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Abstract

Abstract argumentation frameworks nowadays provide the most popular formalization of argumentation on a conceptual level.
Numerous semantics for this paradigm have been proposed, whereby the ¢f2 semantics has shown to solve particular problems
concerned with odd-length cycles in such frameworks. Due to the complicated definition of this semantics it has somehow
been neglected in the literature. In this article, we introduce an alternative characterization of the ¢f2 semantics which, roughly
speaking, avoids the recursive computation of subframeworks. This facilitates further investigation steps, like a complete
complexity analysis. Furthermore, we show how the notion of strong equivalence can be characterized in terms of the cf2
semantics. In contrast to other semantics, it turns out that for the ¢f2 semantics strong equivalence coincides with syntactical
equivalence. We make this particular behaviour more explicit by defining a new property for argumentation semantics, called
the succinctness property. If a semantics o satisfies the succinctness property, then for every framework F, all its attacks
contribute to the evaluation of at least one framework F’ containing F. We finally characterize strong equivalence also for the
stage and the naive semantics. Together with known results these characterizations imply that none of the prominent semantics
for abstract argumentation, except the ¢f2 semantics, satisfies the succinctness property.

Keywords: Abstract argumentation, cf2 semantics, succinctness, complexity, strong equivalence.

1 Introduction

Abstract argumentation frameworks (AFs), introduced by Dung [11], represent the most popular
approach for formalizing and reasoning over argumentation problems on a conceptual level. Dung
already introduced different extension-based semantics (preferred, complete, stable, grounded) for
such frameworks. In addition, recent proposals tried to overcome several shortcomings observed for
those original semantics. For instance, the semi-stable semantics [8], and likewise the stage semantics
[23], handles the problem of the possible non-existence of stable extensions, while the ideal semantics
[12] is proposed as a unique-status approach (each AF possesses exactly one extension) less skeptical
than the grounded extension.

Another family of semantics, the so-called SCC-recursive semantics has been introduced in [7].
Hereby, a recursive decomposition of the given AF along strongly connected components (SCCs) is
necessary to obtain the extensions. Among them, the ¢f2 semantics, first proposed in [3] and later
discussed in [7], has been introduced in order to solve particular problems arising for AFs with odd-
length cycles. It fulfils several requirements such as the symmetric treatment of odd- and even-length
cycles, and ensures that attacks from self-defeating arguments have no influence on the selection
of other arguments to be included in an extension. Furthermore, the ¢f2 semantics satisfies most of
the evaluation criteria proposed in [4]. Basically, only the admissibility- and reinstatement criteria
are violated. This is due to the fact that the ¢f2 semantics explicitly gives up on these conditions
when it comes to evaluate SCCs. At this point, it has to be mentioned, however, that the property
of admissibility turns out to be crucial when abstract argumentation is employed in certain forms of
instantiation-based argumentation, see e.g. [9].
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Due to the quite complicated definition of its semantics, the ¢f2 approach has been somehow
neglected in the literature. For instance, a complete complexity analysis is still missing, although
Nieves et al. [19] observed that the decision problem of verifying whether a set of arguments is a cf2
extension is polynomial-time computable. However, ¢f2 semantics attracted specific attention lately,
for example in [1] it has been used to handle loops in Talmudic Logic.

In another branch of research, attention was directed to the investigation of redundant patterns in
AFs. Oikarinen and Woltran [20] identified kernels that eliminate those redundant attacks of AFs and
introduced the concept of strong equivalence: two AFs are strongly equivalent wrt. a semantics o
(i.e. they provide the same o -extensions no matter how the two AFs are simultaneously extended),
if their o-kernels coincide. In [2], the notion of equivalence wrt. stable semantics has been studied
also for logic-based argumentation systems. To the best of our knowledge, redundancies for the cf2
semantics have not been studied yet. As we show in this article, the ¢f2 semantics has the interesting
feature that strong equivalence coincides with syntactical equivalence. In other words, for the cf2
semantics there are no redundant attacks.

The main contributions of this article are the following.

» To simplify further investigation, we first give an alternative characterization for the c¢f2
semantics. The original definition of Baroni et al. [7] involves a recursive computation of
different sub-frameworks. Our aim here is to shift the need of recursion from generating sub-
frameworks to arguments. We show that the required set of arguments can be captured via a
fixed-point operator. This allows to characterize ¢f2 semantics using only linear recursion.

* With the alternative characterization at hand, we formally prove the following complexity
results. (i) Verifying if a given set is a cf2 extension is in P; (ii) deciding if an argument is
contained in some cf2 extension (credulous acceptance) is NP-complete; (iii) deciding if an
argument is contained in all ¢f2 extension (skeptical acceptance) is coNP-complete; and (iv)
checking whether there exists a non-empty cf2 extension is in P.

¢ As the third main contribution we define a new property for argumentation semantics called
the succinctness property. As outlined above, a semantics satisfies the succinctness property
or is maximal succinct iff no redundant attacks for this semantics exist. It turns out that the
¢f2 semantics is the only one that is maximal succinct, whereas for other semantics we can
reuse results about strong equivalence [20] for an analysis on their succinctness. Our results
thus provide a new classification for argumentation semantics, namely in terms of redundant
attacks.

Parts of this article have been published in proceedings of conferences [17, 18]. Completely novel
material is provided by the complexity analysis as well as by the investigations on the succinctness
property.

2 Preliminaries

In this section we introduce the basics of abstract argumentation, the semantics we need for further
investigations and some properties of the semantics we are mainly interested in this work, the ¢f2
semantics.

2.1 Abstract argumentation

The definition of abstract argumentation frameworks and the semantics are based on
[11,23].
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DEFINITION 2.1

An argumentation framework (AF) is a pair F =(A,R), where A is a finite set of arguments and
RC A x A. The pair (a,b) € R means that a attacks b. A set S C A of arguments defeats b (in F), if there
is an a € S, such that (a,b) € R. An argument a € A is defended by S CA (in F) iff, for each beA, it
holds that, if (b,a) € R, then S defeats b (in F).

The inherent conflicts between the arguments are solved by selecting subsets of arguments, where
a semantics o assigns a collection of sets of arguments to an AF F. The basic requirement for all
semantics is that none of the selected arguments attack each other.

DEFINITION 2.2

Let F=(A,R) be an AF. A set SCA is said to be conflict-free (in F), if there are no a,b €S, such
that (a,b) € R. We denote the collection of sets that are conflict-free (in F) by c¢f(F). Aset SCA is
maximal conflict-free or naive, if S € cf (F) and for each T ecf(F), S ¢ T. We denote the collection
of all naive sets of F by naive(F). For the empty AF Foy=(4,0), we set naive(Fy) = {4}.

Beside the naive semantics we will consider the following semantics in this work.

DEFINITION 2.3
Let F=(A,R) be an AF. A set S CA is said to be

* a stable extension (of F), i.e. Sestable(F), if Secf(F) and each acA\S is defeated
by Sin F.

* astage extension (of F), i.e. S € stage(F), if S € ¢f (F) and there is no T € ¢f (F) with T DSZ,
where Sy =SU{b|3acS, s. t. (a,b)€R).

* an admissible extension, i.e. S € adm(F) if S € ¢f (F) and each a €S is defended by S.

e a preferred extension, i.e. S € pref (F) if S € adm(F') and for each T € adm(F), S¢ T.

We illustrate the different behaviour of the introduced semantics in the following example.

