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Abstract and nominal classegclasses with a single named element,
like italy in Italian T dcitizenOf.{italy}). Moreover, one can
add some forms ofange restrictionse.g. to state thatlale

is the range ohasFather [Baadetret al, 2004.

OWL EL further allowslocal reflexivityto model classes
of individuals with some relation to themselves, e.g. tdesta
Narcist C Jadores.Self, and theuniversal (top) role Uthat
relates all individuals. Both features can be combined with
role chains to indirectly modetoncept productsuch as
Elephant x Mouse C biggerThan. We collect these features
in the DL SROEL(x) as defined in Sectio. One can also
) allow role conjunctionga generalisation of OWL property
1 Introduction disjointness), omitted here for reasons of space and since

Created in 2004 and updated in 2009, the Web Ontology Larthey are not part of OWL E[Krotzsch, 201]] OWL EL fur-
guage OWL is a prominent knowledge representation startl€r includes support farlatatype propertiesorresponding
dard of the World Wide Web Consortiuf®WL, 200d. Its o concrete roles in DL. We omit thl_s aspect here as datatypes
Direct Semanticss based on description logics (DLs) that In OWL EL can largely be treated like abstract classes.
have a long tradition in knowledge representation and reaso ~ Our contribution is twofold: (1) we introduce rule-based
ing [Baaderet al., 2007. To cater for a wide range of practi- reasoning procedures f&ROEL(x), and (2) we show that
cal needs, OWL has been based on the particularly expressig@me features of EL have a negativkeet on the #iciency of
DL SROIQ(D), but the resulting high complexity of reason- such procedures. The significance of (1) is to provide the firs
ing is prohibitive in many applications. To solve this coctfli  comprehensive EL algorithm that copes with concept prod-
OWL introduced three lightweighgrofilesEL, QL, and RL  ucts and local reflexivity. We discuss cacluli both for imste
as sublanguages of OWMotik et al., 2009. retrieval (Sectior3) and for classification (Sectio#). Our
OWL RL is conceived as a “rule-based” OWL frag- use of rules to express deductions emphasises that implemen
ment that suggests inferencing with bottom-up materialisatations for EL can follow similar patterns as implementasio
tion rules. OWL QL was designed as a “query language” tofor RL, even though the use of our rules in a general-purpose
support Ontology-Based Data Access, where inferencing igule engine would hardly be afiieient as a specifically opti-
implemented by suitable query rewriting. OWL EL in turn mised algorithm.
is intended for conceptual modelling, a typical example be- All the calculi we present run in polynomial time, so it is
ing the medical ontology SNOMED CT that has no instancenot clear how to dferentiate their “&iciency” (2). To this
data but about & 10° classed§James and Spackman, 2008 end, we consider the amounts of intermediate facts that cor-
While there are well-documented algorithms and various im+ect rule-based bottom-up algorithms must compute (Sec-
plementations for inferencing in RL and QL, a first compre-tion 5). Formally, we use the simple rule language Datalog,
hensive algorithm for EL has only been published recentlyand we consider the requir@dinimal arity of derived pred-
[Krotzsch, 2010 Moreover, this work also studies the rela- icates in rule systems that are sound and complete for frag-
tive “difficulty” of inferencing with some features in EL. Both ments ofSROE L(x). Since upper space bounds for Datalog
aspects are summarised in this invited paper. are exponential in tharity of inferred predicates, our goal is
Semantically, OWL EL is an extension of the AL to find materialisation calculi where these arities are law.
[Baaderet al., 2003. This type of DLs is based otonjunc-  maximal arity of 2, e.g., establishes a quadratic upper doun
tion and existential quantificationallowing statements like on the number of derived facts. We find that this is enough for
ColourBlind 1 Female T dhasFather.ColourBlind (“Colour  classification inSROEL(x) fragments without role chains
blind women must have a colour blind father§£** also  and nominals. But adding either feature to the DL increases
supportsole chaing(e.g.hasParentohasBrother C hasUncle)  the required arity by one, SSROEL(x) does not admit any

We review recent results on inferencing for
SROEL(x), a description logic that subsumes
the main features of the W3C recommendation
OWL EL. Rule-based deduction systems are devel-
oped for various reasoning tasks and logical sub-
languages. Certain feature combinations lead to
increased space upper bounds for materialisation,
suggesting thatfBcient implementations are easier
to obtain for suitable fragments of OWL EL.
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sound and complete classification calculus of arity below 4.

