
Diplomarbeit

Application of a monocular camera

as a motion sensor for mobile robots

Tobias Pietzsch
geboren am 25. Dezember 1975 in Rodewisch

Fakultät Informatik
Technische Universität Dresden

eingereicht am 1. März 2004

Betreuender Hochschullehrer: Prof. Dr. Steffen Hölldobler
Betreuer: Dr. Axel Großmann

Contents

1 Introduction 5

2 Foundations and Preliminary Work 9
2.1 Notation . 9
2.2 Camera model and calibration 10

2.2.1 The pinhole camera model 11
2.2.2 Lens distortion . 12
2.2.3 Camera calibration . 13

2.3 Epipolar geometry . 14
2.3.1 The fundamental matrix 16
2.3.2 The essential matrix 16

2.4 Sequential alignment of image triples 17
2.4.1 Relative orientation of two views 17
2.4.2 Relative orientation of an image triple 20
2.4.3 Concatenating image triples 21

2.5 Bundle Adjustment . 22
2.6 System architecture . 24

3 From Images to Point Features 27
3.1 Kanade-Lucas-Tomasi feature tracker 28

3.1.1 The KLT tracking equation 28
3.1.2 Selecting good features 29

3.2 Implementation issues . 30
3.2.1 Pyramidal implementation 30
3.2.2 Image smoothing . 31
3.2.3 Subpixel computation 31
3.2.4 Feature selection . 32
3.2.5 Unimplemented features 33

3.3 Optimizing for speed . 33
3.3.1 General approach . 33
3.3.2 Efficient blur and gradient filters 34
3.3.3 Feature selection . 36

3.4 Experimental results . 38

3

4 CONTENTS

4 Dealing With Outliers 41
4.1 Outliers and Robustness . 42
4.2 The RANdom SAmple Consensus 42

4.2.1 The basic idea . 44
4.2.2 Choosing a threshold on the distance 44
4.2.3 Determining how many samples to take 45
4.2.4 Application to finding outliers in tracked features . . . 46

4.3 Alternative random sampling methods 47
4.4 Implementation . 49

5 Using Redundant Information 51
5.1 Linear fitting of motion estimates 52
5.2 Estimating rotations . 53
5.3 Estimating translations . 54
5.4 Re-estimating epipolar geometry with fixed rotation 55

6 Experimental Results 57
6.1 Simulation . 57

6.1.1 Setup . 58
6.1.2 Results . 59

6.2 Robot vision experiments . 63
6.2.1 Setup . 64
6.2.2 Results . 67

6.3 Discussion . 70
6.3.1 3D mapping as a potential application 73

7 Conclusion 75

A Quaternion Rotations 77

Chapter 1

Introduction

Reliable navigation is an important ability for mobile robots, crucial to the
successful achievement of most higher-level goals. Mobile robot localization
and environment mapping have been important research topics for the past
years. Now, the state of the art is referred to as Simultaneous Localisation
And Mapping (SLAM), where an environment map is build and the robot is
localized therein, simultaneously. Traditionally, most approaches use precise
distance sensors, such as laser range finders. Often, due to the properties of
the sensors localization is carried out in 2D maps, restricting applicability
to planar structured environments, such as offices and corridors.

Vision sensors are capable of providing much more information, and can
be seen as the best sensing modality for mobile robots. The data provided
by a single camera is essentially 2D as well, but using stereo cameras or
monocular image sequences, full spatial information can be reconstructed.
Reconstruction from images is a thoroughly investigated topic in computer
vision. The major obstacle for extensive use of vision sensors is computa-
tional complexity. But with the increase in computing power we experienced
in the past few years, full real-time spatial information from cameras seems
to be within our grasp in the near future. Our goal is to explore potential
uses for vision sensors in the context of robot localization and mapping. The
focus of this thesis is on the application of a camera as a position sensor. On
the other hand, large parts of the presented work are prerequisites for the
reconstruction of scene structure as well, e.g. feature tracking and outlier
detection.

In previous work [32] we developed an efficient method for estimating
camera/robot motion from a sequence of monocular images using classical
structure from motion methods. As a starting point we used known 2D
feature positions and correspondence between them across images, i.e., we
assumed that some level of abstraction from raw images had already been
achieved.

A major goal of the present work is to supply the missing preprocessing

5

6 CHAPTER 1. INTRODUCTION

stages that will allow us to start from raw image data. Specifically, we need
to identify 2D features and track them through a sequence of images. Our
motion estimation method assumes that all the feature points correspond to
fixed 3D entities in a rigid scene, and thus that the image motion of features
is due purely to the motion of the camera. Therefore, before automatically
detected features can be used as input data for position estimation, we need
to pass them through an outlier detection stage where features that do not
conform to our assumptions are rejected.

Another goal is to evaluate our position estimation approach in real-
world experiments. As a platform for experimentation we use a Pioneer
2 mobile robot which is equipped with a CCD camera. We compare our
results with those of a commercial Bundle Adjustment solution.

All stages of the algorithm have been implemented, integrated and
tested. Features are detected and tracked in real-time by an on-board lap-
top. The resulting data is passed through an outlier detection stage where
incorrectly tracked features are discarded. The path of the robot is re-
constructed from the remaining inlier data. The result is a system which
computes the trajectory of the robot from a sequence of camera images. The
method is suitable for real-time application. However, some open problems
remain. Presently, we cannot handle pure rotations. Errors in the recon-
structed path accumulate over time. Although we can improve our previous
method [32] in this respect, we still cannot compete with the accuracy of
odometry.

Structure from motion (SFM) methods have a long history in computer
vision, and recently have been applied to localization as well. They can be
roughly categorized into two classes. Firstly, there are recursive or Kalman
filter-based methods, where images of a sequence are used to update a dy-
namical model of 3D structure and motion. Recently, Chiuso et.al. [11]
presented a causal structure from motion approach, working in real-time.
Davison [12] applied a similar approach to camera localization. He uses a
small set of distinguished features that serve as long-term landmarks, i.e.,
can be relocated after being out of view for some time.

Secondly, there are approaches that simultaneously process several im-
ages and use the inherent constraints in multiple view geometry to estimate
both, 3D structure and camera locations. In contrast to recursive methods,
no explicit model of camera motion is used, i.e just several images of a scene
from different perspectives are needed, not a video sequence. Multiple view
relations have been a very active field of research, dating back at least to
the introduction of the 8-point algorithm by Longuet-Higgins [29]. Hartley
and Zisserman [21] give an excellent overview of the subject.

This thesis is organized as follows. Chapter 2 introduces the basics of
the projective geometric framework and two-view relations. We also discuss
preliminary work on camera calibration and the integration of our algorithms
with the existing robotics system architecture. Chapter 3 explains how

7

point features are extracted and tracked between images. We present our
implementation of the Kanade-Lucas-Tomasi feature tracker. The problem
of outliers, i.e., features that are incorrectly tracked, and how they can be
detected is discussed in Chapter 4. At this point, we will have achieved all
the necessary preprocessing steps and our motion estimation method [32] can
be readily applied. An extension to the method is introduced in Chapter 5,
where we try to exploit additional information available from redundant
two-view motion estimates. Chapter 6 presents results on simulated and
real-world experiments. Chapter 7 is the conclusion.

Chapter 2

Foundations and Preliminary
Work

2.1 Notation

Throughout this document, the following notational conventions are used.

• Scalars are denoted by italic symbols, e.g., a, b, c.

• Matrices are denoted by Sans Serif symbols, e.g., E, F. Usually, matrix
dimensions are clear from the context, but occasionally row×columns
subscripts are used for clarification, e.g., M3×4.

