Polynomial Space

Complexity Theory

Polynomial Space

Polynomial Space Polynomial Space

Daniel Borchnmann, Markus Krotzsch

Computational Logic

2015-12-01

©®O

©@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory

Polynomial Space

Polynomial Space

The Class PSPACE

We defined PSPACE as:

PSPACE = U DSpacg(n?)
d>1

and we observed that
P ¢ NP € PSPACE = NPSPACE C EXPTIME.

We can also define a corresponding notion of PSpPACE-hardness:

Definition 11.1

» Alanguage H is PSprace-hard, if £ <, H for every language
L € PSPACE.

» Alanguage C is PSprace-complete, if C is PSPACE-hard and
C € PSPACE.

@®® 2015 Daniel Borchmann, Markus Krétzsch

Complexity Theory 2015-12-01

2015-12-01

Polynomial Space

#1 ©@@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-12-01 #2

Polynomial Space

Polynomial Space

Quantified Boolean Formulae (QBF)

A QBF is a formula of the following form:

01 X1 .Ong. s O(Xg.QD[X1 ey X[]

where O; € {4, V} are quantifiers, X; are propositional logic variables, and ¢
is a propositional logic formula with variables X, ..., X, and constants T
(true) and L (false)

Semantics:

» Propositional formulae without variables (only constants T and L) are
evaluated as usual

» AX.¢[X] is true if either ¢[X/T] or ¢[X/L] are true
» VX.¢[X] is true if both ¢[X/T] and ¢[X/L] are true

(where ¢[X/T] is “p with X replaced by T, and similar for L)

#3 @@®® 2015 Daniel Borchmann, Markus Krotzsch

Complexity Theory 2015-12-01 #4

Polynomial Space Polynomial Space Polynomial Space Polynomial Space

Deciding QBF Validity The Power of QBF
True QBF
Input: A quantified Boolean formula ¢. Theorem 11.4
Problem: s ¢ true (valid)? True QBF is PSPACE-complete.
Observation Proof.

» True QBF € PSPACE:
Give an algorithm that runs in polynomial space.

» True QBF is PSPACE-hard:
Proof by reduction from the word problem for polynomially
Example 11.2 space-bounded TMs.

The QBF 3Xj.---AX,.¢ is true if and only if ¢ is satisfiable.

We can assume that the quantified formula is in CNF or 3-CNF
(same transformations possible as for propositional logic formulae)

Consider a propositional logic formula ¢ with variables X, ..., X;:

Example 11.3
The QBF VXj.---VX,.¢is true if and only if ¢ is a tautology.

@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-12-01 #5 ©@@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-12-01 #6
Polynomial Space Polynomial Space Polynomial Space Polynomial Space

Solving True QBF in PSPACE PSprAcEe-Hardness of True QBF
01 TrRUEQBF(¢) { Express TM computation in logic, similar to Cook-Levin
02 if ¢ has no quantifiers : .
03 return “evaluation of ¢” Given:
04 else if o =3AX.y : > a polynomial p
05 return (TRUEQBF(¥[X/T]) OR TrRUEQBF (¢[X/L])) > a p-space bounded 1-tape NTM M = (Q, %, T, 6, Qo, Qaccept)
06 else if o =VX.uy : » aword w
07 return (TrRUEQBF (¢/[X/T]) AND TrUEQBF (y¢/[X/L]))
08 } Intended reduction
Define a QBF ¢ 1w such that
» Evaluation in line 83 can be done in polynomial space ©p.Mw is true if and only if M accepts w in space p(|w]).
» Recursions in lines 05 and 07 can be executed one after the other,
reusing space Note
» Maximum depth of recursion = number of variables (linear) We show the reduction for NTMs, which is more than needed, but makes
» Store one variable assignment per recursive call little difference in logic and allows us to reuse our previous formulae from
Cook-Levin

~» polynomial space algorithm

@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-12-01 #7 @@®® 2015 Daniel Borchmann, Markus Krétzsch