ExAMPLE 2.4
Consider the AF F=(A,R) withA={a,b,c,d,e,f,g} and R={(a,b), (c,b), (c,d), (d,c), (d,e), (e.f),
f.f), (f,g), (g,e)} as in Figure 1. Then, the above defined semantics yield the following extensions.

o stable(F)=1,

e naive(F)=stage(F)={{a,d,g},{a,c,e},{a,c,g}};
* adm(F)={{},{a},{c}.{d} . {a,c}.{a,d}};

e pref(F)={{a,c},{a,d}}.

2.2 The cf2 semantics

The semantics we are mainly interested in this work is based on a decomposition along the SCCs of an
AF. Hence, we require some further formal machinery. A directed graph is called strongly connected
if there is a path from each vertex in the graph to every other vertex of the graph. By SCCs(F),
we denote the set of strongly connected components of an AF F =(A,R), i.e. sets of vertices of the
maximal strongly connected sub-graphs of F; SCCs(F) is thus a partition of A. Moreover, for an
argument a € A, we denote by Cr(a) the component of F where a occurs in, i.e. the (unique) set
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FIGURE 1. The argumentation framework F from Example 2.4.
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FIGURE 2. The argumentation framework F from Example 2.5.
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CeSCCs(F), such that ae C. AFs F1 =(A1,R1) and F> = (A3, Ry) are called disjoint if AjNAy =0.
Moreover, the union between (not necessarily disjoint) AFs is defined as F1 UFy =(A1 UA>, R UR»).

EXAMPLE 2.5

We consider the framework F=(A,R) with A={a,b,c,d,e.f,g,h,i} and R={(a,b), (b,c), (c,a),
(b,d), (b,e), (d.f), (e.f), (f,e), (f,2), (g,h), (h,i), (i,f)} as illustrated in Figure 2. F has three SCCs,
namely Ci1={a,b,c}, Co={d} and C3z={e,f, g,h,i}. For example, the argument g belongs to C3,
thus Cr(g)=Cs. ¢

It turns out to be convenient to use two different concepts to obtain sub-frameworks of AFs. Let
F=(A,R) be an AF and S a set of arguments. Then, F|s=((ANS),RN(S xS)) is the sub-framework
of F wrt. § and we also use ' —S=F|4\5. We note the following relation (that we use implicitly later
on), foran AF F and sets S, 5": F|g\g =F|s —S =(F —5)|s. In particular, for an AF F, a component
CeSCCs(F) and a set § we thus have Flc\s=F|c—S.

For the framework F of Example 2.5 and the set S ={f}. Then, F|c, —S=({e, g, h,i},{(g, h), (h,D}).

We now give the definition of the ¢f2 semantics that slightly differs from (but is equivalent to)
the original definition in [3, 7]. (i) We use some of the notation established above, like the concept
of sub-frameworks and the corresponding relations; (ii) Dr(S), as introduced next, replaces the
set ‘Dp(S,E)” and F|c—DF(S) replaces ‘F | yp,(s,g)’; moreover, the set of undefeated arguments
‘Ur(S,E) as used in the general schema from [7], is not required here, because the base function
for the ¢f2 semantics does not make use of this set. Next, we define the set of component-defeated
arguments Dp(S), which identifies all arguments that are attacked from a given set § from outside
their SCC.

DEFINITION 2.6

Let F=(A,R) be an AF and S CA. An argument b €A is component-defeated by S (in F), if there
exists an a € S, such that (a,b) € R and a ¢ Cr(b). The set of arguments component-defeated by S in
F is denoted by Dr(S).
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FIGURE 3. The argumentation framework F from Example 2.5.
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DEFINITION 2.7

Let F =(A,R) be an argumentation framework and S a set of arguments. Then, S is a ¢f2 extension
of F,i.e. Secf2(F), iff

* in case |SCCs(F)| =1, then S € naive(F),
e otherwise, VC € SCCs(F), (SNC) ecf2(F|c —Dr(9)).

In words, the recursive definition ¢f2(F) is based on a decomposition of the AF F into its SCCs
depending on a given set S of arguments. We illustrate the behaviour of this procedure in the following
example.

EXAMPLE 2.8

Consider the framework F from Example 2.5. We want to check whether S={a, d, ¢, g, i} is a ¢f2
extension of F (the arguments of the set S are highlighted in Figure 3). Following Definition 2.7,
we first identify the SCCs of F, hence SCCs(F)={C1, C,,C3} as in Example 2.5. Due to the attack
(d,f) and d € S we obtain f as the only component-defeated argument, thus Dg(S)={f}. This leads
us to the following checks (see also Figure 4 that shows the involved sub-frameworks). Note here
that in case F'|¢, —Dp(S)=F|c; we only write (SNC;) € ¢f2(F|c;).

(1) (SNCy)ecf2(F|c,): Flc, consists of a single SCC; hence, we have to check whether (SNCp)=
{a} e naive(F|c,), which indeed holds.

(2) (SNCp)ecf2(F|c,): Flc, consists of a single argument d (and thus of a single SCC); (SNCy) =
{d} e naive(F|c,) thus holds.

(3) (SNC3)ecf2(Flc; —{fD: Fles —{f} =Fl{e,g,h,iy consists of four SCCs, namely C4 = {e}, C5 =
{g}, C¢ ={h} and C7={i}. Hence, we need a second level of recursion for F’ =Fl{e,g.h,i) and
§"=8NC3. Note that we have Dg/(S")= {h}. The single-argument AFs F'|c, =F |}, F'|cs =
Flig), F'lc; =F|yy all satisfy (S'NC;) € naive(F'|c,); while F'|c, —{h} yields the empty AF.
Therefore, (S'NCe) =0 € ¢f2(F|c, — {h}) holds as well.

We thus conclude that S is a ¢f2 extension of F. Further cf2 extensions of F are {b,f,h}, {b,g,i} and
{c,d,e,g,i}. The extensions of the other semantics for this example are as follows:

e stable(F)=;
* adm(F)={{},{g,i}};
* pref(F)={{g.i}}.

For the stage semantics we obtain the same result as for the ¢f2 semantics, but this is not the case in
general, as we are going to discuss in the next subsection. ¢
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FIGURE 4. Tree of recursive calls for computing ¢f2(F). from Example 2.5.
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FIGURE 5. The modified AF F’.

2.3 Properties of the cf2 semantics

The ¢f2 semantics has some special properties that clearly differ from the admissible based semantics.
Especially the treatment of odd- and even-length cycles is more uniform in the case of ¢f2 semantics.

For our framework of Example 2.5 we obtain {g,i} as the only preferred extension. This comes
due to the fact that in an odd-length cycle, as is the case in this example for the arguments a, b and
¢, none of these arguments can be defended. Lets modify the framework in the sense that we include
a new argument x which makes the cycle even, as illustrated in Figure 5. Then, we obtain totally
different preferred extensions, namely {b,x,g,i}, {b,x,f,h} and {a,c,d,e,g,i}, which are conform
with the ¢f2 extensions of the modified AF F’. One possible application for the ¢f2 semantics, which
makes use of that special behaviour, would be for example that we have three agents, let us call them
A, B and C, where agent A disagrees with agent B, B disagrees with C and agent C disagrees with
agent A. Additionally, we have further arguments and attacks as in Figure 2 that are independent from
the disagreement of the agents. We would now want to have at least one of the agents to be chosen,
which is not possible with the admissible based semantics like preferred. This is exactly what the cf2
semantics does by selecting the maximal conflict-free sets of the SCC {a, b, c}. If now there comes a
fourth agent into play, let us call him X like in Figure 5, the situation of the whole framework does
not change that drastically, we just have four in turn of three agents. But now, we obtain for both
semantics, the preferred and the ¢f2 semantics, the same results.