• Vectors are denoted by boldface symbols, e.g., x, X. Mostly, geomet-
ric relations are presented in a projective framework and vectors are
homogeneous entities. Whenever a vector represents Euclidean coor-
dinates, this is indicated by a tilde superscript. Lower-case symbols
represent vectors in two-dimensional space, e.g., x = (x, y, w)> ∈ P2

or x̃ = (x, y)> ∈ R2. Upper-case symbols represent vectors in three
dimensions, e.g., X = (X, Y, Z,W)> ∈ P3 or X̃ = (X, Y, Z)> ∈ R3.

Equality for homogeneous entities is only up to scale,1 so the = symbol
is used in the sense of “equal up to scale” in the projective context.

Matrix representation of cross products. Taking the cross product
of two vectors can be represented as multiplication of a vector and a skew-
symmetric matrix.

1For instance, the homogeneous points (sX, sY, sZ, s)> with s 6= 0 all represent the
same point (X, Y, Z)> in Euclidean space.

9

10 CHAPTER 2. FOUNDATIONS AND PRELIMINARY WORK

For a 3-vector a = (a1, a2, a3)>, the corresponding skew-symmetric ma-
trix [a]× is defined as

[a]× =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 .

It is easily verified that

a× b = [a]×b = (a>[b]×)>

for all a, b ∈ R3.

Quaternion representation of rotations. Sometimes, unit quaternions
will be used to represent rotations in three-dimensional space, rather than
the more conventional 3× 3 rotation matrices.

Unit quaternions are represented by 4-vectors q = (w, x, y, z)>, subject
to the constraint ‖q‖ = 1.

Every rotation can be interpreted as a right handed rotation of
−2π < θ < 2π radians about some axis. If x̃ is a unit vector representing
the axis, the associated quaternion rotation is

q =
[

cos(θ
2)

sin(θ
2)x̃

]
Appendix A explains in more detail the properties of quaternions and

their relationship to rotation matrices.

2.2 Camera model and calibration

To make effective use of image measurements, we need a model of the im-
age formation process. Once the model parameters are known, the world
and camera coordinate frames can be related. The image projection of a
given scene point can be calculated and, given an image point, a ray can be
determined on which the corresponding scene point must lie.

In this section, we shortly describe the camera model we use and how
its parameters are obtained. First, the basic pinhole camera model is intro-
duced which can be conveniently realised as a linear mapping from P3 to
P2. Unfortunately, real cameras deviate from this simple model. Lens sys-
tems, assuming the function of the pinhole, introduce nonlinear distortions
to the imaging process. Once lens distortion has been removed from the
image measurements, it is valid to use the linear model. We will describe
how lens distortion is modeled and, finally, give some details on the camera
calibration procedure.

2.2. CAMERA MODEL AND CALIBRATION 11

X

Y

Z

x

y

X

x

principal axisC

im
age

pla
ne

Figure 2.1: The pinhole camera model.

2.2.1 The pinhole camera model

The pinhole model describes image formation as a central projection of
points in space onto a plane. As illustrated in Figure 2.1, the image x
of a 3D point X is the intersection of the ray from the camera centre C to
X with the image plane. The axes of the camera-centered world coordinate
system are labeled X, Y , Z. The axes of the image system are x, y. The line
perpendicular to the image plane passing through the camera center, i.e.,
the camera Z-axis, is referred to as the principal axis. It pierces the image
plane at the principal point. The perpendicular distance from the camera
centre to the image plane is referred to as the focal length, f .

Actually, the situation depicted in Figure 2.1, where camera and world
coordinate system are the same, is somewhat idealized. If furthermore the
scales of the image and world systems match and the focal length is f = 1,
the projection of a world point onto the image plane then simply is

x =
X

Z

y =
Y

Z
,

where (x, y) and and (X, Y, Z) are the Euclidean coordinates of the im-
age and world point, respectively. Using homogeneous coordinates X =
(X, Y, Z,W)>, x = (x, y, w)>, this can be expressed conveniently as a linear
system of equations

x =

1 0 0 0
0 1 0 0
0 0 1 0

X.

12 CHAPTER 2. FOUNDATIONS AND PRELIMINARY WORK

This basic 3D to 2D projection matrix P = [I|0] is multiplied now by a
4× 4 matrix T to the right to transform scene points from the global world
coordinate frame to camera-centered coordinates, and by a 3 × 3 matrix K
to the left for certain manipulations of the image coordinate frame, such as
altering pixel size and so on.

P = K[I|0]T

More specifically, the transformation matrix T is

T =
[

R t
0> 1

]
,

where R and t denote relative orientation and translation, respectively, be-
tween the world and camera coordinate frames. The parameters of T are
referred to as the external parameters or exterior orientation of the camera.

The matrix K comprises the internal parameters or interior orientation.
K is also known as the camera calibration matrix.

K =

fx s x0

0 fy y0

0 0 1


The parameters fx, fy denote the focal length in terms of pixel dimensions
in the x and y direction, respectively. The origin of the image coordinate
system may be shifted. This is taken into account by x0 and y0, the image
coordinates of the principal point. Finally, s is the skew parameter, which
is zero for most normal cameras. It indicates the skewness of the image x
and y axes, i.e., whether the axes deviate from orthogonality.

2.2.2 Lens distortion

For real cameras, the pinhole model is not perfectly valid since light rays pass
through a lens instead of a pinhole. Nonlinearities occur which are inherent
to the physics of refraction by lenses.2 Figure 2.2 shows an example image
in which the effects of nonlinear distortion are clearly visible. The camera
model should incorporate these nonlinearities. The model we use is known
as the “Plumb Bob” model3 and was first introduced by Brown [10] in 1966.
Besides the elements of the calibration matrix K the model includes two
parameters for radial-symmetric distortion, A1 and A2, and two parameters
for tangential distortion, B1 and B2.

2Details on the optics of image formation and the nonlinear effects that arise can be
found in [31], for instance.

3In a perspective projection, the image of a straight line will be a straight line if no lens
distorion is present. Deviations from straightness can be related to lens distortion. The
distortion parameters can be determined from the images of straight lines. As “straight
lines in the world” Brown initially used fine white thread streched by plumb bobs. Hence
the name.

2.2. CAMERA MODEL AND CALIBRATION 13

(a) (b)

Figure 2.2: (a) An image from a simple CCD camera. Radial “barrel” dis-
tortion is clearly visible. (b) The same image with radial distortion removed.
Now straight lines in the world appear as straight lines in the image, e.g.,
the door frame on the left or the edge of the blackboard on the right.

Projection of scene points is modeled as follows. First, the scene point
is transformed into the camera coordinate system and its normalized pro-
jection (i.e., the calibration matrix is the identity matrix) is obtained as

xn = [I|0]TX.

Let x̃n = (x, y)> be the Euclidean coordinates of xn. The distorted point
x̃d is then obtained as

x̃d = (1 + A1r
2 + A2r

4)x̃n +
[
2B1xy + B2(r2 + 2x2)
B1(r2 + 2y2) + 2B2xy

]
, (2.1)

where r =
√

x2 + y2 is the distance of x̃n from the principal point. Finally,
the distorted point is transformed to pixel coordinates by the calibration
matrix,

x = Kxd.

The computation can also be performed in the reverse direction. If
we know the internal parameters, that is, the matrix K and the distortion
parameters A1, A2, B1, B2, we can find the normalized projection of any
given image point x. The distorted normalized point xd can be obtained as
xd = K−1x. To find xn, the distortion has to be removed from xd. This is
achieved by using Equation (2.1) to iteratively improve an initial guess of
xn, for instance xn = xd.

2.2.3 Camera calibration

To estimate the internal parameters of the robot camera, we use Matlab
along with the Camera Calibration Toolbox by Jean-Yves Bouguet [8]. For

14 CHAPTER 2. FOUNDATIONS AND PRELIMINARY WORK

Figure 2.3: Sample image of the planar calibration pattern.

the calibration procedure several images of a planar checkboard pattern
from different perspectives are needed, as the one shown in Figure 2.3. The
size of the squares in the pattern must be known to the program. With
a little user interaction, the program extracts the corners of the squares
from the images. The corner coordinates are then used to compute the
internal orientation of the camera in a nonlinear minimization procedure.
The following parameters are simultaneously estimated:

fx, fy focal length in terms of pixel width and height.
x0, x0 pixel coordinates of the principal point.
A1, A2 parameters of radial-symmetric distortion.
B1, B2 parameters of radial-asymmetric and tangential distortion.

