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Abstract. Methods for computing the least common subsumer (lcs)
are usually restricted to rather inexpressive Description Logics (DLs)
whereas existing knowledge bases are written in very expressive DLs. In
order to allow the user to re-use concepts defined in such terminologies
and still support the definition of new concepts by computing the lcs,
we extend the notion of the lcs of concept descriptions to the notion of
the lcs w.r.t. a background terminology. We will both show a theoretical
result on the existence of the least common subsumer in this setting, and
describe a practical approach (based on a method from formal concept
analysis) for computing good common subsumers, which may, however,
not be the least ones.

1 Introduction

Description Logics (DLs) [3] are a class of knowledge representation formalisms
in the tradition of semantic networks and frames, which can be used to rep-
resent the terminological knowledge of an application domain in a structured
and formally well-understood way. DL systems provide their users with stan-
dard inference services (like subsumption and instance checking) that deduce
implicit knowledge from the explicitly represented knowledge. More recently,
non-standard inferences [21] were introduced to support building and maintain-
ing large DL knowledge bases. For example, such non-standard inferences can
be used to support the bottom-up construction of DL knowledge bases, as in-
troduced in [4, 5]: instead of directly defining a new concept, the knowledge
engineer introduces several typical examples as objects, which are then auto-
matically generalized into a concept description by the system. This description
is offered to the knowledge engineer as a possible candidate for a definition of
the concept. The task of computing such a concept description can be split into
two subtasks: computing the most specific concepts of the given objects, and
then computing the least common subsumer of these concepts. The most spe-
cific concept (msc) of an object o (the least common subsumer (lcs) of concept
descriptions C1, . . . , Cn) is the most specific concept description C expressible
in the given DL language that has o as an instance (that subsumes C1, . . . , Cn).
The problem of computing the lcs and (to a more limited extent) the msc has
already been investigated in the literature [12, 13, 4, 5, 24, 23, 22, 2, 11].
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The methods for computing the least common subsumer are restricted to
rather inexpressive descriptions logics not allowing for disjunction (and thus not
allowing for full negation). In fact, for languages with disjunction, the lcs of a
collection of concepts is just their disjunction, and nothing new can be learned
from building it. In contrast, for languages without disjunction, the lcs extracts
the “commonalities” of the given collection of concepts. Modern DL systems like
FaCT [20] and Racer [19] are based on very expressive DLs, and there exist
large knowledge bases that use this expressive power and can be processed by
these systems [25, 26, 18]. In order to allow the user to re-use concepts defined
in such existing knowledge bases and still support the user during the definition
of new concepts with the bottom-up approach sketched above, we propose the
following extended bottom-up approach.

Consider a background terminology T defined in an expressive DL L2. When
defining new concepts, the user employs only a sublanguage L1 of L2, for which
computing the lcs makes sense. However, in addition to primitive concepts and
roles, the concept descriptions written in the DL L1 may also contain names
of concepts defined in T . Let us call such concept descriptions L1(T )-concept
descriptions. Given L1(T )-concept descriptions C1, . . . , Cn, we are now looking
for their lcs in L1(T ), i.e., the least L1(T )-concept description that subsumes
C1, . . . , Cn w.r.t. T .

In this paper, we consider the case where L1 is the DL ALE and L2 is the DL
ALC. We first show the following result: If T is an acyclic ALC-TBox, then the
lcs w.r.t. T of ALE(T )-concept descriptions always exists. This result (which
will be shown in Section 3) is theoretical in the sense that it does not yield a
practical algorithm.

In Section 4 we follow a more practical approach. Assume that L1 is a DL for
which least common subsumers (without background TBox) always exist. Given
L1(T )-concept descriptions C1, . . . , Cn, one can compute a common subsumer
w.r.t. T by just ignoring T , i.e., by treating the defined names in C1, . . . , Cn
as primitive and computing the lcs of C1, . . . , Cn in L1. However, the common
subsumer obtained this way will usually be too general. In Section 4 we sketch
a practical method for computing “good” common subsumers w.r.t. background
TBoxes, which may not be the least common subsumers, but which are better
than the common subsumers computed by ignoring the TBox. As a tool, this
method uses attribute exploration with background knowledge [15, 16], an algo-
rithm developed in formal concept analysis [17] for computing concept lattices.