One special case of an odd-length cycle is a self-attacking argument.
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EXAMPLE 2.9
Consider the following AF F:

\/

a<+—»>h

Then, the empty set is the only preferred extension, whereas {a} is a ¢f2 extension. The motivation
behind selecting {a} as a reasonable extension is that it is not necessary to defend a against the attack
from b, as b is a self-attacking argument. L4

Till now, we only mentioned positive properties of the c¢f2 semantics compared to the admissible
based semantics. The next example will show a more questionable behaviour.

ExamPpLE 2.10
Consider the AF F':

e «—d

We obtain stage(F)=pref (F)=stable(F)={{a,c,e},{b,d,f}}, but cf2(F)=naive(F)={{a,d},
{b,e},{c.f}.{a,c,e},{b,d,f}}. In this example, we have an even-length cycle and the ¢f2 semantics
produce three more extensions. This does not really coincide with the motivation for a symmetric
treatment of odd- and even-length cycles, as now the results differ significantly for an even-length
cycle. ¢

One suggestion to repair the undesired behaviour from Example 2.10, could be to check in
Definition 2.7 for the case |SCCs(F)|=1 whether S € stage(F) instead of S enaive(F). We leave
a formalization of this modification for future work.

The relation between the introduced semantics is illustrated in Figure 6, an arrow from semantics
o to semantics T encodes that each o-extension is also a T-extension. The relations between the ¢f2
semantics and the stable, resp. the naive semantics, are due to [6].

As pointed out in Example 2.8, there is no particular relation between the c¢f2 and the preferred
semantics, but the stage and the ¢f2 semantics coincide for this framework. The following examples
will show that there is no particular relation between stage and cf2 extensions as well.

ExampPLE 2.11
Consider the following AF F:

N/

a<+—>»p—>»c—>d
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stable

preferred

admissible

conflict-free

FIGURE 6. Relations between Semantics.

Here {a, c} is the only stage extension of F (it is also stable). Concerning the cf2 semantics, note that
F is built from a single SCC. Thus, the cf2 extensions are given by the maximal conflict-free sets of
F, which are {a,c} and {a,d}. Thus, we have stage(F) C c¢f2(F).

As an example for a framework G such that ¢f2(G) C stage(G), consider the following AF:

\/

a—————»ph<+—>»_

Then G consists of two SCCs namely C| ={a} and C, = {b, c}. The conflict-free sets of G are E1 = {a}
and Ey ={b}. Now it remains to check if E] and E; are also cf2 extensions of G. First we make the
check for E. Due to the attack (a,b) and a € E| we obtain Dg(E1)={b}. We have the following two
cases:

* (E1NCy)€cf2(Glc,), which holds, since {a} e naive(G|c,).
* (E1NC2)ecf2(Glc, —Dg(E1)), which holds, since ¥ € naive(Glyc)).

For E» we obtain Dg(E>) = . The check (E» N Cy) € ¢f2(Gl ¢, ) does not hold, since naive(G|c, )= {a}.
Hence, E; is not a ¢f2 extension of G. Thus, ¢f2(G)={E;} but stage(G)={E1, E}. ¢

3 An alternative characterization for the ¢f2 semantics

In the original definition of the SCC-recursive semantics in [7], the computation is based on checking
recursively whether a set of arguments fulfils a base function (depending on the semantics) in a single
SCC. Thus, the computation is based on a decomposition of the framework along its SCCs. Our
alternative characterization is based on the idea to decompose the framework as well, but differently
to the original approach the decomposition is only recursive in terms of a certain set of arguments,
for which we provide a fixed-point operator. This modification allows us to avoid the recursive
computation of several sub-frameworks. Instead we only compute one, possibly not connected,
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&

FIGURE 7. Separation of the AF F from Example 2.5.

framework where we eliminate the arguments and corresponding attacks which are, what we call,
‘recursively component defeated’. We start with the following concept.

DEFINITION 3.1
An AF F=(A,R) is called separated if for each (a,b)eR, Cr(a)=Cr(b). We define [[F]]=
Ucescesr) Fle and call [[F1] the separation of F.

In words, an AF is separated if there are no attacks between different SCCs. Thus, the separation of
an AF always yields a separated AF.

The separation of the framework F of Example 2.5 is depicted in Figure 7. The following technical
lemma will be useful later.

LEMMA 3.2
For any AF F and set S of arguments, UCeSCCs(F)[[F|C =S11=I[[F —S]].

PrROOF. We first note that for disjoint AFs F' and G, [[F]]U[[G]]=[[F UG]] holds. Moreover, for a
set S of arguments and arbitrary frameworks F and G, (F —S)U(G—S)=(FUG)—S is clear. Using
these observations, we obtain

U wric-sn=t U Ele-on=1C J Flo-SN=MFI-SI.

CeSCCs(F) CeSCCs(F) CeSCCs(F)

It remains to show that [[[[F]]—S]]=[[F — S]]. Obviously, both AFs possess the same arguments
A. Thus, let R be the attacks of [[[[F]]—S]] and R’ the attacks of [[F —S]]. RC R’ holds by the fact
that each attack in [[F]] is also contained in F. To show R’ CR, let (a,b)€R’. Then a,b¢S, and
Cr_s(a)=Cp—_s(b). From the latter, Cr(a)=Cr(b) and thus (a, b) is an attack in [[F]] and also in
[[F1]1—S. Again using Cr_s(a)=Cr—s(b), shows (a,b) eR. |

Next, we define the level of recursiveness a framework shows with respect to a set § of arguments
and then the aforementioned set of recursively component defeated arguments (by S) in an AF.

DEFINITION 3.3
For an AF F=(A,R) and a set S of arguments, we recursively define the level £ (S) of F wrt S as
follows:

* if SCCs(F)| =1 then £(S)=1;
« otherwise, £7(S) = 1+max({p|._pp(s)(SNC)| C € SCCs(F)}).
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For our running example we obtain the level ££(S) wrt the set S={a, d, e, g, i} as follows. {r(S)=
1+max({€p|-—pps)(SNC)| CeSCCs(F)}), where Dp(S)={f} and SCCs(F)={Cy,C2,C3} with
Ciy={a,b,c}, Co={d} and C3={e,f, g, h,i}. This leads to the following recursive calls:

* LR, (SNCH=1,

* tp, (SNCY=1,

. ZF/(S/)z1+max({€F/|C,,DF,(S/)(S’ﬂC’) |C' e SCCs(F")}). Where F'=F|c, —Dp(S), §'=5SnN
C3={e,g,i} and Dp/(S")={h}, furthermore SCCs(F')={Cy4,Cs,Cq,C7} with C4={e}, C5=
{g}, Co={h} and C7 ={i}. As all those SCCs of F’ are single SCCs, we obtain in each recursive
call level 1.

To sum up the level of F wrt S is ££(S)=3. One can compare the tree of recursive calls in Figure 3
with the computation of £ (S). When the height h of a tree is the length of the path from the root to
the deepest node in the tree, we denote the height of the computation tree for the ¢f2 semantics for
an AF F wrt S as hp(S), then £p(S)=hp(S)+1.

DEFINITION 3.4

Let F=(A,R)be an AF and S a set of arguments. We define the set of arguments recursively component
defeated by S (in F) as follows:

¢ if |[SCCs(F)|=1 then RDr(S)=0,
hd Otherwise, RDF(S):DF(S)UUCGSCCS(F)RDFleDF(S)(SmC)

We are now prepared to give our first alternative characterization, which establishes a cf2 extension
S of a given AF F by checking whether S is maximal conflict-free in a certain separated framework
constructed from F using S.