References to papers on the details of the model and the minimization pro-
cedure used can be found on the program’s website [8].

2.3 Epipolar geometry

Epipolar geometry is the intrinsic projective geometry between two views
of a rigid scene. The relation between the two views is independent of the
scene structure. It only depends on the internal parameters of the cameras
and their relative pose.

The entities involved in the epipolar relations will be briefly introduced
now. The situation is illustrated in Figure 2.4. A scene point X is projected
onto the image planes of the two cameras respectively. The corresponding
image point x in the first view is located at the intersection of the ray from
the first camera centre C to X with the image plane. Likewise, where x′ is
the projection of X onto the second cameras image plane.

The line joining the first and second camera centres C and C′ is known
as the baseline, b. The points where the baseline intersects the image planes

2.3. EPIPOLAR GEOMETRY 15

X

x

x′

C C′e e′b

Figure 2.4: Entities in two view geometry, where the ones marked with a
prime refer to the second view.

X?

x
x′?

C C′e e′b

Figure 2.5: Two view geometry. The epipolar constraint.

are referred to as epipoles. They are denoted e and e‘. The epipoles can also
be thought of as being the respective projections of the centre of one camera
onto the image plane of the other. Finally, as can be seen from Figure 2.4,
all the entities X, C, C′, x, x′, e, e′, b are coplanar. Such a plane is referred
to as an epipolar plane. Clearly, regardless of the positions of scene point
X and its projections, every epipolar plane will always contain the baseline
(an thus the epipoles, the camera centres).

Now, without knowledge of scene structure, i.e., X is unknown, one
constraint on the images arises: From the location of the projection x on
the first image plane, we can infer that the corresponding scene point must lie
somewhere along the ray backprojected from C through x (see Figure 2.5).
When all those possible scene points are projected onto the second image
plane, we see that the possible projections x′ are to lie on a line. This line
is referred to as the epipolar line corresponding to x. Of course, reversing
the roles of the views, x is constraint to lie on the epipolar line defined by
x′.

16 CHAPTER 2. FOUNDATIONS AND PRELIMINARY WORK

2.3.1 The fundamental matrix

The mapping from points in one view to epipolar lines in the second can
conveniently be represented by a 3 × 3 matrix, the fundamental matrix F.
The epipolar line corresponding to x is

l′ = Fx.

Since x′ is constrained to lie on l′

x′>l′ = 0.

This leads to a very concise expression for the epipolar constraint: For any
pair of corresponding points x ↔ x′

x′>Fx = 0. (2.2)

The matrix F encodes all the relations between two views. Given the param-
eters of the two cameras, F is computed straightforwardly. It is also possible
to compute the fundamental matrix “the other way around”. Seven corre-
sponding pairs x ↔ x′ in general configuration determine a matrix F, such
that (2.2) is fulfilled on all of them.4

2.3.2 The essential matrix

When the cameras are calibrated, the effect of internal parameters can be
removed from the image points. This results in normalized image coordi-
nates, x̂ denoting what the location of the projection of X would be, were
it taken by a perfect pinhole camera (whose calibration matrix is the 3× 3
identity matrix).

The normalized equivalent of the fundamental matrix is the essential
matrix E with the following normalized epipolar constraint: For any pair of
corresponding points x̂ ↔ x̂′

x̂′>Ex̂ = 0. (2.3)

Unlike the fundamental matrix, the essential matrix depends on the ex-
ternal parameters of the cameras only. The world reference frame can be
attached to the first camera, such that P̂ = [I|0]. If the corresponding second
camera is P̂′ = [R|t], the essential matrix is

E = [t]×R. (2.4)

4The fundamental matrix has seven degrees of freedom. It is only defined up to scale, so
there are eight independent ratios of its elements. Additionally, it is required rank(F) = 2
since F is a mapping from 2-Dimesional to a 1-Dimensional space. This leaves 7 degrees
of freedom, F is determined by 7 point correspondences.

2.4. SEQUENTIAL ALIGNMENT OF IMAGE TRIPLES 17

Five corresponding pairs x̂ ↔ x̂′ in general configuration determine a
matrix E such that (2.3) is fulfilled on all of them.5 It is possible to decom-
pose E to obtain the relative orientation R, t of the cameras. In contrast,
from a fundamental matrix it is only possible to reconstruct the cameras up
to a projectivity.

2.4 Sequential alignment of image triples

This section revises the pose estimation method described in our previous
work [32]. This method was used as a starting point for the current work -
later chapters of this paper will describe how it was extended and improved.
The method is based on the estimation of two-view epipolar relations and
camera pose recovery from these. It is assumed, that the world in which the
robot (camera) moves is static. Thus, epipolar geometry is a valid model,
although the different views of the scene are taken at different times. From
a sequence of images of the scene, the method tries to recover the path that
the camera traversed.

The algorithm can be decomposed into three parts:

1. From corresponding points in two consecutive images, compute an
estimate of the essential matrix E. The essential matrix is then de-
composed to obtain the relative pose between the two cameras.

2. Combine two consecutive pairs of relatively oriented images to form an
oriented image triple. The problem here is that two-view orientation
can only be determined up to scale. The scaling factors for two pairs
of views may vary. It is necessary to use corresponding points in three
views to compute the proportion of the scaling factors.

3. Once the triples have been obtained, it is straightforward to connect
them to a complete sequence of poses. Since consecutive triples over-
lap in one image pair, the proportions of the scaling factors can be
computed easily.

The remainder of this section shortly explains each of these steps. See [32]
for a detailed explanation.

2.4.1 Relative orientation of two views

To find the relative orientation of a pair of cameras, the essential matrix
E relating the views must be estimated. This is done using the normalized

5The essential matrix has five degrees of freedom, three for the rotation and two for the
direction of translation (since there is an overall scale ambiguity, amount of translation is
insignificant). In addition to the constraints on F, it is required that two of the singular
values of E are equal and the third one is 0.

18 CHAPTER 2. FOUNDATIONS AND PRELIMINARY WORK

8-point algorithm [29]. The essential matrix can be decomposed then, to
obtain the relative orientation of the cameras. We use the decomposition
proposed by Horn [23].

Recalling the definition of the normalized epipolar constraint (2.3), the
essential matrix must fulfill

x̂′>Ex̂ = 0. (2.5)

for any pair of corresponding points. Using x̂ = (x, y, 1) and x̂′ = (x′, y′, 1)
this is written out as

x′xe11 +x′ye12 +x′e13 +y′xe21 +y′ye22 +y′e23 +xe31 +ye32 +e33 = 0, (2.6)

a linear equation in the elements of E, where eij denotes the i-th row, j-th
column entry of E. Using a set of n correspondences x̂i ↔ x̂′i, a system of
linear equations is formed

Ae =

x′1x1 x′1y1 x′1 y′1x1 y′1y y′1 x1 y1 1
...

...
...

...
...

...
...

...
...

x′nxn x′nyn x′n y′nxn y′ny y′n xn yn 1

 e = 0, (2.7)

where the 9-vector e = (e11, e12, e13, e21, e22, e23, e31, e32, e33)> comprises the
elements of E. For 8 or more correspondences a least squares solution for E
can be found by minimizing ‖Ae‖ subject to ‖e‖ = 1. This is the 8-point
algorithm as introduced by Longuet-Higgins [29].