2 Basic definitions

In order to define concepts in a DL knowledge base, one starts with a set NC of
concept names (unary predicates) and a setNR of role names (binary predicates),
and defines more complex concept descriptions using the constructors provided
by the concept description language of the particular system. In this paper,
we consider the DL ALC and its sublanguages ALE and EL, which allow for
concept descriptions built from the indicated subsets of the constructors shown



Table 1. Syntax and semantics of concept descriptions and definitions.

Name of constructor Syntax Semantics ALC ALE EL
top-concept > ∆I x x x

bottom-concept ⊥ ∅ x x

negation ¬C ∆I \ CI x

atomic negation ¬A ∆I \AI x x

conjunction C uD CI ∩DI x x x

disjunction C tD CI ∪DI x

value restriction ∀r.C {x ∈ ∆I | ∀y : (x, y) ∈ rI → y ∈ CI} x x

existential restriction ∃r.C {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI} x x x

concept definition A ≡ C AI = CI x x x

in Table 1. In this table, r stands for a role name, A for a concept name, and
C,D for arbitrary concept descriptions. A concept definition (as shown in the
last row of Table 1) assigns a concept name A to a complex description C. A
finite set of such definitions is called a TBox iff it is acyclic (i.e., no definition
refers, directly or indirectly, to the name it defines) and unambiguous (i.e., each
name has at most one definition). The concept names occurring on the left-hand
side of a concept definition are called defined concepts, and the others primitive.

The semantics of concept descriptions is defined in terms of an interpretation
I = (∆I , ·I). The domain ∆I of I is a non-empty set and the interpretation
function ·I maps each concept name A ∈ NC to a set AI ⊆ ∆I and each role
name r ∈ NR to a binary relation rI ⊆ ∆I×∆I . The extension of ·I to arbitrary
concept descriptions is inductively defined, as shown in the third column of
Table 1. The interpretation I is a model of the TBox T iff it satisfies all its
concept definitions, i.e., AI = CI holds for all A ≡ C in T .

One of the most important traditional inference services provided by DL sys-
tems is computing subconcept/superconcept relationships (so-called subsump-
tion relationships). The concept description C2 subsumes the concept descrip-
tion C1 w.r.t. the TBox T (C1 vT C2) iff CI1 ⊆ CI2 for all models I of T . Two
concept descriptions C1, C2 are called equivalent iff they subsume each other
w.r.t. the empty TBox.

We are now ready to define the new non-standard inference introduced in
this paper. Let L1,L2 be DLs such that L1 is a sub-DL of L2, i.e., L1 allows for
less constructors. For a given L2-TBox T , we call L1(T )-concept descriptions
those L1-concept descriptions that may contain concepts defined in T .

Definition 1. Given an L2-TBox T and a collection C1, . . . , Cn of L1(T )-
concept descriptions, the least common subsumer (lcs) of C1, . . . , Cn w.r.t. T is
the most specific L1(T )-concept description C that subsumes C1, . . . , Cn w.r.t.
T , i.e., it is an L1(T )-concept description D such that

1. Ci vT D for i = 1, . . . , n; D is a common subsumer.
2. if E is an L1(T )-concept description satisfying

Ci vT E for i = 1, . . . , n, then D vT E. D is least.



Depending on the DLs L1 and L2, least common subsumers of L1(T )-concept
descriptions w.r.t. an L2-TBox T may exist or not. Note that the lcs only uses
concept constructors from L1, but may also contain concept names defined in
the L2-TBox. This is the main distinguishing feature of this new notion of a
least common subsumer w.r.t. a background terminology. Let us illustrate this
by a trivial example.

Example 1. Assume that L1 is the DL ALE and L2 is ALC. Consider the ALC-
TBox T := {A ≡ P t Q}, and assume that we want to compute the lcs of the
ALE(T )-concept descriptions P and Q. Obviously, A is the lcs of P and Q w.r.t.
T . If we were not allowed to use the name A defined in T , then the only common
subsumer of P and Q in ALE would be the top-concept >.

3 An exact theoretical result

In this section, we assume that L1 is ALE and L2 is ALC. In addition, we
assume that the sets of concept and role names available for building concept
descriptions are finite.

Theorem 1. Let T be an ALC-TBox. The lcs of ALE(T )-concept descriptions
w.r.t. T always exists and can effectively be computed.