We obtain these results by studying possible derivationsin AE C — SubClass(A,C)
Datalog. Our methods are novel but have some relations to TEC+ Top(C)

studies on Datalogvidth and parameterised complexithat
we outline in Sectioré. Our optimality results refer to the
syntactic form of rule-based algorithms, and have no immedi
ate complexity-theoretic implications. Yet, experienbews
that the problem of spacefiency w.r.t. nominals and role
chains is relevant in practice, and it is not surprising that

C(a) — SubClass(a, C) R(a,b) — Ex (a,R, b, b)
AmBC C+ Conj (A B,C)
AcC AR Self - Self* (A, R)
dR.Self C C - Self (R,C)
{a} C C + SubClass(a, C)

A C {c} — SubClass(A, ¢)

ALC 1~ Bot(A)
JRACC - Ex (RA,C)
AC JRB— Ex*(A R B,e”=RB)
RC T + SubRole(R, T) RC Cx D - RProd*(R,C,D)
RoSC T RChain (RS, T)  AxBLC R RProd (A B,R)
ae N; —» Nom(a) A € N¢ — Cls(A) R e Nr ~ Rol(R)
A B,C,DeNc, RS TeNg,abceN,

isting implementations tend to omit one or more of these fea
tures[Baaderet al, 200§ Delaitre and Kazakov, 20090ur
results immediately apply to these works since it is not bhard
state their inference rules in Datalog. In particular, @sults
imply that the algorithm oBaadetret al.[2003 is incomplete
in the presence of nominals.

Technical details and proofs are foundiérotzsch, 2010

2 The DL SROEL(x) and Datalog

We chiefly summarise the required basic notions from DL

and Datalog; sefKrotzsch, 2010for formal definitions, and

[Hitzler et al,, 2009 for a textbook introduction on the rela-
tion of DL and OWL. The DLSROEL(x) is based on three
disjoint finite sets oindividual name$;, concept nameNc,

Figure 1: Input translatiohngt

Section5 we show its optimality in terms of certain charac-
teristics. This study of calculi requires a uniform presgion
for deduction calculi that have been proposed &af-type
DLs, e.g., byBaaderet al. [2003 andDelaitre and Kazakov
[2009. This motivates our use of Datalog in this section.
Intuitively speaking, a materialisation calculus is a sys-
tem of deduction rules for deriving logical consequences.
As opposed to a complete inference algorithm, it does not
specify a control flow for evaluating these rules. Deduc-
tion rules can be denoted in many forms, e.g. using tex-

androle namesNg. Semantically, these parts are interpretedtual if-then descriptionfBaadetet al, 200, in tabular form

as individuals, sets of individuals, and binary relatiohlse
setC of SROEL(x) conceptss given as

C:=T|L|Nc|CnC|3INR.C|dNg.Self | {N;}.

Concepts are interpreted as satsL as the wholgempty set,
conjunctionst1 as a set intersection, and existential restric-
tions as sets of individuals with some particular role sgece
sor. Nominalga} encode singleton sets. NOWSROE L ()
axiomcan be arassertion Ga) or R(a, b), ageneral concept
inclusion C C D, or arole inclusionof one of the forms
RCT,RoSCT,CxDCT,RC CxDwhereC,D € C,

R S, T € Ng, & b € N,. Semantically, each axiom describes
an according set-theoretic relationship, wherencodes re-
lational composition anck stands for the Cartesian product.

[Motik et al., 2009, or as sequent calculus style derivation
rules [Delaitre and Kazakov, 2009 Premises and conclu-
sions of rules often consist of logical formulae, but mayals
contain auxiliary expressionBaaderet al. [2003, e.g., use
auxiliary statementé~»gB for A, B € N¢c. A deduction rule
can then be viewed as a schema for deriving new expressions
from a finite set of given expressions. In particular, theliapp
cability of rules is normally not féected by uniform renam-
ings of signature symbols in premise and conclusion.
Deduction rules in this sense can be denoted as Data-
log rules where concrete logical sentences are represasted
ground facts that use signature symbols in term positioors. F
example, we can represeliC B assubclassO£(A, B), and
introduce a rulesubclassOf(x,y) A subclassO£f(y,2) —

Concept products allow us to define the universal (top) rolesubclass0£(x,2). This unifies the presentation of calculi,

U with an axiomT x T C U, while the empty (bottom) role
N can be defined usingN.T C L. Knowledge bases KB
are sets ofSROEL(x) axioms that satisfy some additional
properties regardingimplicity or rolesand admissibility of
range restrictionsA restriction toregular role inclusions as
in OWL DL (and OWL EL) is not needed. Entailment of
SROEL(x) is defined model theoretically, as usual.