Complexity Theory 2015-12-01 #8

Review: Encoding Configurations

Use propositional variables for describing configurations:
Qg foreach g € Q means “Misin state g € Q”

P; for each 0 < i < p(n) means “the head is at Position i’

S, foreach a e 'and 0 < i < p(n) means “tape cell i contains Symbol a”

Represent configuration (g, p, ao . . . ap(n))

by assigning truth values to variables from the set

C:=1{Qq P, SailqeQ, acl, 0<i<p(n)
using the truth assignment S defined as
i=p 1 a=a
Sai) =
i#p A(Sai) {0 a+a;
©@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory

Polynomial Space

Polynomial Space

Review: Validating Configurations

For an assignment 3 defined on variables in C define

B B(Qq) =1,
conf(C.B) :=(q. p.Wo ... Wp(m)) | B(Pp) =1,
B(Sy,i) =1forall 0 <i<p(n)

Note: 8 may be defined on other variables besides those in C.
Lemma 11.5

If B satisfies Conr(C) then |conf(C.,)| =
) =

We can therefore write conf(C, 3 (q P,) to simplify notation.

Observations:
> conf(C,) is a potential configuration of M, but it may not be
reachable from the start configuration of M on input w.
> Conversely, every configuration (g, p, wi ... W)) induces a

satisfying assignment 8 or which conf(C,8) = (g, p, w1 ... Wy(p))-

2015-12-01 #9 ©@@®® 2015 Daniel Borchmann, Markus Krétzsch i
Polynomial Space Polynomial Space

#11 @@®® 2015 Daniel Borchmann, Markus Krotzsch

Review: Validating Configurations

We define a formula Conr(C) for a set of configuration variables

Ez{Qq,P,-,Sa,,'lqu, ael, 0<i<p(n)
as follows:
Conr(C) := “the assignment is a valid configuration”:
(Qq A ﬁQq/) “TM in exactly one state g € Q”
geQ q'#q

~Py

v((Pp/\p/ip
AN V(Sain A\ -Sel)

O<i<p(n) acl b+ael

S——

“head in exactly one position p < p(n)”

“exactly one a € I in each cell”

Complexity Theory 2015-12-01 #10

Review: Transitions Between Configurations
Consider the following formula Next(C, 5/) defined as

Conr(C) A CONF(E,) A NoCHanGe(C, E/) A Change(C, 5’).

NoCHANGE := \/ (Pp A /\ Sai — S’)
0<p<p(n) i#p,aelr
0<p<p(n) geQ (q".b.D)es(q.a)

ael

where D(p) is the position reached by moving in direction D from p.

Lemma 11.6
For any assignment 3 defined on C U C
B satisfies Next(C, C)

ifand only if conf(C.) r(conf(C . B)

Complexity Theory 2015-12-01 #12

Review: Start and End

Defined so far:
» Conr(C): C describes a potential configuration
» Next(C, C'): conf(C,) p conf(C’,8)

Start configuration: Let w = wp - - - wj,_1 € X" be the input word

STAT(C) := Cone(C) A Qgy A Po A AT S A AP 55
Then an assignment 3 satisfies STarty,,,(C) if and only if C represents the

start configuration of M on input w.

Accepting stop configuration:
Acc-Conr(C) := CoNF(C) A Qgueeen

Then an assignment 3 satisfies Acc-Conr(C) if and only if C represents an
accepting configuration of M.

©@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory

Polynomial Space

Polynomial Space

Putting Everything Together

We define the formula ¢, A1 as follows:
@p Mmw = 1C1.9C2.STRT (1 (C1) A Acc-Conr(C2) A CANYlELde(n)(51,52)

where we select d to be the least number such that M has less than 29°(n)
configurations in space p(n).

Lemma 11.7
©p.Mw Is satisfiable if and only if M accepts w in space p(|wl).

@®® 2015 Daniel Borchmann, Markus Krétzsch

Complexity Theory 2015-12-01

2015-12-01 #13

#15 @@®® 2015 Daniel Borchmann, Markus Krdtzsch

Simulating Polynomial Space Computations

For Cook-Levin, we used one set of configuration variables for every
computating step: polynomially time ~» polynomially many variables

Problem: For polynomial space, we have 2°(P(") possible steps ...