In its original form, the algorithm is very suspective to noise since the
quantity that is minimized is not geometrically or statistically meaningful.
Hartley [22] shows, that the algorithm may be significantly improved by
preconditioning the point correspondences. Several heuristics for the condi-
tioning transformation were proposed. We use the one suggested by Hartley
and Zisserman [21]. The resulting method, called the normalized 8-point
algorithm6 is briefly summarized:

6The term “normalized” refers to the preconditioning in this context, not to the trans-
formation to normalized coordinates and ideal pinhole cameras.

2.4. SEQUENTIAL ALIGNMENT OF IMAGE TRIPLES 19

(a) (b)

(c) (d)

Figure 2.6: Four possible configurations corresponding to a single essential
matrix. A triangulated scene point will lie in front of both cameras in one
configuration only.

1. Normalization: Transform the image coordinates according to
x̆i = Tx̂i and x̆′i = T′x̂′i.

T and T′ are normalization transformations, performing a transla-
tion and isotropic scaling of each image so that the centroid of the
reference points is at the origin of the coordinates and the RMS
distance of the points from the origin is

√
2.

2. Find the essential matrix Ĕ from the correspondences x̆i ↔ x̆′i as a
least squares solution to Equation (2.7).

3. Denormalization: Obtain the essential matrix E corresponding to
the unconditioned points as E = T′>ĔT.

Once the essential matrix is computed, it can be decomposed to yield the
relative orientation of the two views, i.e., the rotation R and the direction
of translation t. We achieve this using the method proposed by Horn [23].

For every essential matrix, there are four possible R, t explanations. The
correct one can be determined by triangulating a world point Xi using its
projections xi, x′i and the cameras P = [I|0], P′ = [R|t]. In only one of the
four solutions will the reconstructed scene point lie in front of both cameras
(illustrated in Figure 2.6).

20 CHAPTER 2. FOUNDATIONS AND PRELIMINARY WORK

Figure 2.7: Scale ambiguity of two-view geometry. The same images arise
from two cameras far-apart viewing a big scene and two cameras being closer
to each other looking at a small object.

P1
P2 P2

P3

X1,2

X2,3

P1
P2

P3

X

Figure 2.8: Relative scale of a camera triple may be obtained by the distance
of a triangulated scene point.

2.4.2 Relative orientation of an image triple

To form a camera triple from two consecutive oriented two-view pairs, the
relative scale factor between the pairs must be determined. This is because
there is an ambiguity of scale in the reconstructed two-view orientation.
The problem is intrinsic to multiple view geometry and is illustrated in
Figure 2.7. The overall scale of the world (containing both, the scene and
the cameras) may be varied, and the images arising will be the same. That
is why we can only recover the relative translation direction from epipolar
constraints, but not the amount of translation. However, since we know
that both image pairs depict the same scene, we can infer the ratio of the
translation amounts from the fact that the scene must be equally sized in
both pairs. Since consecutive camera pairs (P1,P2), (P2,P3) overlap in one
camera P2, it is equivalently required that the respective triangulations of a
scene point X must be at equal distances from P2.

This results in the simple algorithm illustrated in Figure 2.8. We want

2.4. SEQUENTIAL ALIGNMENT OF IMAGE TRIPLES 21

to obtain the ratio k of the Euclidean distances between the camera centres
such that ‖C̃3 − C̃2‖ = k‖C̃2 − C̃1‖.

1. For each of the oriented pairs of cameras (P1,P2), (P2,P3) fix the
scale factor such that the distance between the respective camera
centres is 1.

2. In the fixed frames compute triangulations X̃1,2, X̃2,3 of scene point
X using image points x1 ↔ x2, x3 ↔ x3 respectively.

3. Compute the scale ratio k as

k =
‖X̃2,3 − C̃2‖
‖X̃1,2 − C̃2‖

.

Since there is measurement error attached to the locations of the image
points, ki is estimated for every triple of corresponding points. The final k
is obtained as the average of the ki.

Furthermore, some point triples are better suited for triangulation than
others. Triangulated scene points are less precisely localized as the backpro-
jected rays become more parallel. Thus, weighting factors wi are introduced,
making ki less significant if the angles αi

1,2, respective αi
2,3, between back-

projected rays through xi
1 and xi

2, respective xi
2 and xi

3, are small. The
solution for k is then obtained as a weighted average of the individual ki. In
practice, we have found that weighting factors

wi = tan
αi

1,2

2
· tan

αi
2,3

2
with 0 ≤ αi

1,2, α
i
2,3 ≤

π

2
.

yield good results.
Actually, a variation of this method introduced in [32] is used. It omits

explicitly triangulating scenepoints and yields slightly improved results. For
the sake of brevity, it is not described here.

2.4.3 Concatenating image triples

The remaining task is to form a completely oriented sequence of cameras
from oriented triples. Consecutive triples overlap in one camera pair. Due
to this fact, it is straightforward to concatenate them into a path.

From the two-view stage camera matrices Pn = [Rn|tn] were obtained,
where camera Pn is oriented relative to Pn−1, i.e., supposing Pn−1 = [I|0].
The cameras are normalized such that ‖vctn‖ = 1. The first camera is fixed

22 CHAPTER 2. FOUNDATIONS AND PRELIMINARY WORK

as P0 = [I|0]. Furthermore, from the three-view stage scale ratios kn are
obtained, where kn refers to the scale ratio of triple (Pn−2,Pn−1,Pn).

First, we calculate the factors ln denoting the scale ratio between the
camera pairs (Pn−1,Pn) and (P0,P1). These are obtained as

l1 = 1
ln = knln−1 for n ≥ 2.

Then, we can obtain the sequence of cameras P0
n = [R0

n|t0
n], where orientation

is in the frame attached to the first camera P0, as

R0
0 = I

t0
0 = 0

R0
1 = R1

t0
1 = t1

R0
n = RnR0

n−1 for n ≥ 2

t0
n = Rnt0

n−1 + lntn for n ≥ 2

There is still an overall scale ambiguity for the resulting camera sequence.
Scale can be fixed by additional knowledge about metric distances, either
between known points in the scene or between individual camera positions.

A major advantage of the method is speed: Complexity of adding a
new view to a sequence is O(n2) given n corresponding points between the
previous view and the new one.

A drawback lies in error propagation and accumulation over time, as the
exemplary results in Figure 2.9 show. Like with odometry sensors, rotational
and translational error is accumulated. Furthermore, a drift in relative scale
occurs.

2.5 Bundle Adjustment

We have evaluated our method by comparing it with the results of the
ORIENT software [25]. ORIENT is a commercial implementation of bundle
adjustment, developed at the TU Wien.

Bundle adjustment is a photogrammetric technique for reconstructing
3D information from (image) measurements. The name refers to the “bun-
dles” of light rays leaving each 3D feature and converging on each camera
centre, which are “adjusted” optimally with respect to both feature and
camera positions. Bundle adjustment is optimal in the sense of providing a
maximum likelihood estimate of both 3D structure and viewing parameters.
In contrast to the method described in this paper, all available data is used
at once, i.e., all feature measurements from all images, resulting in a large
sparse geometric parameter estimation problem.

2.5. BUNDLE ADJUSTMENT 23

true path

reconstructed path

Figure 2.9: Experimental results about “sequential alignment of image
triples” were obtained in a simulation. Original and reconstructed camera
paths are shown from a birds-eye perspective (camera movement was parallel
to the ground plane). Reconstruction is from projections of the simulated
scene to a 800 × 600 pixel image plane. Artifical measurement noise was
added to the individual image points, drawn from a uniform distribution of
3× 3 pixels.

24 CHAPTER 2. FOUNDATIONS AND PRELIMINARY WORK

In principle, bundle adjustment finds the solution to the following prob-
lem: Given measurements xi

j , i.e., measurement of feature j in image i, we
want to estimate camera matrices P̂i and 3D features X̂j which project to
image features x̂i

j = P̂iX̂j such that the sum of squared distances between
measurements xi

j and reprojections x̂i
j is minimized. Not only point features

can be incorporated but all kinds of measurements. The solution is found
by nonlinear optimization. A good estimate is needed to initialize the com-
putation. This initial estimate is then iteratively refined. In each iteration
step, a linear approximation of the error function centered on the current
estimate is made. Depending on the minimization method, first or second
order derivatives are needed to compute an improved estimate. Obtaining
the derivatives is computaionally expensive since it involves decomposition
and inversion of large matrices. However, by exploiting the sparseness of
the problem, complexity can be significantly reduced.