Our formalisation of inferencing calculi is based Data-
log which we consider as standard first-order Horn logic with-
out function symbols. As in deductive databases, we distin
guish extensional (EDB) and intensional (IDB) predicates

facts, and in premises of rules (bodies), so they are merel
used to encode the original input. IDB predicates can occ
without restrictions and are used for all derivations.

3 Instance Checking forSROE L(x)

EDB predicates can only occur in ground (variable-free)t

and lets us exploit techniques from deductive databases. Fo
connecting Datalog to DL, we require an input translation
from individual DL axioms to (sets of) Datalog EDB facts.
This translation is also defined for signature symbols,esinc
symbols must generally be “loaded” into Datalog to be able
to derive conclusions about them, regardless of whether the
symbols occurred in input axioms or not. A formalisation of
these ideas is given later in Definitidn

Rule-based calculi suggest materialisation-based (or con
sequence-driven) reasoning: after translating a knoveedg
base to Datalog facts, all consequences of these facts under
he deduction rules can be computed in a bottom-up fashion,
and all supported entailments can then be checked without
Hirther recursive computation. This contrasts with otlesr-r

u§0ning principles such as the tableaux method where typical
just a single entailmentis checked in one run of the algorith

It is not hard to formulate the deduction algorithms that
were presented fo.L-type logics in[Baaderet al., 2009

We now present a calculus for instance checking — decidingnd [Delaitre and Kazakov, 200sing Datalog rules. The

if C(a) is entailed forC € N¢, a € N; — for SROEL(x). In

calculus we present here, however, is derived from a Data-



@ Nom(X) — isa(X, X) isa(a, b) with a, b € N, encode equality o& andb.
E:Z%; NOF”T(X)(A)SAF’F’(X(’V’ZX;_’_Se'z(x")’) Axiom normalisation and the computation ¢ can
optz) A\ lsalx, z) = isalX. z be accomplished in linear time, and the time for reason-

g—g BOt(Z)Alsag:jbz)cng%(,’x’z)z /{fsef(li(ig::z:&g ing_in Datalog is ponnomiaI w.rt. the size of the col-
(6) Conj~ (Y1, Y2, 2) A isa(x, y1) A isa(x, y2) — isa(, 2) lection of ground facts. Using the known P-hardness of
(7 Ex (VY. 2) A spo(X, V, X) A isa(X, y) — isa(X, 2) &L [Baaderet al, 2004, we obtain that instance check-
(8) Ex™(V, Y, 2) A self(x, V) Aisa(X,y) — isa(X, 2) ing in SROEL(x) and in OWL EL without datatype prop-
9) Ex*(Y,V,Z X) Aisa(X,y) — spo(X,V, X) erties is P-complete w.r.t. the size of the knowledge base.
(10) EX*(Y, v, 2 X) Aisa(X,y) — isa(X',2) Strictly speaking, our treatment does not cover OWLKels

(11) Self (v, 2) A self(x,v) — isa(X, 2) [Motik et al, 2009. Conceived as a special form BL-safe

833 SubRol eS(\e/If;v()y;\vi F::J I(?(aS/Xxyg : zsgg‘(‘x %) rules they are easy to incorporate into our rule-based ap-
(14) SubRoIe(v, ) A self(x V) — self(x w) proach. OWL EL datatype properties could be treated like ab-

stract roles in our algorithm, but with a reduced set of espre
sive features. This is possible since all EL datatypesare
vexin the sense diBaaderet al., 2004. The main implemen-

(15) RChain™(u, Vv, W) A spo(X, U,Y) A spo(Y, V,2) — spo(X, W, 2)
(16) RChain™(u, Vv, w) A self(x, u) A spo(X,V, X') — spo(X, w, X)
(17) RChain™(u, Vv, W) A spo(X, U, X') A self(X’, V) — spo(X, w, X)