LEMMA 3.5
Let F=(A,R) be an AF and S be a set of arguments. Then,

S e cf2(F) iff S € naive([[F —RDp(S)])).

PrROOF. We show the claim by induction over ££(S).

Induction base. For ¢r(S)=1, we have |SCCs(F)|=1. By definition RDr(S)=@ and we have
[[F—RDp(S)]]1=[[F1]=F. Thus, the assertion states that S € ¢f2(F) iff § € naive(F'), which matches
the original definition for the c¢f2 semantics in case the AF has a single strongly connected
component.

Induction step. Let ££(S)=n and assume the assertion holds for all AFs F’ and sets S’ with
£g(S") <n. In particular, we have by definition that, for each C € SCCs(F), LR|Ic—Dp$)(SNC) <n.
By the induction hypothesis, we thus obtain that, for each C € SCCs(F), the following holds:

(SNC) € cf2(F|c —Dr(S)) iff (SNC) enaive([[(F|C —DF(S))—R}’C’S]D 3.1)
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where R}:,c,s:RDﬂC—DF(S)(SmC)- Let us fix now a C € SCCs(F). Since for each further C’' ¢
SCCs(F) (i.e. C#C'), no argument from RDp| ., —p,(s)(SNC’) occurs in F|c, we have

(Flc—Dp(S)— R c.s=

((F|C_DF(S))_R}:’C,S)— U RDFlc/fDF(S)(SmC/):
C'eSCCs(F);C#£C’

(F|C_DF(S)>_ U RDF|c—Dp5)(SNC)=
CeSCCs(F)

Fle=(Dr®U  |J  RDpic-pysSNO) =Fle —RD#(S).
CeSCCs(F)

Thus, for any C € SCCs(F), relation (3.1) amounts to
SNC)ecf2(F|c—Dr(S)) iff (SNC)e naive([[F|C - RDF(S)]]). (3.2)

We now prove the assertion. Let Secf2(F). By definition, for each CeSCCs(F), (SNC)e
¢f2(F|c —DF(9)). Using (3.2), we get that for each C € SCCs(F), (SN C) € naive([[F|c —RDFr(S)]]).
By the definition of components and the semantics of being maximal conflict-free, the following
relation thus follows:

U (SﬂC)enaive( U [[F|C—RDF(S)]]>.

CeSCCs(F) CeSCCs(F)

we arrive at Senaive([[FF —RDr(S)]]) as desired. The other direction is by essentially the same
arguments. |

Next, we provide an alternative characterization for RDp(S) via a fixed-point operator. In other
words, this yields a linearization in the recursive computation of this set. To this end, we require a
parametrized notion of reachability.

DEFINITION 3.6

Let F=(A,R) be an AF, arguments a,b €A and BC A. We say that b is reachable in F from a modulo
B, in symbols a:f; b, if there exists a path from a to b in F|p, i.e. there exists a sequence c1,...,C,
(n>1) of arguments such that c; =a, ¢, =b, and (c;,c;j+1) € RN(B x B), for all i with 1 <i <n.

DEFINITION 3.7
For an AF F=(A,R), DCA, and a set S of arguments,

Ars(D)=lacA|IbeS:b#a.(b.a)eR.ay " b).

The operator is clearly monotonic, i.e. Ar (D) C A s(D’) holds for D C D’. As usual, we let AOF 5=

AF s(¥)and, fori>0, A;’ §= A(A}_’;). Due to monotonicity the least fixed-point (Ifp) of the operator
exists and, with slight abuse of the notation, will be denoted as Ar s. The Af s operator applied to
the empty-set computes recursively the arguments that are defeated from outside their component.
Hence, it also takes into account that the SCCs of the framework may change during the computation.
We need two more lemmata before showing that Ag g captures RDf(S).
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LEMMA 3.8
For any AF F=(A,R) and any set SCA, AF s=DF(S).

PROOF. We have AY. ¥ s=Ars@={acA|IbeS:b#a,(b,a)€R, a4 b). Hence,ae AY, . if there
exists a b€ S, such that (b,a)€R and a does not reach b in F, i.e. b ¢ Cr(a). This meets exactly the
definition of Dg(S). ||

LEMMA 3.9
For any AF F =(A,R) and any set S € ¢f (F),

Ars=DrS)U | Aric—pes).sne).
CeSCCs(F)

PrOOF. Let F=(A,R). For the C-direction, we show by induction over i>0 that A;',’ s<
DF(S)UUC&SCCs(F) AF|-—Dp(s),(snc)- To ease notation, we write Ap g ¢ as a shorthand for
AFIC—DF(S),(SDC)’ where C eSCCs(F).
Induction base. For i=0, A%S SDFSUUcescesr) Ar.s,c follows from Lemma 3.8.
Induction step. Let i >0 and assume Af,’s SDFSUUcescesr) AF.s.c holds for all j<i. Let
ae A"F,S. Then, there exists ab €S, such that (b,a)eR and a #? b, where D=A\ A’ 1 Afb¢ Cr(a),

we have also a#f;b and thus a € Dp(S). Hence, suppose b€ Cr(a). Then, agEDF(S) and, since
Secf(F)and beS, also b¢ Dp(S). Thus, both a and b are contained in the framework F|c —Dp(S)
(and sois the attack (b,a)) for C= Cp(a) Moreover, b € (SN C). Towards a contradiction, assume now
a¢ AF s,c- This yields that a:>F‘ D (S)b for D’ A\AF s,C, 1.e. there exist arguments cy,...,c

(n>1) in F|c—DFr(S) but not contained in AF,S,C, such that c; =a, ¢, =b, and (¢;,cit+1) €R, for
all i with 1 <i<n. Obviously all the ¢;’s are contained in F as well, but since a#? b (recall that

D:A\Aj{;), it must hold that at least one of the ¢;’s, say c, has to be contained in A;_;. By the

induction hypothesis, we get c€ Ap, s,C» a contradiction.
For the D-direction of the claim we proceed as follows. By Lemma 3.8, we know that Dr(S) = F s
and thus Dr(S)C Af,s. It remains to show that UCeSCCs(F) AF|c—Dr(5),(5nC) S AF,s. We show

Fle—Dy(S), (SﬂC)CAF s holds for each C e SCCs(F). Thus, let us fix a
C eSCCs(F) and use AF scasa shorthand for AF|C —Dp(S).(SNC)"

Inductionbase. Leta AF,S,C‘ Then, thereisab € (SNC), such that b attacks ain F' = F|¢c — Dg(S)
and a#él, b, where A’ denotes the arguments of F’, i.e. A’=C\Dg(S). Since F|¢ is built from a
SCC C of F, it follows that a5 " b. Since be S, (b,a) €R, and Dr(S) = A s (Lemma 3.8), we
getae A}V’S CAFfs.

by induction over i that Al

Induction step. Let i >0 and assume A%,S,c CAfsforallj<i.Letae A%’S’C. Then, there is a

be(SNC), such that b attacks a in F/ and a #Q: b, where D' =A"\ A}_;C Towards a contradiction,
suppose a¢ Af 5. Since b€ S and (b,a) €R, it follows that there exist arguments cy,...,c, (n>1)
in F\ Af g, such that c; =a, ¢, =b, and (c;,c;+1) €R, for all i with 1 <i<n. All these c;’s are thus
contained in the same component as a, and moreover these ¢;’s cannot be contained in Dg(S), since
Dr(S)C AF s. Thus, they are contained in F|c —Dp(S), but since a #?: b, there is at least one such

¢i, say ¢, contained in A}_; c- By the induction hypothesis, c € Af g, a contradiction. |

‘We now are able to obtain the desired relation.
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LeEmMA 3.10
For any AF F=(A,R) and any set S ecf(F), Ar,s =RDFp(S).