At first sight, one might think that this result can be shown using results
on the approximation of ALC by ALE [10]. In fact, given an ALC-TBox T
and ALE(T )-concept descriptions C1, . . . , Cn, one can first unfold C1, . . . , Cn
into concept descriptions C ′1, . . . , C

′
n by iteratively replacing defined concepts by

their definitions until they contain no defined concepts. These descriptions are
ALC-concept descriptions since they may contain constructors of ALC that are
not allowed in ALE . One can then build the ALC-concept description C := C ′1t
. . .tC ′n, and finally approximate C from above by an ALE-concept description
E. By construction, E is a common subsumer of C1, . . . , Cn. However, E does
not contain concept names defined in T , and thus it is not necessarily the least
ALE(T )-concept descriptions subsuming C1, . . . , Cn w.r.t. T (see Example 1
above). One might now assume that this can be overcome by applying known
results on rewriting concept descriptions w.r.t. a terminology [6]. However, in
Example 1, the concept description E obtained using the approach based on
approximation sketched above is >, and this concept cannot be rewritten using
the TBox T := {A ≡ P tQ}.

To show the theorem, we first need to show two lemmas. Given an ALC- or
ALE(T )-concept description C, its role depth is the maximal nesting of value
restrictions and existential restrictions. For example, the role depth of ∃r.∀r.A
is 2, and the role depth of ∃r.∀r.A t ∃r.∃r.∃r.B is 3.

Lemma 1. For a given bound k on the role depth, there is only a finite number
of inequivalent ALE-concept descriptions of role depth at most k.



This is a consequence of the fact that we have assumed that the sets of concept
and role names are finite, and can be shown by induction on k.1

Given this lemma, a first attempt to show Theorem 1 could be the follow-
ing. Let C1, . . . , Cn be ALE(T )-concept descriptions, and assume that the role
depths of the ALC-concept description C ′1, . . . , C

′
n obtained by unfolding the Ci

w.r.t. T are bounded by k. If we could show that this implies that the role depth
of any common subsumer of C1, . . . , Cn w.r.t. T is also bounded by k, then we
could obtain the least common subsumer by simply building the (up to equiv-
alence) finite conjunction of all common subsumers of C1, . . . , Cn in ALE(T ).
However, due to the fact that ALC and ALE can express inconsistency, this
simple approach does not work. In fact, ⊥ has role depth 0, but is subsumed by
any concept description. Given this counterexample, the next conjecture could
be that it is enough to prevent this pathological case, i.e., assume that at least
one of the concept descriptions C1, . . . , Cn is consistent, i.e., not subsumed by
⊥ w.r.t. T . For the DL EL in place of ALE , this modification of the simple
approach sketched above really works (see [9] for details). However, due to the
presence of value restrictions it does not work for ALE . For example, ∀r.⊥ is
subsumed by ∀r.F for arbitrary ALE(T )-concept descriptions F , and thus the
role depth of common subsumers cannot be bounded. However, we can show
that common subsumers having a large role depth are too general anyway.

Lemma 2. Let C1, . . . , Cn be ALE(T )-concept descriptions, and assume that
the role depths of the ALC-concept description C ′1, . . . , C

′
n obtained by unfolding

the Ci w.r.t. T are bounded by k. If the ALE(T )-concept description D is a
common subsumer of C1, . . . , Cn w.r.t. T , then there is an ALE(T )-concept
description D′ vT D of role depth at most k+1 that is also a common subsumer
of C1, . . . , Cn w.r.t. T .

Theorem 1 is now an immediate consequence of Lemma 1 and 2. In fact,
to compute the lcs of C1, . . . , Cn w.r.t. T , it is enough to compute the (up to
equivalence) finite set of all ALE(T )-concept descriptions of role depth k + 1,
check which of them are common subsumers of C1, . . . , Cn w.r.t. T , and then
build the conjunction E of these common subsumers. Lemma 1 ensures that the
conjunction is finite. By definition, E is a common subsumer of C1, . . . , Cn w.r.t.
T , and Lemma 2 ensures that for any common subsumer D of C1, . . . , Cn w.r.t.
T , there is a conjunct D′ in E such that D′ vT D, and thus E vT D.