(18) RChain™(u, v, W) A self(x, U) A self(X, V) — spo(X, W, X) tation burden is to evaluate the syntactic forms of datatype
(19)  RProd(y1,Y2, W) A isa(x, y1) A isa(X,Y2) — spo(X, W, X') constants in the various OWL EL datatypes. The only ad-
(20)  RProd=(y1, Yo, W) A isa(X, y1) A isa(x, y2) — self(x, w) ditional feature isfunctional datatype propertiefor which

(21) RProd*(V, z1, ) A spo(X, V, X') — isa(X, z1) another inference rule is required. The main work here is to
(22) RProd* (v, 1, 2,) A self(x, V) — isa(x, z;) observe that a naive implementation does not lead to wrong
(23) RProd"(v. 21, 25) A spo(x. V. X) — isa(X', z) inferences, in contrast to functional concrete roles whiaih-

(24) _RProd"(v, 21, 25) A self(x,v) — isa(x z) not be captured by a rule-based calculus in our sense.

(25) isa(x,y) A Nom(y) A isa(x, 2) — isa(y, 2)

(26) isa(x,y) A Nom(y) A isa(y, 2) — isa(x, 2)

(27) isa(x, y) A Nom(y) A spo(z U, X) — spo(z U, y) 4 Classification inSROEL(x)

The materialisation calculuKi,s; of Theorem1 solves the
instance checking problem f@ROEL(x). A calculus for
checking satisfiability is easily derived sinceSROE.L(x)
log reduction introduced ifKrétzschet al, 2009 for a rule  knowledge base is inconsistent if and onlyKifs; infers a
language based aB.L*™*. This approach can be modified to factisa(x, z2) whereBot(2) holds. In this section, we ask how
coverSROEL(x) and to use a fixed set of Datalog rules to to obtain calculi forclassification— the computation of all
yield a materialisation calculus in our sense. For similici subsumptions of atomic classes implied by a knowledge base.
the following calculus only considetSROE L(x) axioms of Class subsumption, too, can be reduced to instance re-
the basic forms in Figl (left of ). OtherSROEL(x) ax-  trieval: KB = A C B holds if KB U {A(c)} E B(c) for a fresh
ioms can easily be normalised in linear time while prese@vin c. This reduction requires the knowledge base to be modified,
the original entailment§Krétzsch, 201D For a normalised  |eading to new entailments, possibly even to global incon-
knowledge base KB, we define a Datalog theB(KB) =  sistency. Thuki,s cannot directly be used for classification.
Pinst U {linst(@) | @ € KB} U {linst(S) | s € Nj UNc UNg},  Rather, one needs a separate ruigd; for each assumption
wherePj, are the deduction rules in Fig. This gives rise  A(c) to compute all entailments of the forfC B.
to a derivation calculuKins:: we say thaKins; derives a fact One can derive a materialisation calculus for classificatio
C(a) from KB if P(KB) entailsisa(a, C). in SROEL(x) by “internalising” the runs oKins;, €xtending
all IDB predicates with an extra parameter to encode the test
assumption under which an entailment holds. The nante of
The IDB predicatessa, spo, andself in Pjst correspond  is not essential in assumptioAC), so one can simply re-use
to ABox axioms for atomic concepts, roles, and conceptshe Datalog constart as the test instance of claA¢Datalog
3R Self, respectively. Rulel)) serves as an initialisation rule does not care about the sortAfin DL). Following this dis-
that accounts for the firgta facts to be derived. Rul@)spec-  cussion, it is straightforward to obtain a sound and coreplet
ifies the (only) case where reflexivpo facts lead taelffacts.  classification calculugKrotzsch, 2010
The rules 8) to (24) capture expected derivations for each of  This calculus is not veryf@cient since deductions that are
the axiom types as encoded by the EDB predicates. R)ile ( globally true are inferred under each test assump#io).
checks for global inconsistencies, and would typicallylm®et So the number of globally derived facts can multiply by the
materialised in implementations since it§eet can directly number of class names, which can easily bé& a0 more.
be taken into account during entailment checking. Ruds ( This increase is reflected in our formalisation of matesali
and (L0) make use of auxiliary constangg=7RB for han-  tion calculi: the maximal arity of derived predicates would
dling existentials. Roughly speaking, each such consegmtr now be 4 while it had been 3 K, leading to poten-
resents the class of all role successors generated by the aially higher space requirements for materialised deioves.
iom from which it originates; seliKrotzsch, 201Dfor details.  Implementations may achieve lower space bounds by suit-
The remaining rules2b) to (27) encode equality reasoning able optimisations. Yet standard implementation techesqu
that is relevant in the presence of nominals where stateamentor Datalog, such as semi-naive materialisation, are seasi