Bundle adjustment methods have a long history in photogrammetry7

and are constantly gaining followers in the computer vision community, too.
Triggs et al. [39] give a survey of bundle adjustment theory and methods
aimed at computer vision researchers. A good recent photogrammetric text-
book is [31].

2.6 System architecture

The control architecture of the robot comprises several modules. Some tasks
are executed on the robot itself, other components are offboard on an ex-
ternal PC. The modules talk to each other via interprocess communication
over wireless LAN.

Figure 2.10 shows the setup that we used for experimentation. The
task of the modules on the lefthand side is to make the robot execute some
predefined movements. The modules on the righthand side try to estimate
the robots pose from sensor readings using the methods described later in
this paper.

The robot, a Pioneer 2 by ActivMedia8, is controlled by a microcontroller
that runs a special embedded operating system called P2OS. The Saphira
client running on the host computer issues motion commands to P2OS and
receives sonar and odometry sensor readings.

For our experiments, the robot was required to travel along a predefined
path, which should then be recovered from the images aquired by the robots
camera as it moves. The path planner is provided a 2-dimensional map of
the environment by the map module and a sequence of waypoints therein.

7The basic photogrammetric bundle method was developed for the U. S. Airforce by
D. C. Brown in 1957 - 1959.

8ActivMedia Robotics, http://www.activmedia.com

2.6. SYSTEM ARCHITECTURE 25

P2OS Camera Laser

Path
Planner

Saphira
Feature
Detector

Map
Module

Data
Client

Outlier
Detector

Structure
from Motion

Bundle
Adjustment

map data

motion commands

sensor
readings

actuator
settings

odometry

images range
scans

features

datums

files
synchronized

feature
data

Figure 2.10: Control architecture of the robot for visual navigation experi-
ments.

26 CHAPTER 2. FOUNDATIONS AND PRELIMINARY WORK

The path planner issues direct motion commands [3] to the Saphira client
in order to travel from one waypoint to the next.

Besides odometry and sonar sensors, the robot is equipped with a colour
CCD camera and a SICK laser range finder. The camera images and the
laser range scans are processed by the feature detector module which is
running on a laptop mounted on the robot. 2D feature points are auto-
matically detected and tracked between the camera images. Furthermore,
there are some special landmarks placed at fixed locations in the environ-
ment. They are specially marked, so that they can be easily detected in
the images by colour-segmentation. The feature detection module is able to
find those landmarks both in the images and the laser range scans yielding
metric measurements of their positions, so-called datum definitions, which
can later be used to fix the overall scale of the reconstructed camera and 3D
feature positions.

The data client collects feature and datum positions from the feature
detection module and synchronizes them with odometry readings from the
saphira client. The output of the data client are feature locations for individ-
ual frames, each attached with a timestamp and a corresponding odometry
estimate. For our experiments the collected data is stored into files and
processed offline later. This is done for repeatability and in order to speed
up testing cycles. Later, this step might be ommited and the data directly
provided to the later stages of position estimation.

The feature data is then passed through the outlier detector module
where mismatched features are removed from the data. Finally, the Struc-
ture from Motion and Bundle adjustment modules respectively compute po-
sition estimates from the data. SFM refers to the methods described in this
work. The bundle adjustment module comprises a commercial photogram-
metric software [25] whose results are used as a reference for evaluating our
method.

Chapter 3

From Images to Point
Features

Feature selection and tracking is a fundamental problem in computer vision
research. Most structure-from-motion methods [21, 7, 43] simplify the real
world by representing it as a set of points, perhaps line segments. A lot of
information available from the original images is discarded which of course
may introduce ambiguities and lead to less accurate solutions. On the other
hand, the complexity of the reconstruction procedure is greatly reduced.

To accomplish good results with point-based methods, it is crucial to
solve the correspondence problem, that is, identify features that correspond
to points in the physical world and match them across images.

Promising feature windows can be selected based on a measure of tex-
turedness or corderedness. Examples of corner detection or interest point
operators are Harris[20], Förstner [16] and Kitchen and Rosenfeld [26]. How-
ever, corners and textured regions in the image do not necessarily correspond
to fixed points in the world. For example, a textured region might actually
correspond to a highlight on a glossy surface or an apparent intersection of
two lines that are skew in space.

Once features have been identified, correspondence across images must
be established. When feature displacement is small, for instance between
frames of a video sequence (aquired and sampled at a sufficiently high time
frequency), this may be achieved by tracking features, searching a small
region around their previous location.

Our method of choice is the Kanade-Lucas-Tomasi (KLT) Tracker [33].
It is widely used (for instance [13, 11, 24, 2, 1]) and seemed to be suited
well for our setup. Stan Birchfield has made available an implementation [5]
which we used as a starting point of our own implementation.

This chapter proceeds as follows: The basic ideas behind the KLT tracker
are explained in Section 3.1. Section 3.2 deals with some practical issues
like image pyramids and smoothing, and briefly reviews how they are solved

27

28 CHAPTER 3. FROM IMAGES TO POINT FEATURES

in Stan Birchfield’s implementation. Section 3.3 explains how the original
code was modified to improve time performance. Finally, in Section 3.4
we presents results of our implementation on real images and compare the
performance of our implementation with Stan Birchfield’s implementation.

3.1 Kanade-Lucas-Tomasi feature tracker

The origins of the Kanade-Lucas-Tomasi Tracker go back to the work of Lu-
cas and Kanade [30]. Though the most readily accessible description is the
paper by Shi and Tomasi [33], an earlier paper by Tomasi and Kanade [35]
already contained a fully developed version. They introduced a way to select
features that is explicitly based on the tracking equation. Their intention is
to select those features that make the tracker work best. They also proposed
using an affine model of image motion to monitor feature dissimilarity be-
tween the first and the current frame. Subsequently, Tommasini et al. [36]
proposed a scheme for selecting a dissimilarity threshold for feature rejection
automatically.

Due to the long history of usage, the method it is referred to by vari-
ous combinations of its authors names, including Kanade-Lucas-Tomasi [6],
Lucas-Kanade [9], Shi-Tomasi-Kanade [36] and Tomasi-Kanade Tracker [4].

The remainder of this section consists of the derivation of the tracking
equation and a description of the feature selection method. The notation
has been adapted from [35].

3.1.1 The KLT tracking equation

Most of the time, it is impossible to determine where a single pixel went
in the subsequent frame, based only on local information. Because of this,
small windows of pixels are used as features. The goal of tracking is to
determine the displacement d of a feature window from one frame to the
next.

The displacement is chosen as to minimze the dissimilarity between two
feature windows, one in image I and one in image J :

ε =
∫ ∫

W
[J(x + d)− I(x)]2w(x)dx (3.1)

where W is the given feature window, x = [x, y]> are coordinates in the
image and d = [dx, dy]> is the displacement. The weighting function w(x)
is usually set to the constant 1.

We try find the displacement d that minimizes the dissimilarity. To do
this, we differentiate Equation (3.1) with respect to d and set the result to
zero.

∂ε

∂d
= 2

∫ ∫
W

[J(x + d)− I(x)]
∂J(x + d)

∂d
w(x)dx = 0 (3.2)

3.1. KANADE-LUCAS-TOMASI FEATURE TRACKER 29

Using the Taylor series expansion of J about x, truncated to the linear term,
we obtain

J(x + d) ≈ J(x) + dx
∂J(x)

∂x
+ dy

∂J(x)
∂y

.