Due to the space constraints, we can only sketch the proof of Lemma 2.
Assume that D is an ALE(T )-concept description of role depth > k+1 that is a
common subsumer of C1, . . . , Cn w.r.t. T . Then there are quantifiers Q1, . . . , Qk,
Q ∈ {∀,∃}, roles r1, . . . , rk, r, and an ALE(T )-concept description F containing
a value or existential restriction such that D vT Q1r1. · · ·Qkrk.Qr.F .

Case 1: Ci vT Q1r1. · · ·Qkrk.⊥ for all i, 1 ≤ i ≤ n. ThenDuQ1r1. · · ·Qkrk.⊥
is a common subsumer of C1, . . . , Cn w.r.t. T that is subsumed by D, and can

1 This is a well-known result, which holds even for full first-order predicate logic for-
mulae of bounded quantifier depth over a finite vocabulary.



be normalized into an equivalent concept description that is smaller than D (ba-
sically, Qr.F can be replaced by ⊥). Thus, we can apply induction to obtain the
result of the lemma.

Case 2: There is an m, 1 ≤ m ≤ n such that Cm 6vT Q1r1. · · ·Qkrk.⊥.
Using the fact that C ′m has role depth at most k, we can show2 that this implies
Cm 6vT Q1r1. · · ·Qkrk.∃r.>. Thus, Cm vT D vT Q1r1. · · ·Qkrk.Qr.F shows
that Q = ∀.

If F subsumes > w.r.t. T , then we can replace ∀r.F in D by >, and thus ob-
tain an equivalent smaller description. Otherwise, we can use the fact that Ci vT
Q1r1. · · ·Qkrk.∀r.F and that the role depth of C ′i is at most k to show that Ci vT
Q1r1. · · ·Qkrk.∀r.⊥ holds for all i, 1 ≤ i ≤ n. But then D uQ1r1. · · ·Qkrk.∀r.⊥
is a common subsumer of C1, . . . , Cn w.r.t. T that is subsumed by D, and can be
normalized into an equivalent concept description that is smaller than D. Again,
we can apply induction to obtain the result of the lemma.

4 A practical approximative approach

The brute-force algorithm for computing the lcs in ALE(T ) w.r.t. a background
ALC-TBox described in the previous section is not useful in practice since the
number of concept descriptions that must be considered is very large (super-
exponential in the role depth). In the bottom-up construction of DL knowledge
bases, it is not really necessary to take the least common subsumer,3 a common
subsumer that is not too general can also be used. In this section, we introduce
an approach for computing such “good” common subsumers w.r.t. a background
TBox. In order to explain this approach, we must first recall how the lcs of ALE-
concept descriptions (without background terminology) can be computed.

The lcs of ALE-concept descriptions Since the lcs of n concept descriptions
can be obtained by iterating the application of the binary lcs, we describe how
to compute the lcs lcsALE(C,D) of two ALE-concept descriptions C,D (see [5]
for more details).

First, the input descriptions C,D are normalized by applying the following
rules modulo associativity and commutativity of conjunction:

∀r.E u ∀r.F −→ ∀r.(E u F ), ∀r.E u ∃r.F −→ ∀r.E u ∃r.(E u F ),
∀r.> −→ >, E u > −→ E,

A u ¬A −→ ⊥ for each A ∈ NC ,
∃r.⊥ −→ ⊥, E u ⊥ −→ ⊥.

Due to the second rule, this normalization may lead to an exponential blow-up of
the concept descriptions. In the following, we assume that the input descriptions
C,D are normalized.

2 By looking a the behavior of a tableau-based subsumption algorithm for ALC.
3 Using it may even result in over-fitting.



In order to describe the lcs algorithm, we need to introduce some notation.
Let C be a normalized ALE-concept description. Then names(C) (names(C))
denotes the set of (negated) concept names occurring in the top-level conjunction
of C, roles∃(C) (roles∀(C)) the set of role names occurring in an existential (value)
restriction on the top-level of C, and restrict∃r (C) (restrict∀r (C)) denotes the set
of all concept descriptions occurring in an existential (value) restriction on the
role r in the top-level conjunction of C.