Figure 2: Deduction ruleBj,st

Theorem 1 The calculus kst is sound and complete.



to the arity of IDB predicates. In developing ti@rel rea-
sonellKrotzschet al., 2014, we also experienced majtme
penalties for higher arities due to the larger numbers @frinf
ences considered in each derivation step.

The maximal arity of IDB predicates thus is an important

measure for thefciency of a materialisation calculus. We
call this thearity of a calculusand speak of binayternaryn-
ary materialisation calculi. The search fdfieient material-

so one should develop calculi of minimal arity. Next, we es-
tablish lower bounds on the arity of materialisation cdlcul
for various reasoning problems. We formalise materiatisat
calculi to generalise the calculi discussed above:

Definition 1 A materialisation calculuX is a tuple K =
(I, P,O)y where | and O are partial functions, and P is a set of
Datalog rules without constant symbols, such that

isation calculi can thus be formalised as the task of finding 1. given an axiom or signature symhal|(e) is either un-

a ternary or binary calculus that is sound and complete for

SROEL(x) classification. Unfortunately, as shown in Sec-

tion 5, no such calculus exists. To show that this is not ob-

vious, we now give such a calculus for a slightly smaller DL.

We present a ternary classification calculus that supports -

role chains but nar, 1, nominals, and no concept products
on the left-hand side of axioms. The input translation isnas i

Fig. 1 but restricted to the remaining features. So EDB predi-

catesTop, Bot, andRProd™ are no longer used.

A set of rules is developed by restricting the rules to the

remaining features. We refer to rules obtained friim; by
the numbers in Fig2. Rules B), (4), (19), and Q) are obso-

lete due to the omitted EDB predicates. Without nominals, we

find that all derivationgsa(x, y) are such thay is a DL class
name, oy is a DL individual name and = y. This is not hard

to verify inductively by considering each rule, and the sym-

bols used in relevant EDB facts. Therefore rul2s)( (26),
and @7) can be dropped. As shown [Krotzsch, 2010 we

defined or a set of Datalog facts over EDB predicates,

2. given an axiona, O(e) is either undefined or a Datalog
fact over an IDB predicate,

3. the set of EDB and IDB predicates used by I, P, and O
is fixed and finite,

all constant symbols used itw) or O(a) for some axiom
(or signature symboly are either signature symbols that
appear in (or are equal toy, or constants of the form
e’ with i > 0, where all constant names are mutually
distinct and unequal to any DL signature symbol,

4.

5. I and O do not depend on concrete signature symbols,
i.e. for a renamingo of signature symbols that maps
individuajconceptole names to individugioncepftole
names, we findp(e)) = p(l(@)) and Qo(@)) = p(O())
if p(e?) = /).

For knowledge baselsB we set (KB) = (Jgekg | (B) if 1(B)

do not need to introduce an extra parameter for keeping tracis defined for all3 € KB and undefined otherwise. We ex-

of the assumption under which a subsumption was derived:

Theorem 2 Consider the materialisation calculusy$ with
Isccdefined like jhst in Fig. 1 but undefined for all axioms that
use nominal classes;, L, or concept products on the left-
hand side, and the programsR consisting of the rule§l),
(2), (5—18), and(21D)—(24) of Fig. 2 together with a new rule
Cls(2) — isa(z 2).

For a knowledge baskB such that {.{«) is defined for
all @ € KB, set RKB) := PsccU {lscd@) | @ € KB} U {lged9) |
s € Ny UNc U NRgJ. Then for all AB € N¢, KB entails
AcC Bifand only if RKB) entailsisa(A, B), whenever EKB)
is defined. Thus & provides a materialisation calculus for
subsumption checking f@ROE L(x) knowledge bases that
contain onlyr (for concepts and roles}y, Self, o, and con-
cept products on the right-hand side.

