size of Can Yield $_{i}$
\leadsto Size of $\varphi_{p, \mathcal{M}, w}$ is in $2^{O(p(n))}$. Oops.
A correct reduction: We redefine CanYield by setting
Can $_{\operatorname{IELD}_{i+1}}\left(\bar{C}_{1}, \bar{C}_{2}\right):=$
$\exists \bar{C} \cdot \operatorname{Conf}(\bar{C}) \wedge$
$\forall \bar{Z}_{1} \cdot \forall \bar{Z}_{2 \cdot}\left(\left(\left(\bar{Z}_{1}=\bar{C}_{1} \wedge \bar{Z}_{2}=\bar{C}\right) \vee\left(\bar{Z}_{1}=\bar{C} \wedge \bar{Z}_{2}=\bar{C}_{2}\right)\right) \rightarrow \operatorname{CANYIELd}_{i}\left(\bar{Z}_{1}, \bar{Z}_{2}\right)\right)$

©(O) 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-12-01	\#17
Polynomial Space	Polynomial Space		

The Power of QBF

Theorem 11.4

True QBF is PSpace-complete.
Proof.

- True QBF \in PSpace: Give an algorithm that runs in polynomial space.
- True QBF is PSpace-hard: Proof by reduction from the word problem for polynomially space-bounded TMs.

Size

Let's analyse the size more carefully this time:
$\operatorname{Can}_{\operatorname{IeLD}}^{i+1}{ }\left(\bar{C}_{1}, \bar{C}_{2}\right):=$
$\exists \bar{C} \cdot \operatorname{Conf}(\bar{C}) \wedge$
$\forall \bar{Z}_{1} \cdot \forall \bar{Z}_{2} \cdot\left(\left(\left(\bar{Z}_{1}=\bar{C}_{1} \wedge \bar{Z}_{2}=\bar{C}\right) \vee\left(\bar{Z}_{1}=\bar{C} \wedge \bar{Z}_{2}=\bar{C}_{2}\right)\right) \rightarrow \operatorname{CANYIELD}\left(i\left(\bar{Z}_{1}, \bar{Z}_{2}\right)\right)\right.$

- CanYield ${ }_{i+1}\left(\bar{C}_{1}, \bar{C}_{2}\right)$ extends CanYield ${ }_{i}\left(\bar{C}_{1}, \bar{C}_{2}\right)$ by parts that are linear in the size of configurations \leadsto growth in $O(p(n))$
- Maximum index i used in $\varphi_{p, \mathcal{M}, w}$ is $d p(n)$, that is in $O(p(n))$
- Therefore: $\varphi_{p, \mathcal{M}, w}$ has size $O\left(p^{2}(n)\right)$ - and thus can be computed in polynomial time

Exercise:

Why can we just use $d p(n)$ in the reduction? Don't we have to compute it somehow? Maybe even in polynomial time?

Complexity Theory
Polynomial Space

A More Common Logical Problem in PSpace

Recall standard first-order logic:

- Instead of propositional variables, we have atoms (predicates with constants and variables)
- Instead of propositional evaluations we have first-order structures (or interpretations)
- First-order quantifiers can be used on variables
- Sentences are formulae where all variables are quantified
- A sentence can be satisfied or not by a given first-order structure

FOL Model Checking

Input: A first-orer sentence φ and a finite first-order structure I.

Problem: Is φ satisfied by I ?

First-Order Logic is PSpace-complete

Theorem 11.8

FOL Model Checking is PSpace-complete.
Proof.

- FOL Model Checking \in PSpace: Give algorithm that runs in polynomial space.
- FOL Model Checking is PSpace-hard: Proof by reduction True QBF \leq_{p} FOL Model Checking.

Hardness of FOL Model Checking

Given: $\operatorname{a~QBF} \varphi=\bigcirc_{1} X_{1} \cdots \bigcirc_{\ell} X_{\ell} \cdot \psi$
FOL Model Checking Problem:

- Interpretation domain $\Delta^{I}:=\{0,1\}$
- Single predicate symbol true with interpretation true ${ }^{I}=\{\langle 1\rangle\}$
- FOL formula φ^{\prime} is obtained by replacing variables in input QBF with corresponding first-order expressions:

$$
\bigcirc_{1} x_{1} \cdots \wp_{\ell} x_{\ell} \cdot \psi\left[X_{1} \mapsto \operatorname{true}\left(x_{1}\right), \ldots, X_{\ell} \mapsto \operatorname{true}\left(x_{\ell}\right)\right]
$$

Checking FOL Models in Polynomial Space (Sketch)

```
- We can assume \(\varphi\) only uses \(\neg, \wedge\) and \(\exists\) (easy to get)
- We use \(\Delta^{I}\) to denote the (finite!) domain of \(I\)
- We allow domain elements to be used like constants in the formula
Eval(\varphi,I) {
    switch (\varphi) :
    case p(c, ,\ldots,\mp@subsup{c}{n}{}): return }\langle\mp@subsup{c}{1}{},\ldots,\mp@subsup{c}{n}{}\rangle\in\mp@subsup{p}{}{I
    case }\neg\psi\mp@code{: return NOT Eval ( }\psi,I
    case }\mp@subsup{\psi}{1}{}\wedge\mp@subsup{\psi}{2}{}: return Eval( ( % , I I) AND Eval ( ( % , I, I)
    case \existsx.\psi :
    for c\in\mp@subsup{\Delta}{}{I}
                            if Eval (\psi[x\mapstoc],I) : return TRUE
        // eventually, if no success:
        return FALSE
    0
1}
```

©(○) 2015 Daniel Borchmann, Markus Krötzsch
Complexity Theory
2015-12-01 \#22
Polynomial Space
Polynomial Space

First-Order Logic is PSpace-complete

Theorem 11.8

FOL Model Checking is PSpace-complete.
Proof.

- FOL Model Checking \in PSpace: Give algorithm that runs in polynomial space.
- FOL Model Checking is PSpace-hard: Proof by reduction True QBF \leq_{p} FOL Model Checking.

Lemma 11.9

$\left\langle I, \varphi^{\prime}\right\rangle \in \operatorname{FOL}$ Model Checking if and only if $\varphi \in$ True QBF.

FOL Model Сhecking: Practical Significance

Why is FOL Model Checking a relevant problem?
Correspondence with database query answering:

- Finite first-order interpretation = database
- First-order logic formula = database query

Games

- Satisfying assignments (for non-sentences) = query results

Known correspondence:
As a query language, FOL has the same expressive power as (basic) SQL (relational algebra).
Corollary 11.10
Answering SQL queries over a given database is PSPAcE-complete.

Many single-player games relate to NP-complete problems:

- Sudoku
- Minesweeper
- Tetris
-...
Decision problem: Is there a solution?
(For Tetris: is it possible to clear all blocks?)
What about two-player games?
- Two players take moves in turns
- The players have different goals
- The game ends if a player wins

Decision problem: Does Player 1 have a winnings strategy?
In other words: can Player 1 enforce winning, whatever Player 2 does?