Now, let C,D be normalizedALE-concept descriptions. If C (D) is equivalent
to ⊥, then lcsALE(C,D) = D (lcsALE(C,D) = C). Otherwise, we have

lcsALE(C,D) = u
A∈names(C)∩names(D)

A u u
¬B∈names(C)∩names(D)

¬B u

u
r∈roles∃(C)∩roles∃(D)

u
E∈restrict∃r (C),F∈restrict∃r (D)

∃r.lcsALE(E,F ) u

u
r∈roles∀(C)∩roles∀(D)

u
E∈restrict∀r (C),F∈restrict∀r (D)

∀r.lcsALE(E,F ).

Here, the empty conjunction stands for the top-concept >. The recursive calls
of lcsALE are well-founded since the role depth decreases with each call.

A good common subsumer in ALE w.r.t. a background TBox Let T
be a background TBox in some DL L2 extending ALE such that subsumption
in L2 w.r.t. TBoxes is decidable.4 Let C,D be normalized ALE(T )-concept de-
scriptions. If we ignore the TBox, then we can simply apply the above algorithm
for ALE-concept descriptions without background terminology to compute a
common subsumer. However, in this context, taking

u
A∈names(C)∩names(D)

A u u
¬B∈names(C)∩names(D)

¬B

is not the best we can do. In fact, some of these concept names may be con-
strained by the TBox, and thus there may be relationships between them that we
ignore by simply using the intersection. Instead, we propose to take the smallest
(w.r.t. subsumption w.r.t. T ) conjunction of concept names and negated concept
names that subsumes (w.r.t. T ) both

u
A∈names(C)

A u u
¬B∈names(C)

¬B and u
A′∈names(D)

A′ u u
¬B′∈names(D)

¬B′.

We modify the above lcs algorithm in this way, not only on the top-level of
the input concepts, but also in the recursive steps. It is easy to show that the
ALE(T )-concept description computed by this modified algorithm still is a com-
mon subsumer of A,B w.r.t. T . In general, this common subsumer will be more

4 Note that the restriction to TBoxes consisting of acyclic and unambiguous concept
definitions is not really necessary here. We can also treat sets of general concept
inclusions (GCIs) in this way.



specific than the one obtained by ignoring T , though it need not be the least
common subsumer. As a simple example, consider the ALC-TBox T :

NoSon ≡ ∀has-child.Female, NoDaughter ≡ ∀has-child.¬Female,

SonRichDoctor ≡ ∀has-child.(Female t (Doctor u Rich)),
DaughterHappyDoctor ≡ ∀has-child.(¬Female t (Doctor u Happy)),

ChildrenDoctor ≡ ∀has-child.Doctor,

and the ALE-concept descriptions

C := ∃has-child.(NoSon u DaughterHappyDoctor),
D := ∃has-child.(NoDaughter u SonRichDoctor).

By ignoring the TBox, we obtain the ALE(T )-concept description ∃has-child.>
as common subsumer of C,D. However, if we take into account that both NoSonu
DaughterHappyDoctor and NoDaughter u SonRichDoctor are subsumed by the
concept ChildrenDoctor, then we obtain the more specific common subsumer

∃has-child.ChildrenDoctor.

Computing the subsumption lattice of conjunctions of (negated) con-
cept names w.r.t. a TBox In order to obtain a practical lcs algorithm realizing
the approach described above, we must be able to compute in an efficient way the
smallest conjunction of (negated) concept names that subsumes two such con-
junctions w.r.t. T . Since in our application scenario (bottom-up construction
of DL knowledge bases w.r.t. a given background terminology), the TBox T is
assumed to be fixed, it makes sense to precompute this information. Obviously,
a naive approach that calls the subsumption algorithm for each pair of conjunc-
tions of (negated) concept names is too expensive for TBoxes of a realistic size.
Instead, we propose to use methods from formal concept analysis (FCA) [17] for
this purpose. In FCA, the knowledge about an application domain is given by
means of a formal context.

Definition 2. A formal context is a triple K = (O,P,S), where O is a set of
objects, P is a set of attributes (or properties), and S ⊆ O×P is a relation that
connects each object o with the attributes satisfied by o.

Let K = (O,P,S) be a formal context. For a set of objects A ⊆ O, A′ is the set
of attributes that are satisfied by all objects in A, i.e.,

A′ := {p ∈ P | ∀a ∈ A: (a, p) ∈ S}.

Similarly, for a set of attributes B ⊆ P, B′ is the set of objects that satisfy all
attributes in B, i.e.,

B′ := {o ∈ O | ∀b ∈ B: (o, b) ∈ S}.