This theorem covers all OWL EL ontologies without
datatype properties and any ofl:Thing, owl:Nothing,
owl:topObjectProperty, owl:bottomObjectProperty,
ObjectHasValue, ObjectOneOf, andHasKey.

If no role chains occur, one can further simplifscc

to obtain a binary classification calculus for normalised

SROEL(x) knowledge bases that contain omty(for con-
cepts and roles)d, Self, and concept products on the
right-hand side. This is spelled out iiKrétzsch, 2010
Delaitre and Kazakof2009 used a similar approach to opti-
mise a classification calculus f&LH.

5 Minimal Arities of Materialisation Calculi

tend | to sets of signature symbols S by setti(g) | .=
Uses.i(s) defined! (8)- K induces arentailment relation-x be-
tween knowledge bas&B and axiomsa over a signature
(N, Nc, NRr), defined by settingB +x a whenever (KB)
and Qa) are defined and(KB) Ul (N;UNcUNR)UP E O(a).

We say that K isound (completelf KB rx « implies (is
implied by)KB E « for all knowledge baseB and axioms
a for which I(KB) and Q@) are defined.

This allows the Datalog transformatidrto introduce ar-
bitrarily many auxiliary constants’. Syntactic normalisa-
tions that use auxiliary concept names could thus also be
part of the translation. Yet, the input translation is lieait
since it depends only on individual axioms and signature
symbols. This precludes complex Datalog translations as in
[Motik and Sattler, 2006Rudolphet al., 2004. We make no
assumptions on the computability or complexitylaind O,
but both functions are typically very simple.

Now our general proof strategy is as follows. For a contra-
diction, we suppose a materialisation calculus of lowetyari
for a given reasoning problem. We then consider a particular
instance of that problem, given by a knowledge base KB that
entails some consequeneeSince the calculus is assumed to
be complete, we find an according Datalog derivation with a
corresponding proof tree. This proof tree is then modified by
renaming constants, leading to a variant of the proof trat th
is still valid for the given materialisation calculus, buded
on different (renamed) assumptions. The modified assump-

tions correspond to a modified knowledge bas€ ,Kighere

The arities of the above calculi fROE L(x) range from 2 we find that the materialisation calculus still derivesn the

to 4. We argued that low arities are important féii@ency,

input KB'. We then show that KBt «, so that the calculus



/nl: isa(A,C) symbols of a given input axiom. Yet, the arity limits the

n2: SubClass(B".C) _ n3: isal(A,B"’) number of such axioms: for a calculus of artythe interface
o of any node can comprise no more than the set of DL symbols
nd: EX'(R"fC"fB"l)/ n5: spo(A,R"e% n6: isa(e*,C") that occur ina axioms of the input knowledge base.
n7: EXYARPCMeY) 8 isa(AA) 7 n10: isa(AA) This can be interpreted graphically bas_ed on dlepen-
n9: Ex*(A,R™C"e% I dency graplof KB — the graph that has the signature symbols
n11: Cls(A) n12: Cls(A) in KB as its nodes, and, for each axiom of KB with exactly

n symbols, am-ary hyperedge connecting thesesymbols.
Figure 3: A diversifiecKscc proof (@ denotesA C IR™.C™) The set KB, induces a subgraph of a dependency graph, and

the interface ofm describes the nodes that this subgraph is
wowed to share with the remaining graph.

One can use this machinery to prove the following theo-
rems. The key in each case is to show that a conclusion that
a supposed materialisation calculus of lower arity prodise
Definition 2 Consider a materialisation calculus K= not entailed by a diversified knowledge base. Namely, for the
(I,P,0), a knowledge baskB such that (KB) is defined, entailment to hold, the latter would need to contain a set of
and a prooftree T= (N, E, 1) for I(KB) UI(N;UNcUNR)UP.  axioms that cannot possibly be distributed over the strectu
We say that a DL signature symhobccursin a ground atom  of a proof tree without violating the interface constraitse
F if F containso as a constant, or if F contains some aux- [Krétzsch, 201Dfor detailed proofs.
iliary constante{ such thaio- occurs ina. Theinterfaceof a

node ne N is the set of sighature symbols that occur(n). istential tficati d role chains. E i
The (labels of the) tree T can loéversifiedrecursively: existential quantincation, and role chains. Every matssi
) ] tion calculus that is sound and complete for classification o
» replace all signature symbols s that do not occur in thejnstance retrieval ing has arity three or more.