PROOF. The proof is by induction over £z (S).

Induction base. For ££(S)=1, |SCCs(F)| =1 by Definition 3.3. From this and Definition 3.4, we
obtain RDp(S)=Dr(S)=¥. By Lemma 3.8, A(,):’SzDF(S)z(Z). By definition, Ar s=0 follows
from A%,S =0.

Induction step. Let £p(S)=n and assume the claim holds for all pairs F/, S’ ecf(F'),
such that £7(S") <n. In particular, this holds for F'=F|c—Dg(S) and §'=(SNC), with Ce
SCCs(F). Note that (SNC) is indeed conflict-free in F|c—Dp(S). By definition we have,
RDF(S)=DF(S)UUCesccs(F)RDﬂc—DF(S)(SmC) and by Lemma 3.9 we know that Ap g=
DF(S)UUCESCCS(F) AF\@*DF(S),SQC- Using the induction hypothesis, i.e. AF\chF(S),SﬂCZ
RDF|.—Dr(5)(SNC), the assertion follows. |

We finally reached our main result in this section, i.e. an alternative characterization for cf2
semantics, where the need for recursion is delegated to a fixed-point operator.

THEOREM 3.11
For any AF F, cf2(F)={S|S ecf (F)Nnaive([[F — Af s1D}.

ProOOF. The result holds by the following observations. By Lemma 3.5, S € ¢f2(F) iff S € naive([[F —
RDFr(S)]]). Moreover, from Lemma 3.10, for any Secf(F), Ar s =RDF(S). Finally, S €cf2(F)
implies S € ¢f (F) (see [7], Proposition 47). |

ExaMPLE 3.12

To exemplify the behaviour of Ag ¢ and [[FF— AF s]], we consider the AF F and S={a.d,e,g,i}
from Example 2.8. In the first iteration of computing the Ifp of Af 5, we have Af s(¥)={f} because
the argument f is the only one that is attacked by S but its attacker d is not reachable by f in F.
In the second iteration, we obtain Ar s({f})={f,/}, and in the third iteration we reach the 1fp with
Afr s{f,h}))={f.h}. Hence, [[F — AF s]] of the AF F wrt § is given by

[[F — AF s11=({a,b,c,d,e,g,i}.{(a,b), (b,c),(c,a)}).

Figure 8 shows the graph of [[F— AF s]]. It is easy to see that S € naive([[F — AFf s]]) as expected,
since S € ¢f2(F). For comparison, Figure 9 shows the graph of [[F'— AFr ¢/]] wrt the c¢f2 extension
S'={b,f,h} consisting of two SCCs. ¢

a\b 5
c/ e i

FIGURE 8. Graph of instance [[F — AF s]] of Example 3.12.
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\ g

FIGURE 9. Graph of instance [[F' — AFf ¢/]] of Example 3.12.

a

c

4 Complexity analysis

In this section, we investigate the computational complexity of the cf2 semantics. We consider the
following decision problems for given F =(A,R), a€A and S CA:

* Verep:is Se€cf2(F)?

* Cred.p: is a contained in at least one ¢f2 extension of F'?
* Skeptp: is a contained in every ¢f2 extension of F?

* NEp: is there any S € ¢f2(F) for which S ##?

So far, the only mentionable reference in this context is the article of Nieves et al. [19], where the
authors state that the decision problem Ver.p, is in P. In the following, we prove this statement with
the help of our alternative characterization.

THEOREM 4.1
Ver,p is in P.

PRrROOF. For any AF F=(A,R) and a set S CA, to check if S € ¢f2(F) can be computed in polynomial
time. We show that all steps in Definition 3.11 are in P. Verifying if S € ¢f(F) and S € naive(F) can be
done in polynomial time. Given Af s, computing the instance [[F'— Ar s]] can be done efficiently;
this follows from known results about graph reachability and efficient algorithms for computing
SCCs [22]. It remains to show that the operator A s(D) reaches its fixed-point after a polynomial
number of iterations. The operator is clearly monotonic, and it is easy to see that in every iteration
less or equal connections between the arguments do exist. Hence, the computation terminates when
no argument a is attacked from any b€ S, and a #’;\D b. |

For the hardness proofs of Cred.s,; and Skept.p, we use the standard reduction from propositional
formulas in conjunctive normal form (CNF) to AFs as in [10, 13].

DEFINITION 4.2
Givena3-CNF formula g = /\szl Cjoveratoms Z with C; =11 V1jp V13 (1 <j <m)the corresponding
AF Fy=(Ayp,Ry) is built as follows:

Ay = ZUZU{Cy,...,Cn}U{p}U{—gp}

Ry =1{(2,2),(z2,2)|12€ Z}U{(Cj, ) j €{1,...,m}}U{(p,—p)} U
{zCpljell,....m},zelljn, i, [j3}}U
{@Cpljell,....m},—~zelljn, i, lj3}}

Figure 10 illustrates the AF F, for the formula ¢ =(z1 V22 VZ3) A (m22 V=23 V —24) A(—21 V22 V 24).
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q‘:‘ ¢
C?

FIGURE 10. AF F, for the example 3-CNF ¢.

LEMMA 4.3
For any ¢f2 extension E of the AF Fy=(Ay,Ry) and z; € Z for i€ {1,...,n}, either z; €E or z; € E.

Proor. The AF F, has the following singleton SCCs {¢}, {—¢}, and C; (1 <i <m). The remaining
SCCsare Cj, €{Cy,,...,Cy,}, with Cj, ={z;, z;}. As all Cj, are not attacked from outside their component
they remain unchanged in [[Fyy — Af,, g]] and naive(Fy, |C1i )={{zi},{zi}}. Hence,eitherzie Eorz; € E
(but never both). |

THEOREM 4.4
Credp is NP-complete.

ProoF. For hardness, we show that any 3-CNF formula ¢ is satisfied iff the corresponding AF Fy,
as in Definition 4.2 has a ¢f2 extension containing ¢.

For the if direction, let ¢ be a 3-CNF formula over Z and M CZ a model of ¢. We show that £ =
{{zilzi e M}U{z; | z; e Z\M}U{p}} is a ¢f2 extension of F,. We need to show that (i) E is conflict-free
in Fy and (i) E € naive([[Fy — AF, E]]). As to (i), from Lemma 4.3 we know that for all i€ {1,...,n}
either z; or Z; is in E, so there are no conflicts between the arguments in Z and Z. The argument
@ is not attacked by any z; at all. Hence, E € cf(Fy). As to (ii), let us first compute Ap, o Eo where
Af, EW)={x€Ay | €E:l#x,(l,x) ERy,x £ I}. As M is amodel of ¢, all clauses in ¢ are satisfied,
hence, YC;3l; such that (/;, Cj) € Ry, where [; € {z;,z;} forj={1,...,m} andi={1, ..., n}. Furthermore,
p€E,(p,—¢)€Ry and —¢ # ¢. Therefore, we obtain AFWE(QJ)z {C1,...,Cn,—¢p}, whichis also the
Ifp AFW,E~ Finally, we compute the instance [[Fy — AFWE]] =Ap\{C1,....Cn, =9}, {(2,2),(z,2) |z €
Z}). It is easy to see that E € naive([[Fy — pr,E]]) holds.

