
Polynomial Space

Complexity Theory
Polynomial Space

Daniel Borchmann, Markus Krötzsch

Computational Logic

2015-12-01

cba

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #1

Polynomial Space Polynomial Space

Polynomial Space

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #2

Polynomial Space Polynomial Space

The Class PSpace

We defined PSpace as:

PSpace =
⋃

d≥1

DSpace(nd)

and we observed that

P ⊆ NP ⊆ PSpace = NPSpace ⊆ ExpTime.

We can also define a corresponding notion of PSpace-hardness:

Definition 11.1
A language H is PSpace-hard, if L ≤p H for every language
L ∈ PSpace.

A language C is PSpace-complete, if C is PSpace-hard and
C ∈ PSpace.

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #3

Polynomial Space Polynomial Space

Quantified Boolean Formulae (QBF)

A QBF is a formula of the following form:

Q1X1. Q2X2. · · · Q̀X`.ϕ[X1, . . . ,X`]

where Qi ∈ {∃,∀} are quantifiers, Xi are propositional logic variables, and ϕ
is a propositional logic formula with variables X1, . . . ,X` and constants >
(true) and ⊥ (false)

Semantics:
Propositional formulae without variables (only constants > and ⊥) are
evaluated as usual

∃X .ϕ[X] is true if either ϕ[X/>] or ϕ[X/⊥] are true

∀X .ϕ[X] is true if both ϕ[X/>] and ϕ[X/⊥] are true

(where ϕ[X/>] is “ϕ with X replaced by >, and similar for ⊥)

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #4

Polynomial Space Polynomial Space

Deciding QBF Validity

True QBF

Input: A quantified Boolean formula ϕ.

Problem: Is ϕ true (valid)?

Observation
We can assume that the quantified formula is in CNF or 3-CNF
(same transformations possible as for propositional logic formulae)

Consider a propositional logic formula ϕ with variables X1, . . . ,X`:

Example 11.2

The QBF ∃X1. · · · ∃X`.ϕ is true if and only if ϕ is satisfiable.

Example 11.3

The QBF ∀X1. · · · ∀X`.ϕ is true if and only if ϕ is a tautology.
cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #5

Polynomial Space Polynomial Space

The Power of QBF

Theorem 11.4
True QBF is PSpace-complete.

Proof.
True QBF ∈ PSpace:
Give an algorithm that runs in polynomial space.

True QBF is PSpace-hard:
Proof by reduction from the word problem for polynomially
space-bounded TMs.

�

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #6

Polynomial Space Polynomial Space

Solving True QBF in PSpace

01 TrueQBF(ϕ) {
02 if ϕ has no quantifiers :
03 return “evaluation of ϕ”
04 else if ϕ = ∃X .ψ :
05 return (TrueQBF(ψ[X/>]) OR TrueQBF(ψ[X/⊥]))
06 else if ϕ = ∀X .ψ :
07 return (TrueQBF(ψ[X/>]) AND TrueQBF(ψ[X/⊥]))
08 }

Evaluation in line 03 can be done in polynomial space
Recursions in lines 05 and 07 can be executed one after the other,
reusing space
Maximum depth of recursion = number of variables (linear)
Store one variable assignment per recursive call

{ polynomial space algorithm
cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #7

Polynomial Space Polynomial Space

PSpace-Hardness of True QBF

Express TM computation in logic, similar to Cook-Levin

Given:
a polynomial p

a p-space bounded 1-tape NTMM = (Q ,Σ, Γ, δ, q0, qaccept)

a word w

Intended reduction
Define a QBF ϕp,M,w such that
ϕp,M,w is true if and only ifM accepts w in space p(|w |).