Plugging this into Equation (3.2) yields

∂ε

∂d
= 2

∫ ∫
W

[J(x)− I(x) + g(x)>d]g(x)w(x)dx = 0,

where

g =
[∂

∂xJ
∂
∂yJ

]
.

Rearranging terms yields a linear 2× 2 system

Zd = e, (3.3)

where Z is the 2× 2 matrix

Z =
∫ ∫

W
g(x)g(x)>w(x)dx (3.4)

and e is the 2-vector

e =
∫ ∫

W
[I(x)− J(x)]g(x)w(x)dx (3.5)

Equation (3.3) is only approximately satisfied, because of the lineariza-
tion of Equation (3.2). However, the correct displacement can be found by
iterating on Equation (3.3) in a Newton-Raphson style minimization.

Our implementation uses a slightly different equation based on the
derivation in [6]. By replacing [J(x+d)− I(x)] with [J(x+ d

2)− I(x− d
2)],

the computation is made symmetric with respect to both images. The orig-
inal version was shown here because in this form it is also applied to feature
selection (discussed in the following section).

3.1.2 Selecting good features

An arbitrary feature window does not necessarily contain complete motion
information. For a horizontal intensity edge only the vertical motion compo-
nent can be determined, for instance. Even worse, a feature window inside
a homogeneous region contains no motion information at all. This is a fun-
damental problem, regardless of the selected method of tracking.

In order to avoid this, it is necessary to choose feature windows carefully.
Several “interest operators” have been proposed based on intuitive ideas of
what good features should look like. Shi and Tomasi [33] propose a more
principled criterion that is optimal by construction: “A good feature is one
that can be tracked well.”

30 CHAPTER 3. FROM IMAGES TO POINT FEATURES

In order to track a feature it is necessary that Equation (3.3) can be
solved reliably. A solution involves inverting the matrix Z. Note, that Z
can be computed from a single image. To obtain a good solution, both
eigenvalues of Z must be large. Two small eigenvalues correspond to a
roughly constant intensity within the window. A large and a small eigenvalue
correspond to a unidirectional pattern. Two large eigenvalues represent
reliably trackable patterns, for instance corners or salt-and-pepper textures.

In practice, there is a bound on the maximum eigenvalue since the in-
tensity change between pixels cannot become arbitrarily large. Thus, the
matrix Z is usually well-conditioned if the smaller eigenvalue is sufficiently
large to be above the image noise level. If λ1 and λ2 are the eigenvalues of
Z, a window is chosen as a feature candidate if

min(λ1, λ2) > threshold, (3.6)

where threshold is predefined. In general, the greater min(λ1, λ2), the bet-
ter a window is suited. The actual features are chosen from among the
candidates. For instance, the highest ranking n candidates are chosen [5],
or windows whose rank is a local maximum [9].

3.2 Implementation issues

In the implementation of the tracker, besides putting the tracking and select-
ing equations to use, some practical issues arise, such as image pyramids,
smoothing and interpolation for subpixel accuracy. This section proceeds
with a description of these problems and their solutions in Stan Birchfield’s
implementation. Finally, some further ideas are listed which are subject to
further implementations.

3.2.1 Pyramidal implementation

When choosing the feature window size, there is a trade-off between accu-
racy and robustness. The accuracy component relates to the local sub-pixel
accuracy attached to tracking. Displacement of individual points in the inte-
gration window may vary, especially at occluding boundaries. the one hand,
a small window size is preferable in order not to “smooth out” too much
detail. A smaller size makes it less likely, that displacements vary within
the window too much. The robustness component, on the other hand, re-
lates to sensitivity of tracking with respect to size of image motion, lighting
changes, and so on. For the tracking equation to work, we need to have the
displacement smaller than the integration window size. Therefore, to ensure
robustness, especially when dealing with large image motion, the window
should be chosen as large as possible.

A solution to this dilemma is to use a pyramidal representation of the
image. The lowest level of the pyramid is the original image, while higher

3.2. IMPLEMENTATION ISSUES 31

levels contain smaller recursively subsampled versions. Features are tracked
at the highest level of the pyramid, first, to arrive at an approximate so-
lution. The displacement is then promoted down to the next level where
tracking is continued to improve on the estimate. This is done in a recursive
fashion until the lowest level is reached. This effectively enables us to deal
with large displacements on top of the pyramid, while maintaining sub-pixel
accuracy at the bottom.

The resolution of the topmost pyramid level should be selected according
to the window size and the maximum expected displacement. The number
of pyramid levels may be chosen empirically. In general, two pyramid levels
should suffice. The subsampling factor may be computed accordingly. For
instance, by default Birchfield’s implementation uses 7× 7 feature windows
and two pyramid levels subsampled at every fourth pixel. This yields good
results for displacements up to ca. 15 pixels.

3.2.2 Image smoothing

Image smoothing is a so called low-pass filtering operation – low pass in the
sense of passing low spatial frequencies and rejecting high spatial frequencies.
One of the most popular operations of this type is the Gaussian blur filter,
which has the advantage of being circularly symmetric, so that edges and
lines are treated similarly in all directions.

Smoothing occurs in the implementation for two purposes. First, it is ob-
viously useful for anti-aliasing when building the image pyramid. Applying
a Gaussian blur operator before subsampling ensures that the subsampled
pixels accurately represent “their regions” in the higher resolution image.
Second, smoothing is useful as a preprocessing step when dealing with noisy
images. Being usually determined by random processes during image aquisi-
tion, noise mostly occurs at high spatial and temporal frequencies. Blurring
the images beforehand smooths out high frequency noise which might be
mistaken for valid features.

Birchfield uses Gaussian filters for both purposes. The standard devia-
tion for the Gaussians default to σ = 0.1 · imagesize for the preprocessing
step and σ = 0.9 · subsampling for building the image pyramid.

3.2.3 Subpixel computation

It is desirable to keep all computations at a subpixel accuracy level. For
instance, evaluating the tracking Equation (3.3) will not yield integer val-
ues for the displacement d, in general. It is therefore necessary to be able
to compute intensity values for locations between pixels. Birchfield imple-
mented bilinear interpolation to solve this. Bouguet [9] suggested to use
this, too.

The principle of bilinear interpolation is illustrated in Figure 3.1. To

32 CHAPTER 3. FROM IMAGES TO POINT FEATURES

(x, y)

(x0, y0) (x0 + 1, y0)

(x0, y0 + 1)

αx1− αx

αy

1− αy

Figure 3.1: Bilinear interpolation.

obtain the image value at location x = [x, y]>, x and y are decomposed into
their respective integer parts x0, y0 and remainders αx, αy.

x = x0 + αx

y = y0 + αy

The image value is computed then as a weighted average of the four pixels
that intersect the “virtual” pixel located at x:

I(x, y) =(1− αx)(1− αy)I(x0, y0) + αx(1− αy)I(x0 + 1, y0)+
(1− αx)αyI(x0, y0 + 1) + αxαyI(x0 + 1, y0 + 1).

Note, that the weighting factors represent the sizes of the overlapping areas
between the virtual pixel and the four contributing pixels.

3.2.4 Feature selection

To select features from among the candidates, Birchfield uses the following
approach. The eigenvalues of Z are evaluated at every pixel of the input
image, and pixels are then sorted by min(λ1, λ2) in descending order. Start-
ing with the highest-ranking pixel, each pixel is added to the set of features
until a user-defined number of features has been selected, or the criterion
min(λ1, λ2) > threshold is no longer met. For every new candidate it is
checked whether it lies within a threshold distance to any of the features
already selected. If so, the candidate is rejected. The threshold distance
defaults to 10 pixels. The threshold on the eigenvalues defaults to 1.

3.3. OPTIMIZING FOR SPEED 33

3.2.5 Unimplemented features

Finally we want to briefly list ideas, that are as yet not contained in the
implementation, but might be considered to improve the tracker.