Only if: Let E € ¢f2(F ) such that ¢ € E. We show that M ={z; | z; € E}U{—z; | z; € E} is a model of
¢.As ¢ € E we know that it is not attacked by any d € AF, E. Assume there exists a Cj & AF, E with
(Cj,p)€Ry. We know Cj €E because E €cf(Fy), hence from Definition 3.7 we conclude there
is no x€E such that (x,C;)€Ry. In this case, the argument C; is contained in [[Fy — AFr,.Ell
but this is a contradiction to E € naive([[Fy— AFq,,E]]), because the set E/:EU{Cj} is conflict-
free in [[Fy — AFWE]]. It follows that for each C; there exists a [; € {z;,z;} such that (I;, Cj) € Ry,
for j={1,...,m}. This means that for every clause C; there exists a literal /[; € M. Hence, M is a
model of ¢.

For membership one can construct an algorithm as follows. For any AF F'=(A,R) and a € A, guess
S CA with a€§ and check S € ¢f2(F). As Ver.p, €P, this yields an NP algorithm. |
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TaBLE 1. Complexity of decision problems (C-c denotes completeness for class C)

cf2 stable stage adm pref
Vers in P in P coNP-c in P coNP-c
Cred, NP-c NP-c P NP-c NP-c
Skept,; coNP-c coNP-c 1'[12D -c Trivial 1'[5 -c
NE, in P NP-c inL NP-c NP-c

THEOREM 4.5
Skept,. is coNP-complete.

PrOOF. For hardness, we show that a given 3-CNF formula ¢ is unsatisfiable iff —¢ is contained
in every cf2 extension of Fy, where Fy, is constructed following Definition 4.2. From the proof
of Theorem 4.4, we already know that ¢ is contained in a ¢f2 extension iff ¢ is satisfiable. By
definition of the ¢f2 semantics, it is easily seen that each ¢f2 extension of F, which does not contain
argument ¢, has to contain —¢. Thus, in case ¢ is unsatisfiable, argument —¢ is indeed skeptically
accepted.

Membership can be shown as follows via the complementary problem. Thus, for given AF F =
(A,R) and a€ A we guess a set S with a¢ S and check S € ¢f2(F). As Ver.p €P, this yields an NP
algorithm for the complementary problem of Skept . Hence, Skept s, is in coNP. |

THEOREM 4.6
NEpeP.

PrROOF. Recall, that for every AF F it holds that each ¢f2 extension of F' is also a naive extension
of F. Thus, in case we have that F possesses only the empty set as its ¢f2 extension, we know that
the empty set is also the only naive extension of . However, this is only the case if all arguments
of F are self-attacking. Thus to decide whether there exists a non-empty cf2 extension, of an AF
F=(A,R), it is sufficient to check if there exists any argument a € A such that (a,a) ¢ R. This can be
done in polynomial time. ]

Our results are summarized in the first column of Table 1 together with results of the other semantics
used in this context ([10, 13—15]). We observe that the complexity of the ¢f2 semantics behaves slightly
different to these semantics.

5 Strong equivalence of argumentation semantics

So far, we have focused exclusively on the ¢f2 semantics. In this section, we will show a distinguished
feature of the cf2 semantics, which separates it from all other important semantics proposed for
abstract argumentation. In a nutshell, this particular property states that each attack in an AF has
a potential ‘meaning’ under the cf2 semantics, while this is not the case for other semantics where
attacks may be redundant as the following example illustrates.
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ExAMPLE 5.1
Consider the following AFs F and G.

v,

a—-bb—b—c a b—»

\\ \_/

e

a

For both AFs there does not exist any stable extension, hence stable(F)=stable(G)=/{.
Now, we add the new AF H=({b,e},{(b,e)}), then they still have the same stable extensions
stable(F UH)=stable(GUH)={{b,d}}, as highlighted in the following graphs.

a—b—b—b—c

\\ \\,/

In fact, the attacks {(a,b),(e,b)} in F as well as the attacks {(a,d), (e,c), (e,d)} in G are redundant
under the stable semantics. Furthermore, it can be shown that no matter which framework H one
adds to F and G they will always posses the same stable extensions. L4

The concept described in Example 5.1 has been analysed by Oikarinen and Woltran in [20] and is
defined as strong equivalence.

DEFINITION 5.2

Two AFs F and G are strongly equivalent to each other wrt a semantics o, in symbols F ={ G, iff
foreach AF H, o (FUH)=0(GUH).

By definition, F'=¢ G implies o (F)=0(G), but the other direction is not true in general.

In what follows, we show that for the ¢f2 semantics strong equivalence coincides with syntactic
equivalence. Afterwards, we characterize strong equivalence for the stage and naive semantics, both
of them have not been considered in [20].

5.1 Strong equivalence wrt cf2 semantics

Interestingly, it turns out that for this semantics there are no redundant attacks at all. In fact, even in
the case where an attack links two self-attacking arguments, this attack might play a role by gluing
two components together. Having no redundant attacks means that strong equivalence coincides with
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syntactic equivalence. Before we give the next theorem we provide two lemmata that will also be
useful later.

LeEmmA 5.3
For any AFs F and G with A(F)#A(G), there exists an AF H such that A(H) CA(F)UA(G) and
o(FUH)#0(GUH), for the semantics o € {naive, stage, cf2}.

PROOF. Incase o (F)#0(G), we just consider H=({,) and get 6 (FUH) #0(GUH). Thus assume
o0(F)=0(G) and let wlog. a € A(F)\A(G). Thus for all E€o(F), a¢E. Consider the framework
H=({a},®). Then, for all E' €6(GUH), we have acE’. On the other hand, FUH =F and also
o(FUH)=0(F). Hence, a is not contained in any £ € 0 (FUH), and we obtain o (FUH) # 0 (GUH).

|

LEMMA 5.4
For any AFs F and G such that (a,a) € R(F)\ R(G) or (a,a) € R(G) \ R(F), there exists an AF H such
that A(H) CA(F)UA(G) and o (FUH) #A0(GUH), for o € {naive, stage, cf2}.

PrROOF. Let the self-attack (a,a) € R(F)\R(G) and consider the framework H =(A, {(a,b),(b,b)|
a,beA,a#b}) with A=A(F)UA(G). Then 6 (GUH)={a} while o (FUH)={#} for all considered
semantics o € {naive, stage,cf2}. For example, in case o0 =cf2 we obtain Agun g=1{b|bcA\{a}}.
Moreover, {a} is conflict-free in GUH and {a} € naive(G’), where G'=(GUH)— Agup g =({a},?).
On the other hand, ¢f2(FUH)= {4} since all arguments in FUH are self-attacking. The case for
(a,a) e R(G)\R(F) is similar. |

THEOREM 5.5
For any AFs F and G, F Eéﬂ Giff F=G.

ProoF. Since for any AFs F'=G obviously implies for all AFs H, cf2(FUH)=cf2(GUH), we only
have to show that if F'# G there exists an AF H such that ¢f2(FUH) #cf2(GUH).