Note
We show the reduction for NTMs, which is more than needed, but makes
little difference in logic and allows us to reuse our previous formulae from
Cook-Levin

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #8

Polynomial Space Polynomial Space

Review: Encoding Configurations

Use propositional variables for describing configurations:

Qq for each q ∈ Q means “M is in state q ∈ Q”

Pi for each 0 ≤ i < p(n) means “the head is at Position i”

Sa,i for each a ∈ Γ and 0 ≤ i < p(n) means “tape cell i contains Symbol a”

Represent configuration (q, p, a0 . . . ap(n))

by assigning truth values to variables from the set

C := {Qq, Pi , Sa,i | q ∈ Q , a ∈ Γ, 0 ≤ i < p(n)}

using the truth assignment β defined as

β(Qs) :=

1 s = q

0 s , q
β(Pi) :=

1 i = p

0 i , p
β(Sa,i) :=

1 a = ai

0 a , ai

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #9

Polynomial Space Polynomial Space

Review: Validating Configurations

We define a formula Conf(C) for a set of configuration variables

C = {Qq, Pi , Sa,i | q ∈ Q , a ∈ Γ, 0 ≤ i < p(n)}
as follows:

Conf(C) := “the assignment is a valid configuration”:

∨

q∈Q

(
Qq ∧

∧

q′,q

¬Qq′
)

“TM in exactly one state q ∈ Q”

∧
∨

p<p(n)

(
Pp ∧

∧

p′,p

¬Pp′
)

“head in exactly one position p < p(n)”

∧
∧

0≤i<p(n)

∨

a∈Γ

(
Sa,i ∧

∧

b,a∈Γ
¬Sb ,i

)
“exactly one a ∈ Γ in each cell”

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #10

Polynomial Space Polynomial Space

Review: Validating Configurations

For an assignment β defined on variables in C define

conf(C , β) :=

(q, p,w0 . . .wp(n)) |

β(Qq) = 1,
β(Pp) = 1,
β(Swi ,i) = 1 for all 0 ≤ i < p(n)

Note: β may be defined on other variables besides those in C.

Lemma 11.5

If β satisfies Conf(C) then |conf(C , β)| = 1.
We can therefore write conf(C , β) = (q, p,w) to simplify notation.

Observations:
conf(C , β) is a potential configuration ofM, but it may not be
reachable from the start configuration ofM on input w.
Conversely, every configuration (q, p,w1 . . .wp(n)) induces a
satisfying assignment β or which conf(C , β) = (q, p,w1 . . .wp(n)).

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #11

Polynomial Space Polynomial Space

Review: Transitions Between Configurations

Consider the following formula Next(C ,C
′
) defined as

Conf(C) ∧ Conf(C
′
) ∧ NoChange(C ,C

′
) ∧ Change(C ,C

′
).

NoChange :=
∨

0≤p<p(n)

(
Pp ∧

∧

i,p,a∈Γ

(
Sa,i → S′a,i

))

Change :=
∨

0≤p<p(n)

(
Pp ∧

∨

q∈Q
a∈Γ

(
Qq ∧ Sa,p ∧

∨

(q′,b ,D)∈δ(q,a)

(Q ′q′ ∧ S′b ,p ∧ P′D(p))
))

where D(p) is the position reached by moving in direction D from p.

Lemma 11.6

For any assignment β defined on C ∪ C
′
:

β satisfies Next(C ,C
′
) if and only if conf(C , β) `M conf(C

′
, β)

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #12

Polynomial Space Polynomial Space

Review: Start and End

Defined so far:

Conf(C): C describes a potential configuration

Next(C ,C
′
): conf(C , β) `M conf(C

′
, β)

Start configuration: Let w = w0 · · ·wn−1 ∈ Σ∗ be the input word

StartM,w(C) := Conf(C) ∧ Qq0 ∧ P0 ∧∧n−1
i=0 Swi ,i ∧

∧p(n)−1
i=n S�,i

Then an assignment β satisfies StartM,w(C) if and only if C represents the
start configuration ofM on input w.

Accepting stop configuration:

Acc-Conf(C) := Conf(C) ∧ Qqaccept

Then an assignment β satisfies Acc-Conf(C) if and only if C represents an
accepting configuration ofM.

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #13

Polynomial Space Polynomial Space

Simulating Polynomial Space Computations

For Cook-Levin, we used one set of configuration variables for every
computating step: polynomially time{ polynomially many variables

Problem: For polynomial space, we have 2O(p(n)) possible steps . . .