• Tracking features close to the image boundary. Features are
declared lost if they have a portion of their integration window outside
the image. Because with every pyramid level the effective window size
increases, there might be a rather large “forbidden band” at the image
borders. In order to prevent this, Bouguet [9] proposed to perform the
summations in the expressions for Z and e (see Section 3.1.1) only over
the valid portion of the neighborhood.

• Monitoring feature quality. Shi and Tomasi [33] proposed to eval-
uate the consistency of features between non-consecutive frames using
an affine model of dissimilarity. A dissimilarity threshold for feature
rejection can be computed automatically [36].

3.3 Optimizing for speed

The feature tracker shall be employed on the robot, processing images as
they arrive, in real-time. It is crucial to have an implementation as efficient
as possible for two reasons: Firstly, potential feature displacement increases
with the time passing between subsequent frames. There is a threshold on
the displacement that the tracker can deal with. (Since feature tracking
is an iterative procedure starting from the previous feature location as an
initial guess, tracking will fail if the new feature location is outside of the
feature window size.) Thus, the higher the frame rate at which the tracker
operates, the better it is expected to work. Secondly, in the final position
estimation framework feature tracking is only a preprocessing step. We will
want to leave as much as possible processing capability to other tasks.

Birchfield’s code is designed to be readable, with educational purposes
in mind. We have found, that there is plenty room for optimization without
sacrificing accuracy. This section gives a short summary of the changes that
we made to increase processing speed.

3.3.1 General approach

The original code is designed to be readable and flexible, rather than fast.
A lot of redundant computation can be removed when the straight-forward
manner of putting concepts to work is abandoned. For instance, the summa-
tion of values over feature windows was originally implemented as a brute
force summation over the neighborhood. When selecting feature candidates,
this has to be done for every single pixel of the image. Using 7×7 windows,

34 CHAPTER 3. FROM IMAGES TO POINT FEATURES

this means every pixel has to be read and processed 49 times. When a shift-
ing summation window is used instead, every pixel has to be touched only
twice, one time when it enters the window and another time when it leaves.

We have remedied such situations wherever appropriate. In particular,
we have applied a code generation approach. The parameters of the tracker
are set at compile time and the actual tracking code is generated from tem-
plates. Thus, it possible to employ smoothing and gradient filters that are
especially tailored to the parameters and more efficient than generic ones.
In the following, we comment on some particular improvements that were
made. Finally, we present some results on real images to quantify the gain
in performance.

3.3.2 Efficient blur and gradient filters

A large part of the processing time is spent with the application of Gaus-
sian blur and Laplacian of Gaussian (LoG) filters in order to create the
pyramidal representation of the intensity and gradient images. Actually, in
the original implementation these operations comprise about 70 percent of
processing time. By using efficient implementations, processing time can be
dramatically reduced.

Efficient Gaussian blur. Two-dimensional Gaussian blur operations are
rather costly when carried out in a brute force way, especially where large
kernels are involved. We employed an efficient implementation using the
SKIPSM (Separated Kernel Image Processing using finite State Machines)
paradigm [40]. To significantly reduce the execution time of the operation
two properties of Gaussian blurs are put to use:

• a 2-Dimensional Gaussian blur operation is separable into independent
row and column operations,

• large kernels can be decomposed into sequential application of small
kernels.

Application of the first property alone reduces processing time from
O(nw2) to O(2nw), where n is the number of pixels and w the kernel width.
Birchfield’s code already put this to use.

Usually, the coefficients of the kernels are based on Pascal’s triangle (the
binomial coefficients – these approach the Gaussian curve more and more
closely as the number of values increases). A property of Pascal’s triangle
is that each entry can be computed as the sum of the two entries diago-
nally above it. This reflects in the second property stated above: convolving
to times with

∣∣1 1
∣∣ (second line of Pascal’s triangle) is equivalent to con-

volving with
∣∣1 2 1

∣∣ (third line). Figure 3.2 shows how this is used to
efficiently implement a Gaussian kernel of width 5. In contrast to the brute

3.3. OPTIMIZING FOR SPEED 35

add add add add

÷16

| 1 | | 1 1 | | 1 2 1 | | 1 3 3 1 |

| 1 4 6 4 1 |

SR0 SR1 SR2 SR3

i

i

input

output

Figure 3.2: SKIPSM implementation of a Gaussian blur operator. The
“SRi” components are simple registers, each capable of storing a single in-
teger value. The “add” and “÷16” components perform the obvious opera-
tions.

force implementation, each pixel is read only once and no multiplication
operations are needed at all. The same number of additions are required for
both approaches.

Gradient computation. The horizontal and vertical gradient images are
computed by convolution with Laplacian of Gaussian kernels. Those are
separable into row and comlumn operations, as well. In this case, depending
on the gradient direction, one of the 1-dimensional operations will be a
Gaussian and the other a LoG operator. For the Gaussian operation the
SKIPSM implementation is used, too.

Image pyramids. Blurring is also used before creating subsampled im-
ages for higher pyramid levels. With default parameters, the original im-
plementation employs 21× 21 Gaussian operators which is very costly, even
using the SKIPSM implementation.

Those were replaced by simple averaging operations (11×11 by default).
In comparison to the Gaussian, the resulting blur is not circularly symmetric,
and also not as “smooth”. This leads to slightly reduced quality of the
subsampled images. Tracking accuracy may suffer at higher pyramid levels.
Intuitively, this should not pose a problem since the final result is refined at
the lowest level (which is of high quality).

Applying horizontal operations only. It turns out that applying hor-
izontal kernels is faster than applying vertical kernels. The exact reason

36 CHAPTER 3. FROM IMAGES TO POINT FEATURES

for this is beyond our knowledge, possibly it is due to caching being more
efficient on sequentially ordered data.

The best results were obtained by applying horizontal operations only
and “transposing” the output in the process (reversing row and column in-
dices). As an example, Figure 3.3 shows the operations necessary to compute
the coefficients for feature selection. Image pyramids are built in a similar
fashion.

3.3.3 Feature selection

Two modifications were made to the feature selection procedure. The first
is concerned with the “lazy evaluation” of the eigenvalue conditions on the
matrix Z – many unpromising feature candidates may be discarded early in
the evaluation procedure. The second modification deals with the sorting
of the candidate list. The sorting procedure can be prematurely terminated
when the desired number of features has been found.

When checking for potential feature candidates, the following equation
must be evaluated at every pixel:

gxx + gyy −
√

(gxx − gyy)2 + 4g2
xy

2
> ev (3.7)

with

gxx =
∫ ∫

W
(
∂I

∂x
)2

gyy =
∫ ∫

W
(
∂I

∂y
)2

gxy =
∫ ∫

W

∂I

∂x

∂I

∂y

The left-hand side of (3.7) represents the smaller eigenvalue of the matrix
Z (Equation (3.4)) on which ev is a threshold.

For Equation (3.7) to be fulfilled, the relaxed constraints

gxx > ev

and
gyy > ev

must hold, too. Being computationally cheaper operations, these conditions
are evaluated first – failing pixels are discarded immediately.

The second modification concerns the sorting of the candidate list. There
may be much more feature candidates than are actually needed. To avoid
unnecessary sorting of lower-ranking pixels, an incremental version of quick-
sort is used which iterates on the partially sorted sublists only as long as
there are more features required.

original

x

y

smooth horizontal and flip
y

x

smooth horizontal

blurred

y

x

smooth horizontal and flipsmooth horizontal
y

x

x

y

horizontal gradient

∂I
∂y

x

y

horizontal gradient and flip

∂I
∂x

x

y

square and flip

(∂I
∂y

)2

y

x

multiply and flip

∂I
∂y

∂I
∂x

y

x

square and flip

(∂I
∂x

)2

y

x

integrate

gyy∫∫
W

(∂I
∂y)2

y

x

integrate

gxy∫∫
W

∂I
∂y

∂I
∂x

y

x

integrate

gxx∫∫
W

(∂I
∂x)2

y

x

Figure 3.3: Efficiently calculating entries of Z for feature selection.