What would Savitch do?

Define a formula CanYieLp;(C1, C») to state that Cs is reachable from Cy in
at most 2’ steps:

CaNYiELDy(C1, C2) = (Cy =
CANYELD; 1 (51 , Eg) =3C.C

C2) vV Next(Cy, C»)
NF(C) A CANYIELD; (C1 , C) A CANYIELD,‘(E, Eg)

But what is C1 = C» supposed to mean here? It is short for:

1 2 1 2 1 2
ANQo@in N\ PlopPin N slies?
geQ 0<i<p(n) ael,0<i<p(n)

©@@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-12-01 #14

Polynomial Space

Polynomial Space

Did we do it?

Note: we used only existential quantifiers when defining ¢p qw:

CanYiELDg(C1, C2) := (Cy = C2) V Next(C1, C2)
CaNYiELD; 4 1(C1, C2) := C.Conr(C) A CanYiewp;(C1, C) A CanYiewn;(C, C»)

CoMw = 3C¢.3Co. STARTMW(C1) A Acc- CONF(Cg) A CANYIELde(n)(C1, Cg)

Now that’s quite interesting ...
» With only (non-negated) 3 quantifiers, True QBF coincides with Sar
» Sarisin NP
» So we showed that the word problem for PSPACE NTMs to be in NP

So we found that NP = PSpAcCE!
Strangely, most textbooks claim that this is not known to be true ...
Are we up for the next Turing Award, or did we make a mistake?

Complexity Theory 2015-12-01 #16

Polynomial Space Polynomial Space Polynomial Space Polynomial Space

Size Size
How big is ¢p pw? Let’s analyse the size more carefully this time:
CANY|ELDO(E1,52) = (51 = 52) v NEXT(E1,EZ) CaNYiELD;41(C1, Cz) 1=

CANYELD 1(C1, C2) := AC.ConrF(C) A CanYieL;(C1, C) A CanYiewi(C, Cz) HE'CO_NF(C)_A S o
CoMw ‘= aC; .HEQ.STARTM’W(Eﬂ A Acc-ConF(C3) A CANYIELD g () (C1,C2) VZ4 'VZ2'<((Z1 =C1AZ2=C)V(Z1=CAZ2=C2)) = CANY'E"D"(Z“ZZ))

Size of CanYIELDj; 1 is more than twice the size of CANYIELD; > CanYiELD;1(C1, Cz) extends CanYieL;(C1, Cz) by parts that are
~> Size of pp pw is in 20(P(M). Oops. linear in the size of configurations ~» growth in O(p(n))
» Maximum index i used in ¢, A is dp(n), that is in O(p(n))
A correct reduction: We redefine CanYieLp by setting > Therefore: ¢p (. has size O(p?(n)) - and thus can be computed in

CanYiEwDy1(Cy, C2) == polynomial time

3C.Conr(C) A Exercise:

T o : . o s .
VZ; -sz-(((Z1 =C1ANZ2=C)V(Z1=CAZ2=0C3)) = CANYIELD,’(Z1,22)) \S/\Cl)tze%i)r\]/vv’\?lel\ljll;)s/t)zseevgﬁ(i’r:)r;gl)t/zir;eigrt(i:::qoen’?. Don’t we have to compute it

©@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-12-01 #17 ©@@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-12-01 #18
Polynomial Space Polynomial Space Polynomial Space Polynomial Space

The Power of QBF A More Common Logical Problem in PSPACE

Recall standard first-order logic:

» Instead of propositional variables, we have atoms (predicates with
Theorem 11.4 constants and variables)

True QBF is PSpPACE-complete. Instead of propositional evaluations we have first-order structures (or
interpretations)

First-order quantifiers can be used on variables
Sentences are formulae where all variables are quantified
A sentence can be satisfied or not by a given first-order structure

v

Proof.
» True QBF € PSPACE:
Give an algorithm that runs in polynomial space.