interface of the root node by a fresh symbbottsat has . . .
not yet been used in T or in this construction, Theorem 4 Let £ be a DL with general concept inclusions,

existential quantification, and nominal classes. Everyamat
‘alisation calculus that is sound and complete for classifica
tion in £ has arity three or more.

cannot be sound. Some graph theoretic arguments are us@
to establish this last step. The essential modification obpr
trees works as follows:

Theorem 3 Let £ be a DL with general concept inclusions,

e recursively diversify the subtrees below each of the di
rect child nodes of the root.

So T is diversified by replacing some (occurrences of) sig
nature symbols with fresh symbols. We u%¢osdenote the
symbol by which s is replaced in node n. The renaming ma
affect auxiliary constants by renaming symbols in the axiom
that are part of their name.

Intuitively, diversification removes all re-use of congtan

Theorem 5 Let £ be a DL with general concept inclusions,
existential quantification, role chains, and nominal cless
Every materialisation calculus that is sound and complete f
lassification inL has arity four or more.

The latter two results do not extend to instance retrieval,
S0 in a sense classification is harder to implem@itiently.

I‘IElh?spi;O(?at tiﬁfetdh%t '22&: ii%?;gf;%rea&prlé'tg% ttg%?:ﬁgtr?é Indeed, Theorerh shows that a ternary instance retrieval cal-
P y culus exists for a DL that includes existentials, nominaie]

interface of a rule application can be renamed uniformly be- : .
low the node withoutfiiecting applicability of the rule. So the role chains. For DLS as in Theorefnwe have not presented

. . ; . _calculi of optimal arity. A ternary (binary) calculus forad-
g_rlty O.ff.a C"?“CUIE.S de(tgerrt?mes thdg amqunt of rer;ammg ?;mn%ification (instance retrieval) in this case can be obtalmed
iversification. Figur&® shows a diversification of a proof for = _. i . ;
, using similar techniques as for the binary calcukiss. pre-
{AC JRC,JRCC B,BC C} E AL Cin the calculuKgcc . .. L
of Theorem2. Note howC is renamed t€"™ in some labels sented in[Krétzsch, 2010 TheoremS may be surprising,

. given that theSL*" calculus in[Baaderet al., 2003 would
o_nIy. No further renamings occur_belovx_/ t_he noaésandnt be ternary in our notation. The explanation is that this algo
since all relevant symbols occur in their interface due ® th

iy o rithm is incomplete for classification; the proof of TheorBm
auxiliary constane®. . can be used to find a counter examj{estzsch, 201
Leaf nodesn in proof trees relate to input symbols or

axioms. In the latter case we find an axiam such that . .

A(n) € I(an). By suitably renaming symbols in the axioms 6 Datalog Width and Complexity Theory

an, one can find diversified knowledge bager whichthe di-  The presented work focusses on practical tasks of reasoning

versified proof tree encodes a valid derivation. The difiexsi  in OWL EL, and studies the arity of materialisation calculi

knowledge base for Fi@, e.g., istAC AR™®.C™, IR®.C" C mainly as a tool for optimising inferencing systems. Yeg th

B"%, B" C C}, which clearly entail#\ = C as before. work can be related to foundational studies in complexigy th
The structure of a diversified proof tré&ds mirrored inthe  ory and deductive databases.

corresponding diversified knowledge base KB. An axiom of It is known that the arity of IDB predicatestacts Data-

form a, € KB is belowa nodemif nis belowm, and we set log expressivity in the sense that, for any natural nunther

KB = {an € KB | nbelowm}. Diversification ensures that one can find problems that cannot be expressed in Datalog

symbols occurring in both KB and KB\ KB, must belong  of IDB arity <n [Afrati and Cosmadakis, 1989Arity in this

to the interface ofn. This interface includes all DL symbols work is calledwidth, and has later been relatedgersistency

in A(m). If auxiliary constantg® occur, this encompassa  numberdAfrati et al, 2003.
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