A formal concept is a pair (A,B) consisting of an extent A ⊆ O and an intent
B ⊆ P such that A′ = B and B′ = A. Such formal concepts can be hierarchically
ordered by inclusion of their extents, and this order induces a complete lattice,
called the concept lattice of the context. Given a formal context, the first step
for analyzing this context is usually to compute the concept lattice.

In many applications, one has a large (or even infinite) set of objects, but
only a relatively small set of attributes. Also, the context is not necessarily given
explicitly as a cross table; it is rather “known” to a domain “expert”. In such a
situation, Ganter’s attribute exploration algorithm [14, 17] has turned out to be
an efficient approach for computing an appropriate representation of the concept
lattice. This algorithm is interactive in the sense that at certain stages it asks
the “expert” certain questions about the context, and then continues using the
answers provided by the expert. Once the representation of the concept lattice
is computed, certain questions about the lattice (e.g. “What is the supremum of
two given concepts?”) can efficiently be answered using this representation.

Recall that we are interested in the subsumption lattice5 of conjunctions of
(negated) concept names (some of which may be defined concepts in an L2-
TBox T ). In order to apply attribute exploration to this task, we define a formal
context whose concept lattice is isomorphic to the subsumption lattice we are
interested in.

For the case of conjunctions of concept names (without negated names), this
problem was first addressed in [1], where the objects of the context were basically
all possible counterexamples to subsumption relationships, i.e., interpretations
together with an element of the interpretation domain. The resulting “semantic
context” has the disadvantage that an “expert” for this context must be able to
deliver such counterexample, i.e., it is not sufficient to have a simple subsumption
algorithm for the DL in question. One needs one that, given a subsumption
problem “C v D?”, is able to compute a counterexample if the subsumption
relationship does not hold, i.e., an interpretation I and an element d of its
domain such that d ∈ CI \DI .

To overcome this problem, a new “syntactic context” was recently defined in
[8]:

Definition 3. The context KT = (O,P,S) is defined as follows:

O := {E | E is an L2 concept description},
P := {A1, . . . , An} is the set of concept names occurring in T ,
S := {(E,A) | E vT A}.

The following is shown in [8]:

Theorem 2. (1) The concept lattice of the context KT is isomorphic to the
subsumption hierarchy of all conjunctions of subsets of P w.r.t. T .
5 In general, the subsumption relation induces a partial order, and not a lattice struc-

ture on concepts. However, in the case of conjunctions of (negated) concept names,
all infima exist, and thus also all suprema.



(2) Any decision procedure for subsumption w.r.t. TBoxes in L2 functions as an
expert for the context KT .

This result can easily be extended to the case of conjunctions of concept
names and negated concept names. In fact, one can simply extend the TBox T
by a definition for each negated concept name, and then apply the approach to
this extended TBox. To be more precise, if {A1, . . . , An} is the set of concept
names occurring in T , then we introduce new concept names A1, . . . , An, and
extend T to a TBox T̂ by adding the definitions A1 ≡ ¬A1, . . . , An ≡ ¬An.6

Corollary 1. The concept lattice of the context KT̂ is isomorphic to the sub-
sumption hierarchy of all conjunctions of concept names and negated concept
names occurring in T .

The experimental results reported in [8] show that this approach for com-
puting the subsumption lattice of all conjunctions of concept names gives a huge
increase of efficiency compared to the semi-naive approach, which introduces a
new definition for each (of the exponentially many) such conjunctions, and then
applies the usual algorithm for computing the subsumption hierarchy. Neverthe-
less, these results also show that the approach can only be applied if the number
of concept names is relatively small (less than 30).7 For this reason, we propose
to use an improved algorithm for computing concept lattices [15, 16], which can
employ additional background knowledge that is readily available in our context,
but not used by the basic attribute exploration algorithm.

An improved approach using attribute exploration with background
knowledge When starting the exploration process, all the basic attribute explo-
ration algorithm knows about the context is the set of its attributes. It acquires
all the necessary knowledge about the context by asking the expert (which in
our setting means: by calling the subsumption algorithm for L2). However, in
our application we already have some knowledge about relationships between
attributes:

1. Since T is assumed to be an existing terminology, we can usually assume
that the subsumption hierarchy between the concept names occurring in T
has already been computed. If Ai vT Aj holds, then we know on the FCA
side that in the context KT̂ all objects satisfying attribute Ai also satisfy
attribute Aj .