What would Savitch do?

Define a formula CanYieldi(C1,C2) to state that C2 is reachable from C1 in
at most 2i steps:

CanYield0(C1,C2) := (C1 = C2) ∨ Next(C1,C2)

CanYieldi+1(C1,C2) := ∃C .Conf(C) ∧ CanYieldi(C1,C) ∧ CanYieldi(C ,C2)

But what is C1 = C2 supposed to mean here? It is short for:
∧

q∈Q
Q1

q ↔ Q2
q ∧

∧

0≤i<p(n)

P1
i ↔ P2

i ∧
∧

a∈Γ,0≤i<p(n)

S1
a,i ↔ S2

a,i

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #14

Polynomial Space Polynomial Space

Putting Everything Together

We define the formula ϕp,M,w as follows:

ϕp,M,w := ∃C1.∃C2.StartM,w(C1) ∧ Acc-Conf(C2) ∧ CanYielddp(n)(C1,C2)

where we select d to be the least number such thatM has less than 2dp(n)

configurations in space p(n).

Lemma 11.7

ϕp,M,w is satisfiable if and only ifM accepts w in space p(|w |).

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #15

Polynomial Space Polynomial Space

Did we do it?

Note: we used only existential quantifiers when defining ϕp,M,w :

CanYield0(C1,C2) := (C1 = C2) ∨ Next(C1,C2)

CanYieldi+1(C1,C2) := ∃C .Conf(C) ∧ CanYieldi(C1,C) ∧ CanYieldi(C ,C2)

ϕp,M,w := ∃C1.∃C2.StartM,w(C1) ∧ Acc-Conf(C2) ∧ CanYielddp(n)(C1,C2)

Now that’s quite interesting . . .

With only (non-negated) ∃ quantifiers, True QBF coincides with Sat

Sat is in NP

So we showed that the word problem for PSpace NTMs to be in NP

So we found that NP = PSpace!
Strangely, most textbooks claim that this is not known to be true . . .
Are we up for the next Turing Award, or did we make a mistake?

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #16

Polynomial Space Polynomial Space

Size

How big is ϕp,M,w?

CanYield0(C1,C2) := (C1 = C2) ∨ Next(C1,C2)

CanYieldi+1(C1,C2) := ∃C .Conf(C) ∧ CanYieldi(C1,C) ∧ CanYieldi(C ,C2)

ϕp,M,w := ∃C1.∃C2.StartM,w(C1) ∧ Acc-Conf(C2) ∧ CanYielddp(n)(C1,C2)

Size of CanYieldi+1 is more than twice the size of CanYieldi
{ Size of ϕp,M,w is in 2O(p(n)). Oops.

A correct reduction: We redefine CanYield by setting

CanYieldi+1(C1,C2) :=

∃C .Conf(C) ∧
∀Z1.∀Z2.

(
((Z1 = C1 ∧ Z2 = C) ∨ (Z1 = C ∧ Z2 = C2))→ CanYieldi(Z1,Z2)

)

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #17

Polynomial Space Polynomial Space

Size

Let’s analyse the size more carefully this time:

CanYieldi+1(C1,C2) :=

∃C .Conf(C) ∧
∀Z1.∀Z2.

(
((Z1 = C1 ∧ Z2 = C) ∨ (Z1 = C ∧ Z2 = C2))→ CanYieldi(Z1,Z2)

)

CanYieldi+1(C1,C2) extends CanYieldi(C1,C2) by parts that are
linear in the size of configurations{ growth in O(p(n))

Maximum index i used in ϕp,M,w is dp(n), that is in O(p(n))

Therefore: ϕp,M,w has size O(p2(n)) – and thus can be computed in
polynomial time

Exercise:

Why can we just use dp(n) in the reduction? Don’t we have to compute it
somehow? Maybe even in polynomial time?

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #18

Polynomial Space Polynomial Space

The Power of QBF

Theorem 11.4
True QBF is PSpace-complete.

