Complexity Theory

Polynomial Space

Daniel Borchmann, Markus Krötzsch

Computational Logic

2015-12-01

 \odot

Polynomial Space

@⊕@ 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-12-01	#1	©⊕@ 2015 Daniel Borchmann, Markus Krötzsch		Complexity Theory	2015-12-01	#2
Polynomial Space	Polynomial Space			Polyr	nomial Space	Polynomial Space		
The Class $PSPACE$				Quantified Boolean Fo	rmulae	e (QBF)		

We defined PSPACE as:

$$\mathsf{PSPACE} = \bigcup_{d \ge 1} \mathsf{DSPACE}(n^d)$$

and we observed that

```
P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME.
```

We can also define a corresponding notion of $\operatorname{PSpace}\xspace$ hardness:

Definition 11.1

- ► A language \mathcal{H} is PSPACE-hard, if $\mathcal{L} \leq_p \mathcal{H}$ for every language $\mathcal{L} \in PSPACE$.
- A language *C* is PSPACE-complete, if *C* is PSPACE-hard and $C \in PSPACE$.

A QBF is a formula of the following form:

$$\mathsf{Q}_1 X_1 . \mathsf{Q}_2 X_2 . \cdots \mathsf{Q}_\ell X_\ell . \varphi[X_1, \ldots, X_\ell]$$

where $Q_i \in \{\exists, \forall\}$ are quantifiers, X_i are propositional logic variables, and φ is a propositional logic formula with variables X_1, \ldots, X_ℓ and constants \top (true) and \perp (false)

Semantics:

- Propositional formulae without variables (only constants ⊤ and ⊥) are evaluated as usual
- ► $\exists X.\varphi[X]$ is true if either $\varphi[X/\top]$ or $\varphi[X/\bot]$ are true
- $\forall X.\varphi[X]$ is true if both $\varphi[X/\top]$ and $\varphi[X/\bot]$ are true

(where $\varphi[X/\top]$ is " φ with X replaced by \top , and similar for \bot)

Polynomial Space Polynomial Space

Deciding QBF Validity

TRUE QBF	
Input:	A quantified Boolean formula φ .
Problem:	Is φ true (valid)?

Observation

We can assume that the quantified formula is in CNF or 3-CNF (same transformations possible as for propositional logic formulae)

Consider a propositional logic formula φ with variables X_1, \ldots, X_ℓ :

Example 11.2

The QBF $\exists X_1 \dots \exists X_{\ell} \varphi$ is true if and only if φ is satisfiable.

Example 11.3

The QBF $\forall X_1, \dots \forall X_{\ell}, \varphi$ is true if and only if φ is a tautology.

The Power of QBF

Theorem 11.4

TRUE QBF is PSPACE-complete.

Proof.

▶ TRUE $QBF \in PSPACE$: Give an algorithm that runs in polynomial space.

 $\varphi_{p,\mathcal{M},w}$ is true if and only if \mathcal{M} accepts w in space p(|w|).

We show the reduction for NTMs, which is more than needed, but makes little difference in logic and allows us to reuse our previous formulae from

► TRUE QBF is PSPACE-hard: Proof by reduction from the word problem for polynomially space-bounded TMs.

Complexity Theory 2015-12-01 © € 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #5 Polynomial Space **Polynomial Space** Polynomial Space Polynomial Space **PSPACE-Hardness of True QBF** Solving True QBF in PSPACE **01** TRUEQBF(φ) { Express TM computation in logic, similar to Cook-Levin if φ has no quantifiers : 02 Given: return "evaluation of φ " 03 a polynomial p else if $\varphi = \exists X.\psi$: 04 return (TRUEQBF($\psi[X/\top]$) OR TRUEQBF($\psi[X/\bot]$)) • a *p*-space bounded 1-tape NTM $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept})$ 05 else if $\varphi = \forall X.\psi$: 06 a word w 07 return (TrueQBF($\psi[X/\top]$) AND TrueQBF($\psi[X/\bot]$)) **08** } Intended reduction Define a QBF $\varphi_{p,\mathcal{M},w}$ such that

- Evaluation in line 03 can be done in polynomial space
- Recursions in lines 05 and 07 can be executed one after the other. reusing space

Complexity Theory

- Maximum depth of recursion = number of variables (linear)
- Store one variable assignment per recursive call
- \rightarrow polynomial space algorithm

Cook-Levin

Note

Polynomial Space Polynomial Space

Review: Encoding Configurations

Use propositional variables for describing configurations:

- Q_q for each $q \in Q$ means " \mathcal{M} is in state $q \in Q$ "
- P_i for each $0 \le i < p(n)$ means "the head is at Position *i*"
- S_{ai} for each $a \in \Gamma$ and $0 \le i < p(n)$ means "tape cell *i* contains Symbol *a*"

Represent configuration $(q, p, a_0 \dots a_{p(n)})$

by assigning truth values to variables from the set

$$\overline{C} := \{Q_q, P_i, S_{a,i} \mid q \in Q, \quad a \in \Gamma, \quad 0 \le i < p(n)\}$$

using the truth assignment β defined as

$$\beta(Q_s) := \begin{cases} 1 & s = q \\ 0 & s \neq q \end{cases} \qquad \beta(P_i) := \begin{cases} 1 & i = p \\ 0 & i \neq p \end{cases} \qquad \beta(S_{a,i}) := \begin{cases} 1 & a = a_i \\ 0 & a \neq a_i \end{cases}$$

🔊 🕦 🧿 2015 Daniel Borchmann, Markus Krötzsch **Polynomial Space**

Complexity Theory Polynomial Space

Review: Validating Configurations

For an assignment β defined on variables in \overline{C} define

$$\operatorname{conf}(\overline{C},\beta) := \begin{cases} \beta(Q_q) = 1, \\ (q, p, w_0 \dots w_{p(n)}) \mid \beta(P_p) = 1, \\ \beta(S_{w_i,i}) = 1 \text{ for all } 0 \le i < p(n) \end{cases}$$

Note: β may be defined on other variables besides those in \overline{C} .

Lemma 11.5

If β satisfies $\operatorname{Conf}(\overline{C})$ then $|\operatorname{conf}(\overline{C},\beta)| = 1$. We can therefore write $\operatorname{conf}(\overline{C},\beta) = (q, p, w)$ to simplify notation.

Observations:

- $conf(\overline{C},\beta)$ is a potential configuration of \mathcal{M} , but it may not be reachable from the start configuration of \mathcal{M} on input w.
- Conversely, every configuration $(q, p, w_1 \dots w_{p(n)})$ induces a satisfying assignment β or which $\operatorname{conf}(\overline{C},\beta) = (q, p, w_1 \dots w_{p(n)})$.

Review: Validating Configurations

We define a formula $CONF(\overline{C})$ for a set of configuration variables

$$\overline{C} = \{Q_q, P_i, S_{a,i} \mid q \in Q, \quad a \in \Gamma, \quad 0 \le i < p(n)\}$$

as follows:

$$Conf(\overline{C}) :=$$

"the assignment is a valid configuration":

 $\bigvee_{q \in Q} \left(Q_q \land \bigwedge_{q' \neq q} \neg Q_{q'} \right)$

"TM in exactly one state
$$q \in Q$$
"

"head in exactly one position p < p(n)"

$$\wedge \bigwedge_{0 \leq i < p(n)} \bigvee_{a \in \Gamma} \left(S_{a,i} \land \bigwedge_{b \neq a \in \Gamma} \neg S_{b,i} \right)$$

 $\wedge \bigvee_{p < p(n)} \left(P_p \land \bigwedge_{p' \neq p} \neg P_{p'} \right)$

"exactly one $a \in \Gamma$ in each cell"

2015-12-01 © € 2015 Daniel Borchmann, Markus Krötzsch 2015-12-01 #9 Complexity Theory #10 Polynomial Space **Polynomial Space**

Review: Transitions Between Configurations

Consider the following formula $NEXT(\overline{C}, \overline{C}')$ defined as

$$\mathsf{Conf}(\overline{C}) \land \mathsf{Conf}(\overline{C}') \land \mathsf{NoChange}(\overline{C}, \overline{C}') \land \mathsf{Change}(\overline{C}, \overline{C}').$$

$$\mathsf{NoChange} := \bigvee_{0 \le p < p(n)} \left(\mathsf{P}_p \land \bigwedge_{i \ne p, a \in \Gamma} \left(S_{a,i} \to S'_{a,i} \right) \right)$$

$$\mathsf{Change} := \bigvee_{0 \le p < p(n)} \left(\mathsf{P}_p \land \bigvee_{q \in Q \atop a \in \Gamma} \left(\mathsf{Q}_q \land \mathsf{S}_{a,p} \land \bigvee_{(q',b,D) \in \delta(q,a)} \left(\mathsf{Q}'_{q'} \land \mathsf{S}'_{b,p} \land \mathsf{P}'_{D(p)} \right) \right)$$

where D(p) is the position reached by moving in direction D from p.