» True QBF is PSpPACE-hard:

v

v

v

Proof by reduction from the word problem for polynomially FOL MobEL CHECKING
space-bounded TMs.

Input: A first-orer sentence ¢ and a finite first-order
. structure 7.

Problem: s ¢ satisfied by 77?

@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-12-01 #19 @@®® 2015 Daniel Borchmann, Markus Krétzsch

Complexity Theory 2015-12-01 #20

First-Order Logic is PSpPACE-complete Checking FOL Models in Polynomial Space (Sketch)

01 EvarL(p, 1) {
02 switch (¢) :

03 case p(cy,...,¢p) : return (cy,...,Cp) € p’
Theorem 11.8 04 case - : return NOT EvaL(y,])
FOL MobeL CHecking is PSPACE-complete. 05 case Y1 Ay : return EvaL(yq,7) AND EvaL(yo, 1)
06 case dx.y :
Proof. 07 for ce A :
» FOL MopEL CHeckiNG € PSPACE: 08 if EvaL(y[x > ¢|,7) : return TRUE
Give algorithm that runs in polynomial space. 09 // eventually, if no success:
» FOL MobeL CHeckiNG is PSPACE-hard: 10 return FALSE
Proof by reduction True QBF <, FOL MopeL CHECKING. 11}

» We can assume ¢ only uses —, A and 1 (easy to get)
» We use A’ to denote the (finite!) domain of 7
» We allow domain elements to be used like constants in the formula

@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-12-01 #21 ©@@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-12-01 #22
Polynomial Space Polynomial Space Polynomial Space Polynomial Space

Hardness of FOL MobeL CHECKING First-Order Logic is PSPACE-complete

Given: aQBF ¢ = O1Xy.--- O Xe

Theorem 11.8

FOL Model Checking Problem:
FOL MobeL CHeckiNGg is PSPACE-complete.

» Interpretation domain A := {0, 1}

» Single predicate symbol true with interpretation true? = {(1)} Proof.
» FOL formula ¢’ is obtained by replacing variables in input QBF with » FOL MobeL CHECKING € PSPACE:
corresponding first-order expressions: Give algorithm that runs in polynomial space.
O1x1. - Oexe[Xy > true(xt), ..., X > true(x;)] » FOL MobEeL CHeckiNG is PSPACE-hard:

Proof by reduction True QBF <, FOL MopeL CHECKING.

Lemma 11.9 o
(Z,¢"y € FOL MobeL CHeckina if and only if ¢ € True QBF.

@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-12-01 #23 @@®® 2015 Daniel Borchmann, Markus Krétzsch

Complexity Theory 2015-12-01 #24

Polynomial Space Polynomial Space Polynomial Space Games

FOL MopeL CHecking: Practical Significance

Why is FOL MobeL CHecking a relevant problem?

Correspondence with database query answering:
» Finite first-order interpretation = database
» First-order logic formula = database query

Games
» Satisfying assignments (for non-sentences) = query results

Known correspondence:
As a query language, FOL has the same expressive power as (basic) SQL
(relational algebra).

Corollary 11.10
Answering SQL queries over a given database is PSPACE-complete.

©@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-12-01 #25 ©@@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-12-01 #26
Polynomial Space Games Polynomial Space Games

Games as Computational Problems Coming Up Next

Many single-player games relate to NP-complete problems:
» Sudoku
» Minesweeper

> Tetris
> ... » How hard is it to determine if there is a winning strategy?
Decision problem: Is there a solution? » Which games should we study?

(For Tetris: is it possible to clear all blocks?)

To be continued . ..
What about two-player games?

» Two players take moves in turns
» The players have different goals
» The game ends if a player wins

Decision problem: Does Player 1 have a winnings strategy?
In other words: can Player 1 enforce winning, whatever Player 2 does?

@®® 2015 Daniel Borchmann, Markus Krétzsch Complexity Theory 2015-12-01 #27 @@®® 2015 Daniel Borchmann, Markus Krétzsch

Complexity Theory 2015-12-01 #28