Proof.
True QBF ∈ PSpace:
Give an algorithm that runs in polynomial space.

True QBF is PSpace-hard:
Proof by reduction from the word problem for polynomially
space-bounded TMs.

�

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #19

Polynomial Space Polynomial Space

A More Common Logical Problem in PSpace

Recall standard first-order logic:
Instead of propositional variables, we have atoms (predicates with
constants and variables)
Instead of propositional evaluations we have first-order structures (or
interpretations)
First-order quantifiers can be used on variables
Sentences are formulae where all variables are quantified
A sentence can be satisfied or not by a given first-order structure

FOL Model Checking

Input: A first-orer sentence ϕ and a finite first-order
structure I.

Problem: Is ϕ satisfied by I?

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #20

Polynomial Space Polynomial Space

First-Order Logic is PSpace-complete

Theorem 11.8
FOL Model Checking is PSpace-complete.

Proof.
FOL Model Checking ∈ PSpace:
Give algorithm that runs in polynomial space.

FOL Model Checking is PSpace-hard:
Proof by reduction True QBF ≤p FOL Model Checking.

�

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #21

Polynomial Space Polynomial Space

Checking FOL Models in Polynomial Space (Sketch)
01 Eval(ϕ,I) {
02 switch (ϕ) :
03 case p(c1, . . . , cn) : return 〈c1, . . . , cn〉 ∈ pI

04 case ¬ψ : return NOT Eval(ψ,I)
05 case ψ1 ∧ ψ2 : return Eval(ψ1,I) AND Eval(ψ2,I)
06 case ∃x.ψ :
07 for c ∈ ∆I :
08 if Eval(ψ[x 7→ c],I) : return TRUE
09 // eventually, if no success:
10 return FALSE
11 }

We can assume ϕ only uses ¬, ∧ and ∃ (easy to get)

We use ∆I to denote the (finite!) domain of I
We allow domain elements to be used like constants in the formula

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #22

Polynomial Space Polynomial Space

Hardness of FOL Model Checking

Given: a QBF ϕ = Q1X1. · · · Q̀X`.ψ

FOL Model Checking Problem:

Interpretation domain ∆I := {0, 1}
Single predicate symbol true with interpretation trueI = {〈1〉}
FOL formula ϕ′ is obtained by replacing variables in input QBF with
corresponding first-order expressions:

Q1x1. · · · Q̀x`.ψ[X1 7→ true(x1), . . . ,X` 7→ true(x`)]

Lemma 11.9
〈I, ϕ′〉 ∈ FOL Model Checking if and only if ϕ ∈ True QBF.

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #23

Polynomial Space Polynomial Space

First-Order Logic is PSpace-complete

Theorem 11.8
FOL Model Checking is PSpace-complete.

Proof.
FOL Model Checking ∈ PSpace:
Give algorithm that runs in polynomial space.

FOL Model Checking is PSpace-hard:
Proof by reduction True QBF ≤p FOL Model Checking.

�

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #24

Polynomial Space Polynomial Space

FOL Model Checking: Practical Significance

Why is FOL Model Checking a relevant problem?

Correspondence with database query answering:

Finite first-order interpretation = database

First-order logic formula = database query

Satisfying assignments (for non-sentences) = query results

Known correspondence:
As a query language, FOL has the same expressive power as (basic) SQL
(relational algebra).

Corollary 11.10

Answering SQL queries over a given database is PSpace-complete.

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #25

Polynomial Space Games

Games

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #26

Polynomial Space Games

Games as Computational Problems

Many single-player games relate to NP-complete problems:

Sudoku

Minesweeper

Tetris

. . .

Decision problem: Is there a solution?
(For Tetris: is it possible to clear all blocks?)

What about two-player games?

Two players take moves in turns

The players have different goals

The game ends if a player wins

Decision problem: Does Player 1 have a winnings strategy?
In other words: can Player 1 enforce winning, whatever Player 2 does?

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #27

Polynomial Space Games

Coming Up Next

How hard is it to determine if there is a winning strategy?

Which games should we study?

To be continued . . .

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-01 #28