Lemma 11.6

For any assignment β defined on $\overline{C} \cup \overline{C}'$:

 β satisfies Next $(\overline{C}, \overline{C}')$ if and only if $\operatorname{conf}(\overline{C}, \beta) \vdash_{\mathcal{M}} \operatorname{conf}(\overline{C}', \beta)$

Complexity Theory

© ⊕ @ 2015 Daniel Borchmann, Markus Krötzsch #11

Polynomial Space Polynomial Space

Review: Start and End

Defined so far:

- $CONF(\overline{C})$: \overline{C} describes a potential configuration
- ▶ NEXT($\overline{C}, \overline{C}'$): conf(\overline{C}, β) $\vdash_{\mathcal{M}}$ conf(\overline{C}', β)

Start configuration: Let $w = w_0 \cdots w_{n-1} \in \Sigma^*$ be the input word

$$\mathsf{Start}_{\mathcal{M}, w}(\overline{C}) := \mathsf{Conf}(\overline{C}) \land Q_{q_0} \land P_0 \land \bigwedge_{i=0}^{n-1} S_{w_i, i} \land \bigwedge_{i=n}^{p(n)-1} S_{\square, i}$$

Then an assignment β satisfies $\operatorname{Start}_{\mathcal{M}, w}(\overline{C})$ if and only if \overline{C} represents the start configuration of \mathcal{M} on input w.

Accepting stop configuration:

$$\mathsf{Acc} ext{-}\mathsf{Conf}(\overline{\mathcal{C}}) \coloneqq \mathsf{Conf}(\overline{\mathcal{C}}) \wedge Q_{q_{\mathsf{accept}}}$$

Then an assignment β satisfies Acc-CONF(\overline{C}) if and only if \overline{C} represents an accepting configuration of \mathcal{M} .

Simulating Polynomial Space Computations

For Cook-Levin, we used one set of configuration variables for every computating step: polynomially time \rightsquigarrow polynomially many variables

Problem: For polynomial space, we have $2^{O(p(n))}$ possible steps ...

What would Savitch do?

Define a formula $C_{ANYIELD_i}(\overline{C}_1, \overline{C}_2)$ to state that \overline{C}_2 is reachable from \overline{C}_1 in at most 2^i steps:

 $\begin{aligned} & \mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \lor \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ & \mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \exists \overline{C}.\mathsf{Conf}(\overline{C}) \land \mathsf{CanYield}_i(\overline{C}_1,\overline{C}) \land \mathsf{CanYield}_i(\overline{C},\overline{C}_2) \end{aligned}$

But what is $\overline{C}_1 = \overline{C}_2$ supposed to mean here? It is short for:

 $\bigwedge_{q \in Q} Q_q^1 \leftrightarrow Q_q^2 \wedge \bigwedge_{0 \le i < p(n)} P_i^1 \leftrightarrow P_i^2 \wedge \bigwedge_{a \in \Gamma, 0 \le i < p(n)} S_{a,i}^1 \leftrightarrow S_{a,i}^2$

©⊕⊚ 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-12-01	#13	©⊕@ 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-12-01	#14
Polynomial Space	Polynomial Space			Polyr	nomial Space Polynomial Space		
Putting Everything Together				Did we do it?			

We define the formula $\varphi_{p,\mathcal{M},w}$ as follows:

 $\varphi_{p,\mathcal{M},w} := \exists \overline{C}_1. \exists \overline{C}_2. \mathsf{Start}_{\mathcal{M},w}(\overline{C}_1) \land \mathsf{Acc}\text{-}\mathsf{Conf}(\overline{C}_2) \land \mathsf{CanYield}_{dp(n)}(\overline{C}_1,\overline{C}_2)$

where we select *d* to be the least number such that \mathcal{M} has less than $2^{dp(n)}$ configurations in space p(n).

Lemma 11.7

 $\varphi_{p,\mathcal{M},w}$ is satisfiable if and only if \mathcal{M} accepts w in space p(|w|).