From Lemma 5.3 and Lemma 5.4 we know that in case the arguments or the self-loops are not equal
in both frameworks, there exists an AF H such that ¢cf2(FUH) #cf2(GUH). We thus assume that
A=A(F)=A(G) and (a,a) € R(F) iff (a,a) € R(G), for each a € A. Let us thus suppose wlog. an attack
(a,b) e R(F)\R(G) and consider the AF

H = (AU{d,x,y.z}.{(a,a),(b,b),(b,x),(x,a),(a,y),(y,2),(z,a),(d,c) |c € A\{a, b}}),

see also Figures 11 and 12 for illustration. Then, there exists a set E ={d, x, z}, such that E € ¢cf2(F UH)
but E € cf2(GUH). To show that E € ¢f2(F UH), we first compute Apyp g ={c|c€A\{a,b}}. Thus,
in the instance [[(FUH)— Arun £]] we have two SCCs left, namely C; ={d} and Co ={a,b,x,y,z}
as illustrated in Figure 13. Furthermore, all attacks between the arguments of C, are preserved,
and we obtain that E enaive([[(FUH)— Arun,£l]), and as it is also conflict-free we have that
E e cf2(FUH) as well. On the other hand, we obtain Agug, g ={a}U{c|c €A\ {a,b}}, and the instance
G =[[(GUH)— Agug.l] consists of five SCCs, namely Cy ={d}, Co ={b}, C3={x}, C4={y} and
Cs={z}, with b being self-attacking as illustrated in Figure 14. Thus, the set E'={d,x,y,z} DE
is conflict-free in G'. Therefore, we obtain E ¢naive(G’), and hence, E €cf2(GUH). F ¢§f2 G
follows.

|

In other words, the proof of Theorem 5.5 shows that no matter which AFs F' # G are given, we
can always construct a framework H such that cf2(FUH) # cf2(GUH). In particular, we can always
add new arguments and attacks such that the missing attack in one of the original frameworks leads
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FIGURE 14. [[((GUH)— Agun.£]l.

to different SCCs in the modified ones and therefore to different ¢f2 extensions, when suitably
augmenting the two AFs under comparison.

The cf2 semantics is the only semantics considered so far, where strong equivalence coincides
with syntactic equivalence. This can be seen as another special property of the ¢f2 semantics that
gives raise to a more formal investigation. Therefore, we introduce a new property for argumentation
semantics that we call the succinctness property. In contrast to strong equivalence that considers
particular AFs, the succinctness property denotes a general property for argumentation semantics
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and is comparable to the evaluation criteria proposed in [4]. Hence, it is independent of the specific
instantiation method.

In Example 5.1 we already talked informally about redundant attacks in AFs, in the next definition
we make this idea formal; for AFs F =(A,R) and F’ =(A’,R’) we write F CF’ to denote that A CA’
and R C R’ jointly hold. Moreover, we use F \ (a,b) as a shorthand for the framework (A, R\ {(a,b)}).

DEFINITION 5.6
For an AF F =(A,R) and semantics o we call an attack (a,b) € R redundant in F wrt o if for all F’
with FCF’, o (F)=0(F'\(a,b)).

The succinctness property identifies to which extended attacks contribute in terms of a given
semantics. In other words, we are interested here in how many attacks are possibly ignored in
the computation of a semantics. The concept of succinctness is now captured as follows.

DEFINITION 5.7
An argumentation semantics o satisfies the succinctness property or is maximal succinct iff no AF
contains a redundant attack wrt o .

The following theorem gives the link between the succinctness property and strong equivalence.'

THEOREM 5.8

An argumentation semantics o satisfies the succinctness property iff for any AFs F, G with A(F)=
A(G) it holds that strong equivalence between F and G wrt ¢ (F =Y G) coincides with syntactic
equivalence, i.e. F=G.

PrOOF. Suppose o does not satisfy the the succinctness property, i.e. there exists an AF F and an
attack (a,b) in F such that o (FUH)=0((F\(a,b))UH) for any AF H. Obviously, F and F\ (a,b)
are given over the same arguments and we have F=¢ F\ (a,b) but F #F\(a,b).

Suppose we have AFs F, G with A(F)=A(G) such that F # G and F =, G. And wlog let (a,b) be
an attack in F which does not occur in G. Since F =} G, 0 (FUH)=0(GUH), in particular for all
H not containing (a, b). Since FUHU(a,b)=FUH, we get that 6 (GU(a,b)UH)=0(GUH) for all
H. By setting G’ =GU(a, b), we observe that (a,b) is redundant in G’ wrt. . Hence, o cannot be
maximal succinct. |

From Theorems 5.5 and 5.8 we conclude that the ¢f2 semantics satisfies the succinctness property.

5.2 Strong equivalence wrt other semantics

To complete the picture about strong equivalence and succinctness, we give characterizations for
strong equivalence wrt the stage and the naive semantics. As it turns out, these characterizations will
be different to syntactical equivalence. By Theorem 5.8, these two semantics are thus not maximal
succinct. Recall that the results in [20] in combination with Theorem 5.8 show that many other
semantics are not maximal succinct, as well.

To characterize strong equivalence, Oikarinen and Woltran used in [20] so-called kernels for
different semantics that implicitly remove the redundant attacks of the compared frameworks. As

IThe result as stated here requires A(F)=A(G), since we do not impose any prerequisites on the given semantics o.
However, in case A(F) #A(G) implies F #] G (as it is the case for all semantics studied in terms of strong equivalence so far,
see also Lemma 5.3), the result is even stronger saying that succinctness holds, if and only if, strong and syntactic equivalence
coincide.
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FIGURE 15. FUH.

shown in [20], deciding strong equivalence then amounts to checking the syntactic equivalence of the
kernels of the two compared frameworks. More precisely, such kernels have been provided for many
important semantics, viz. for admissible, preferred, ideal, semi-stable, eager, complete and grounded
semantics. All these kernels are non-trivial in the sense that certain attacks are removed.

In order to characterize strong equivalence wrt stage semantics, we require here exactly the same
kernel as already used in [20] to characterize strong equivalence wrt stable semantics.

EXAMPLE 5.9
Consider the frameworks F and G:

They only differ in the attacks outgoing from the argument a which is self-attacking and yield
the same single stage extension, namely {c}, for both frameworks. We can now add, for instance,
H=({a,c},{(c,a)}) and the stage extensions for FUH and GUH still remain the same. In fact, no
matter how H looks like, stage(F UH)=stage(GUH) will hold. ¢

The following kernel reflects the intuition given in the previous example.

DEFINITION 5.10
For an AF F = (A, R), define F*¥ = (A, R) where

R*=R\{(a,b)|a#b,(a,a)<R}.

THEOREM 5.11

For any AFs F and G, F =3¢ G iff F*k =G,

PROOF. Only-if: Suppose F* £ G**| we show that F ;éﬁmge G. From Lemmas 5.3 and 5.4 we know
that in case the arguments or the self-loops are not equal in both frameworks, F Eimge G does not
hold. We thus assume that A=A(F)=A(G) and (a,a) € F iff (a,a) € G, for each a € A. Let thus wlog
(a,b) e Fsk \G‘Yk. We can conclude (a,b) € F and (a,a) ¢ F, thus (a,a)¢ G and (a,b) ¢ G. Let c be a
fresh argument and take

H={AU{c}.{(b,b)}U{(c.d)|d € A}U{(a,d)|d e AU{c}\{b}}).

Then, {a} is a stage extension of FUH (it attacks all other arguments) but not of GUH (b is not
attacked by {a}); see also Figures 15 and 16 for illustration.
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FIGURE 16. GUH.