2. Since Ai vT Aj implies ¬Aj vT ¬Ai, we also know that all objects satisfying
attribute Aj also satisfy attribute Ai.

6 For T̂ to be an L2-TBox, we must assume that L2 allows for full negation.
7 It should be noted, however, that these experiments were done almost 10 years ago

on a rather slow computer, using randomly generated TBoxes and the semantic
context.



3. Finally, we know that no object can simultaneously satisfy Ai and Ai and
every object satisfies either Ai or Ai.8

Attribute exploration with background knowledge [15, 16] is able to use such ad-
ditional information on the context to speed up the exploration process and to
obtain a smaller representation of the concept lattice.

Depending on the TBox, there may exist other such relationships between
attributes that can be deduced, but it should be noted that deducing them makes
sense only if this can be done without too much effort: otherwise, the efficiency
gained during the exploration might be outweighed by the effort of obtaining
the background knowledge.

First experimental results First experiments with prototypical implementa-
tions of attribute exploration (with and without background knowledge) and of
a DL “expert” based on Racer [18] yield mixed results. First, the runtime of
attribute exploration (both with and without background knowledge) strongly
depends on the specific shape of the TBox, not just its size. On the one hand, the
TBox used as an example in this section (which has 9 concept names, and thus
leads to a context with 18 attributes, and 218 different conjunctions of them)
resulted in runtimes of almost 50 minutes, both with and without background
knowledge. One reason for this bad behavior could be that there are almost no
relationships between the concepts (with background knowledge, only one addi-
tional implication is generated). On the other hand, handcrafted TBoxes with
more concepts, but also more relationships between them, could be handled
within several seconds.

Second, while the use of background knowledge decreases the number of calls
to the expert significantly, it does not decrease the overall runtime, and in some
cases even increases it. The main reason for this unexpected behavior appears
to be that the examples used until now are so small that an optimized imple-
mentation like Racer needs almost no time to answer subsumption questions.
In addition, our implementation of the reasoner for the background knowledge
(which is used during attribute exploration with background knowledge) is still
unoptimized, and thus the overhead of using the background knowledge is large.

5 Related and future work

In a preliminary version of this paper [9], we have considered computing the lcs
in EL w.r.t. a background ALC-terminology. We have shown that the lcs w.r.t.
acyclic TBoxes always exists in this setting, and have also sketched a practical
approach for computing an approximation of the lcs. The present version of
the paper improves on this by considering the considerably more expressive DL
ALE in place of EL (which makes the proof of Theorem 1 much harder), by
8 If we encode both facts in the background knowledge, then the background knowl-

edge mentioned in point 2. is redundant. However, first tests indicate that it may
nevertheless be advantageous to add it explicitly.



extending the approach for computing the subsumption lattice of all conjunctions
of concept names to conjunctions of concept names and negated concept names,
and by using attribute exploration with background knowledge.

It should be noted that formal concept analysis and attribute exploration
have already been applied in a different context to the problem of computing
the least common subsumer. In [7], the following problem is addressed: given a
finite collection C of concept descriptions, compute the subsumption hierarchy of
all least common subsumers of subsets of C. Again, this extended subsumption
hierarchy can be computed by defining a formal context whose concept lattice
is isomorphic to the subsumption lattice we are interested in, and then applying
attribute exploration (see [7] for details). In [8], it is shown that this approach
and the one sketched above can be seen as two instances of a more abstract
approach.

On the experimental side, the main topic for future research is, on the one
hand, to compare the behavior of attribute exploration with background knowl-
edge to the one without on more and larger knowledge bases. We will also eval-
uate the trade-off between the cost of extracting more background knowledge
and the performance gain this additional knowledge yields during attribute ex-
ploration. On the other hand, we will analyze how good the “good” common
subsumers computed by our approximative approach really are. On the theoret-
ical side, we will try to find exact algorithms for computing the least common
subsumer that are better than the brute-force algorithm sketched in the proof
of Theorem 1.
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5. F. Baader, R. Küsters, and R. Molitor. Computing least common subsumers in
description logics with existential restrictions. In Proc. of the 16th Int. Joint Conf.
on AI. (IJCAI’99), 1999.
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