Note: we used only existential quantifiers when defining $\varphi_{p,\mathcal{M},w}$:

$$\begin{aligned} &\mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \lor \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ &\mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \exists \overline{C}.\mathsf{Conf}(\overline{C}) \land \mathsf{CanYield}_i(\overline{C}_1,\overline{C}) \land \mathsf{CanYield}_i(\overline{C},\overline{C}_2) \\ &\varphi_{p,\mathcal{M},w} := \exists \overline{C}_1. \exists \overline{C}_2.\mathsf{Start}_{\mathcal{M},w}(\overline{C}_1) \land \mathsf{Acc-Conf}(\overline{C}_2) \land \mathsf{CanYield}_{dp(n)}(\overline{C}_1,\overline{C}_2) \end{aligned}$$

Now that's quite interesting

- ▶ With only (non-negated) ∃ quantifiers, TRUE QBF coincides with SAT
- ► SAT is in NP
- \blacktriangleright So we showed that the word problem for PSPACE NTMs to be in NP

So we found that NP = PSPACE!

Strangely, most textbooks claim that this is not known to be true ... Are we up for the next Turing Award, or did we make a mistake?

Polynomial Space Polynomial Space	Polynomial Space Polynomial Space		
Size	Size		
How big is $\varphi_{p,\mathcal{M},w}$?	Let's analyse the size more carefully this time:		
$CanYield_{0}(\overline{C}_{1},\overline{C}_{2}) := (\overline{C}_{1} = \overline{C}_{2}) \lor Next(\overline{C}_{1},\overline{C}_{2})$ $CanYield_{i+1}(\overline{C}_{1},\overline{C}_{2}) := \exists \overline{C}.ConF(\overline{C}) \land CanYield_{i}(\overline{C}_{1},\overline{C}) \land CanYield_{i}(\overline{C},\overline{C}_{2})$ $\varphi_{p,\mathcal{M},w} := \exists \overline{C}_{1}.\exists \overline{C}_{2}.Start_{\mathcal{M},w}(\overline{C}_{1}) \land Acc-ConF(\overline{C}_{2}) \land CanYield_{dp(n)}(\overline{C}_{1},\overline{C}_{2})$ Size of CanYield_{i+1} is more than twice the size of CanYield_{i+1} $\land Size of \varphi_{p,\mathcal{M},w}$ is in $2^{O(p(n))}$. Oops. A correct reduction: We redefine CanYield by setting $CanYield_{i+1}(\overline{C}_{1},\overline{C}_{2}) :=$	$\begin{aligned} &CanYield_{i+1}(\overline{C}_1,\overline{C}_2) := \\ &\exists \overline{C}.CONF(\overline{C}) \land \\ &\forall \overline{Z}_1.\forall \overline{Z}_2. \big(((\overline{Z}_1 = \overline{C}_1 \land \overline{Z}_2 = \overline{C}) \lor (\overline{Z}_1 = \overline{C} \land \overline{Z}_2 = \overline{C}_2)) \to CanYield_i(\overline{Z}_1,\overline{Z}_2) \big) \end{aligned}$ $ & CanYield_{i+1}(\overline{C}_1,\overline{C}_2) \text{ extends } CanYield_i(\overline{C}_1,\overline{C}_2) \text{ by parts that are linear in the size of configurations } & growth in O(p(n)) \end{aligned}$ $ & Maximum index i \text{ used in } \varphi_{p,\mathcal{M},w} \text{ is } dp(n), \text{ that is in } O(p(n)) \end{aligned}$ $ & Therefore: \varphi_{p,\mathcal{M},w} \text{ has size } O(p^2(n)) - \text{ and thus can be computed in polynomial time} \end{aligned}$		
$\exists \overline{C}. CONF(\overline{C}) \land \\ \forall \overline{Z}_1. \forall \overline{Z}_2. (((\overline{Z}_1 = \overline{C}_1 \land \overline{Z}_2 = \overline{C}) \lor (\overline{Z}_1 = \overline{C} \land \overline{Z}_2 = \overline{C}_2)) \to CanYiELD_i(\overline{Z}_1, \overline{Z}_2))$ $\textcircled{@0@ 2015 Daniel Borchmann, Markus Krötzsch} \qquad \texttt{Complexity Theory} \qquad \texttt{2015-12-01 #17}$	Exercise: Why can we just use $dp(n)$ in the reduction? Don't we have to compute it somehow? Maybe even in polynomial time?		
Polynomial Space Polynomial Space	Polynomial Space Polynomial Space		
 Theorem 11.4 TRUE QBF <i>is</i> PSPACE-<i>complete</i>. Proof. TRUE QBF ∈ PSPACE: Give an algorithm that runs in polynomial space. TRUE QBF is PSPACE-hard: Proof by reduction from the word problem for polynomially space-bounded TMs. 	 Recall standard first-order logic: Instead of propositional variables, we have atoms (predicates with constants and variables) Instead of propositional evaluations we have first-order structures (or interpretations) First-order quantifiers can be used on variables Sentences are formulae where all variables are quantified A sentence can be satisfied or not by a given first-order structure 		