For the if-direction, suppose F*K = G*. Let us first show that F** = G* implies ¢f (FUH)=cf (GU
H), for each AF H. Towards a contradiction, suppose such an H exists and wlog let T ecf(FUH)\
¢f(GUH). Since Fk =G we know A(F)=A(G). Thus there exist a,b€T (not necessarily a #b)
such that (a,b)e GUH or (b,a)e GUH. On the other hand (a,b)¢ FUH and (b,a)¢ FUH hold
since a,beT and T ecf (FUH)). Thus, in particular, (a,b) ¢ F and (b,a) ¢ F as well as (a,b) ¢ H and
(b,a) ¢ H; the latter implies (a,b) € G or (b,a) € G. Suppose (a,b) € G (the other case is symmetric).
If (a,a) € G then (a,a) € G**, but (a,a) ¢ F** (since a € T and thus (a,a) ¢ F). If (a,a) ¢ G, (a,b) € G
but (a,b) ¢ Fk (since (a, b) ¢ F). In either case Fk # G**, a contradiction.

We next show that F** =G** implies (FUH)** =(GUH)% for any AF H. Thus, let (a,b) e (FU
H)**, and assume F = G ; we show (a,b) € (GUH)**. Since, (a,b) € (FUH)** we know that (¢, a) &
FUH and therefore, (a,a) gZFSk, (a,a) ¢G“k and (a,a) ¢H“k. Hence, we have either (a,b) € F*¥ or
(a,b) € H% . In the later case, (a,b) € (GUH)* follows because (a,a) & G** and (a,a) ¢ H**. In case
(a,b)e F**, we get by the assumption F’ sk — G*%_ that (a, b) € G** and since (a,a) ¢H sk it follows that
(a,b)e (GUH)*.

Finally we show that for any frameworks K and L such that K sk—p5k and any Secf(K)Ncf (L),
S; (K)= Sl—e'— (L). This follows from the fact that for each s € S, (s, 5) is neither contained in K nor in L.
But then each attack (s,b) €K is also in Kk , and likewise, each attack (s,b) € L is also in L% Now
since K¢ =L, SF(K)=S} (L) is obvious.

Thus, we showed that, given F sk — GS* | the following relations hold for each AF H: c¢f(FU
H)=cf(GUH); (FUH)* =(GUH)*; and S§ (FUH)=S3(GUH) holds for each Secf(FUH)=
¢f(GUH) (taking K=FUH and L=GUH). Thus, stage(FUH)=stage(GUH), for each AF H.
Consequently, F' =°G. ]

The second semantics we consider here is the naive semantics, as it is closely related to the ¢f2
semantics and has not yet been included in [20]. Here, strong equivalence is only a marginally more
restricted concept than standard equivalence, namely in case the two compared AFs are not given
over the same arguments. To prove the next theorem we need the following lemma.

LEMMA 5.12
Let F and H be AFs and S be a set of arguments. Then, S € ¢f (FUH) iff, jointly (SNA(F)) € cf (F)
and (SNA(H))ecf(H).

PROOF. The only-if direction is clear. Thus suppose S ¢ c¢f (F UH). Then, there exist a,b €S, such
that (a,b) e FUH. By our definition of ‘U’, then (a,b) € F or (a,b) € H. But then (SNA(F)) ¢ cf (F)
or (SNA(H)) ¢ cf (H) follows. |
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THEOREM 5.13 _
The following statements are equivalent: (1) F =" G; (2) naive(F) =naive(G) and A(F)=A(G);
B) ¢f (F)=cf(G) and A(F)=A(G).

ProOOF. (1) implies (2): basically by the definition of strong equivalence and Lemma 5.3.

(2) implies (3): Assume naive(F)=naive(G) but cf (F) #cf (G). Wlog let S € ¢f (F)\ ¢f (G). Then,
there exists a set §’ 2.5 such that S’ € naive(F) and by assumption then S’ € naive(G). However, as
S & cf (G) there exists an attack (a,b) € R(G), such that a,b€ S. But as SCS’, we have S’ €cf(G) as
well; a contradiction to S’ € naive(G).

(3) implies (1): Suppose F ;é?‘"w G, i.e. there exists a framework H such that naive(FUH)#
naive(GUH). Wlog let now S € naive(FUH)\ naive(GUH). From Lemma 5.12 one can show that
(SNA(F)) € naive(F) and (SNA(H)) € naive(H), as well as (SNA(G) ¢naive(G). Let us assume S’ =
SNA(F)=SNA(G), otherwise we are done yielding A(F)#A(G). If S’ ¢ ¢f(G) we are also done
(since S’ € ¢f (F) follows from S’ € naive(F)); otherwise, there exists an $” D', such that §” € ¢f (G).
But 8" ¢ ¢f (F), since S’ € naive(F). Again we obtain cf (F) # ¢f (G) which concludes the proof. W

It follows that the stage and naive semantics are not maximal succinct due to Theorem 5.8.

6 Discussion

In this article, we investigated the ¢f2 semantics in several ways. We introduced an alternative
characterization that is based on a certain fixed-point operator in order to avoid the more involved
recursions from the original definition [7]. With this new characterization we were able to prove
complexity results for the reasoning problems Verp, NE.p, Credp and Skept ;. While the former
two problems can be decided in polynomial time we obtained that Cred. is NP-complete and
Skept,s, is coNP-complete. Except for NEg, the ¢f2 semantics thus has the same complexity as
the stable semantics. Let us mention here also that the behaviour of the ¢f2 semantics is similar
to the stage semantics. Both semantics are based on the computation of conflict-free sets, they can
select arguments out of an odd-length cycle and they are not influenced by self-attacking arguments.
However, for the stage semantics both, credulous and skeptical acceptance are on the second level
of the polynomial hierarchy. This mirrors the benefit of using graph-theoretic properties for the
computation of extensions. Furthermore, it shows that the graph representation is not only useful
for illustrating the frameworks, but also for using the structural properties in the characterization of
the semantics. Additionally, our new characterization of the ¢f2 semantics allowed us to provide a
relatively compact encoding for computing cf2 extensions in terms of logic programs; these reductions
have been incorporated to the ASP-based argumentation system ASPARTIX, see [16, 17] for details.

The newly introduced succinctness property allows to relate the semantics according to how much
meaning every attack has for the computation of the extensions. It can be seen as an additional
possibility to compare argumentation semantics. Amgoud and Vesic criticized in [2] that the notion
of strong equivalence as introduced in [20] is too strong and has no practical application at all. We do
agree that for logic-based argumentation systems no self-attacking arguments exist, but if one uses a
different formalism for the instantiation process, like the ASPIC+ system [21] or ASP (as proposed
by Dung in [11]), self-attacking arguments can occur. Therefore, knowing about redundant attacks
for specific semantics, and the classification of them in terms of succinctness, is useful and can make
the evaluation easier. As redundant attacks have no influence, they can be omitted already during the
instantiation process that can be a useful optimization step.
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For future work, we will investigate the option to adapt the cf2 semantics by replacing the
naive semantics by stage semantics as a base function; recall Example 2.10 where we illustrated
a certain undesired behaviour of the ¢f2 semantics for even cycles. Concerning the newly introduced
succinctness property, we have already classified most of the argumentation semantics that are
considered important nowadays. So far, ¢f2 semantics is the only one that satisfies this property.
As a next step, an investigation of the resolution-based semantics [5] is planned. In particular, we
claim that the resolution-based grounded semantics behaves here like the grounded semantics itself,
which, as we already know from [20] and Theorem 5.8, violates the succinctness property. Finally,
it also would be interesting to consider different levels of succinctness to have a more fine-grained
classification of different semantics.
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