Polynomial Space Polynomial Space		Polynomial Space Polynomial Space
First-Order Logic is PSPACE-complete		Checking FOL Models in Polynomial Space (Sketch)
 Theorem 11.8 FOL MODEL CHECKING <i>is</i> PSPACE-<i>complete</i>. Proof. FOL MODEL CHECKING ∈ PSPACE: Give algorithm that runs in polynomial space. FOL MODEL CHECKING is PSPACE-hard: Proof by reduction TRUE QBF ≤_p FOL MODEL CHECKING. 		01 Eval(φ , I) { 02 switch (φ) : 03 case $p(c_1,, c_n)$: return $\langle c_1,, c_n \rangle \in p^I$ 04 case $\neg \psi$: return NOT Eval(ψ , I) 05 case $\psi_1 \land \psi_2$: return Eval(ψ_1, I) AND Eval(ψ_2, I) 06 case $\exists x.\psi$: 07 for $c \in \Delta^I$: 08 if Eval($\psi[x \mapsto c], I$) : return TRUE 09 // eventually, if no success: 10 return FALSE 11 } ► We can assume φ only uses \neg , \land and \exists (easy to get) ► We way $\land I$ to denote the (finite) domain of I
		 We use Δ² to denote the (finite!) domain of 1 We allow domain elements to be used like constants in the formula
Image: Second system Complexity Theory Polynomial Space Polynomial Space	2015-12-01 #21	Image: Complexity Theory 2015-12-01 #22 Polynomial Space Polynomial Space
Hardness of FOL Model Checking		First-Order Logic is PSPACE-complete

Given: a QBF $\varphi = Q_1 X_1 \cdots Q_\ell X_\ell \psi$

FOL Model Checking Problem:

- Interpretation domain $\Delta^I := \{0, 1\}$
- Single predicate symbol true with interpretation true $I = \{\langle 1 \rangle\}$
- FOL formula φ' is obtained by replacing variables in input QBF with corresponding first-order expressions:

$$Q_1 x_1 \cdots Q_\ell x_\ell \psi[X_1 \mapsto \operatorname{true}(x_1), \dots, X_\ell \mapsto \operatorname{true}(x_\ell)]$$

Lemma 11.9

 $\langle \mathcal{I}, \varphi' \rangle \in \mathsf{FOL}$ Model Checking if and only if $\varphi \in \mathsf{True}\ \mathsf{QBF}.$

Theorem 11.8

FOL MODEL CHECKING *is* PSPACE-*complete*.

Proof.

- ► FOL MODEL CHECKING ∈ PSPACE: Give algorithm that runs in polynomial space.
- ► FOL Model Checking is PSPACE-hard: Proof by reduction True QBF ≤_p FOL Model Checking.

Polynomial Space Polynomial Space	Polynomial Space Games			
FOL MODEL CHECKING: Practical Significance				
Why is FOL Model Checking a relevant problem?				
Correspondence with database query answering:	Games			
Finite first-order interpretation = database				
First-order logic formula = database query				
Satisfying assignments (for non-sentences) = query results				
Known correspondence: As a query language, FOL has the same expressive power as (basic) SQL (relational algebra).				
Corollary 11.10				
Answering SQL queries over a given database is $PSPACE$ -complete.				
© ① © 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #25 Polynomial Space Games	© ① ③ 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #26 Polynomial Space Games			
Games as Computational Problems	Coming Up Next			
Many single-player games relate to NP-complete problems: Sudoku Minesweeper Tetris 				
▶	How hard is it to determine if there is a winning strategy?			
Decision problem: Is there a solution? (For Tetris: is it possible to clear all blocks?)	 Which games should we study? 			

What about two-player games?

- Two players take moves in turns
- The players have different goals
- The game ends if a player wins

Decision problem: Does Player 1 have a winnings strategy?

In other words: can Player 1 enforce winning, whatever Player 2 does?

Complexity Theory

2015-12-01

#27 © 🛞 2015 Daniel Borchmann, Markus Krötzsch

To be continued ...