38 CHAPTER 3. FROM IMAGES TO POINT FEATURES

3.4 Experimental results

We have tested our implementation on real images. A goal of the experi-
ments was to evaluate the benefits of our optimizations. We evaluated results
of the original and optimized version on identical images. Performance was
measured for

• selecting 400 features in a 640× 480 image and

• tracking those 400 features in the next image and replacing lost fea-
tures.

The test images are shown in Figures 3.4 and 3.5. The found respective
tracked features are overlaid.

It is difficult to compare the implementations in terms of tracking qual-
ity. Visually judged, the result were identical. Comparison of the execution
times indicates that our implementation is significantly more efficient than
the original one. The following table shows the execution times of the im-
plementations on an AMD Athlon XP 1800+ running at 1.6 GHz.

original optimized
selecting 400 features 610 ms 72 ms
tracking 400 features, replacing lost ones 855 ms 166 ms

The optimized version is more than 5 times faster than the original one,
which is a satisfying result.

3.4. EXPERIMENTAL RESULTS 39

Figure 3.4: A 640 × 480 image aquired by the robot’s CCD camera. The
locations of the features that were found are indicated by filled white rect-
angles.

Figure 3.5: The features that were selected in Figure 3.4 were tracked in
the next image of the sequence. Filled white rectangles are placed at the
current feature positions. The white lines indicate from which locations in
the previous image the features were tracked.

Chapter 4

Dealing With Outliers

We want to use the point correspondences established by the feature tracker
to estimate the position of the robot. An intermediate step is to compute
the relative orientation between pairs of images. This is achieved by esti-
mating the essential matrix E using the normalized 8-Point algorithm. In
the application of the 8-Point algorithm it is implicitly assumed, that the
only source of error is in the measurement of the point positions. This error
is commonly modeled as a Gaussian distribution. However, in practice there
is also the problem of false feature correspondences, in the following referred
to as outliers.

The focus of this chapter is on random sampling methods, a group of
robust estimators that has proven efficient for handling putative correspon-
dence data [21, 38, 37, 43]. More general accounts of various robust tech-
niques in computer vision can be found in [34, 42]. Another possibility of
robustification is monitoring feature quality in the KLT tracker [33]. How-
ever, situations like the one in Figure 4.2(a) will not be detected since feature
qualitity is defined in a two-dimensional context. Nevertheless, feature mon-
itoring can be a useful preprocessing step, reducing the number of outliers
before the methods described in this chapter are applied.

In Section 4.1 we describe common sources of error which cause out-
liers in the results of feature tracking. We discuss the notion of robustness.
Section 4.2 introduces the RAndom SAmpling Consensus (RANSAC) algo-
rithm, a general robust estimation method, which can be used to detect
outliers. Section 4.3 deals with alternative random sampling methods, ba-
sically variations of RANSAC. In particular we describe the M-estimator
SAmpling Consensus (MSAC) algorithm, which is the method we chose to
implement, as described in Section 4.4.

41

42 CHAPTER 4. DEALING WITH OUTLIERS

4.1 Outliers and Robustness

Figure 4.1 shows some erroneous features that were tracked by the Kanade-
Lucas-Tomasi tracker. These features are not correctly modeled by the
Gaussian error model for several reasons. Firstly, there are features which
are perfectly valid in the two-dimensional image but do not correspond to
fixed positions in the three-dimensional scene. Figure 4.2(a) shows a mag-
nification of detail a from Figure 4.1. The respective image region is shown
for the previous (left) and the current image (right). The features shown
are located at an occlusion boundary. One part of the feature is formed by
the box in the foreground and the other part by an object on the wall in the
background. The apparent “corner” is not fixed to a particular location in
space.

Secondly, the featuretracker is not perfect, occasionally there will be
mismatched points when the tracker drifts away from its original target to
a “similar-looking” feature. Figure 4.2(b) shows such a situation. In this
case, two textures on the box with similar appearance are confused. Image
motion is big enough to cause the feature tracker to converge to the wrong
local minimum.

Finally, we implicitly assume a rigid scene where the only moving object
is the camera. Features corresponding to moving objects in the field of view,
although correctly tracked, will severely disturb the estimation process.

Such features which are not correctly represented by the motion or error
model are labeled outliers. The goal of robust estimation is to determine a
set of inliers from partially corrupted data, feature coordinates in our case.
The essential matrix can then be estimated using only the inliers.

A common measure to define robustness more formally is the breakdown
point, which is the minimum fraction of outlying data that can cause an
estimate to diverge arbitrarily far from the true solution. The breakdown
point of least squares methods, such as the 8-Point method for instance,
is 0 – one bad point can move the least squares fit arbitrarily far away
from the correct solution. Thus, outlier removal is essential for the task we
want to accomplish. The theoretical maximum breakdown point is 0.5, since
when half of the data are corrupted they can be arranged as to represent an
alternate inlier set. In practice however, when the corrupted data are not
maliciously arranged to break the computation, robust estimation methods
are able to deal with significantly more than 50% outliers.

4.2 The RANdom SAmple Consensus

The RANdom SAmple Consencus (RANSAC) algorithm [15] is a general
robust estimator, i.e., a method to fit a model to outlier-contaminated data.
It is applicable to a wide variety of estimation tasks. It can be categorized as

4.2. THE RANDOM SAMPLE CONSENSUS 43

a

b

Figure 4.1: Some tracked 2D features do not correspond to actual 3D points
in the scene. Filled white rectangles are placed at the current feature posi-
tions. The white lines indicate from which locations in the previous image
the features were tracked.

(a) (b)

Figure 4.2: Magnified details a and b from Figure 4.1, for the last and the
current image respective.

44 CHAPTER 4. DEALING WITH OUTLIERS

a hypothesis and verify algorithm. In computer vision, RANSAC has been
used successfully for the estimation of homographies, fundamental matrices,
and trifocal tensors. Following the explanations in [21], the basic idea of
RANSAC will be illustrated now using a simple example.

4.2.1 The basic idea

Suppose a set of 2-dimensional points is measured, and we want to estimate
a straight line, y = ax+ b, that fits the points best. There is a measurement
error in the coordinates, following a Gaussian probability distribution. Fur-
thermore, some of the points are outliers, they do not belong to the line. The
task is to classify the points into inliers and outliers. Then, the line can be
estimated from the inliers (by minimizing the sum of squared perpendicular
distances to the line).

RANSAC proceeds as follows:

1. Randomly select a minimal sample. In our case, two points are suffi-
cient to define a line. So, two points are randomly selected and a line
is fit through them.

2. Measure the support for the sample. For every data point the distance
d⊥ to the hypothesis is calculated. The points for which this distance
is below a threshold T form the consensus set. The support for the
sample is the cardinality of the consensus set, e.g., the number of
points which agree with the hypothesis.

The distance function should be the one which will be minimized when
computing the final estimate from the inliers, in our case the squared
perpendicular distance to the line. The threshold is predefined, ac-
cording to the expected measurement noise.

This process is repeated a number of times, and the hypothesis with maxi-
mum support is chosen. Points which support it are labeled as inliers, points
which don’t are labeled as outliers.

Intuitively, it is expected that a sample containing outliers will not be
supported by many points. Furthermore, for samples that comprise only
inliers, the closer they approximate the final fit, the more likely it is that
they gain much support. For instance, the sample comprising (c, d), in the
lefthand side of Figure 4.3, will get less support than the sample (a, b).

4.2.2 Choosing a threshold on the distance

The threshold T on the distance function is usually chosen empirically.
Sometimes this is the only option, because the parameters of the error dis-
tribution are unknown.

4.2. THE RANDOM SAMPLE CONSENSUS 45

a

b

a

b

c
d

Figure 4.3: Two hypothesis for the line estimation example. The points
labeled a and b respectively comprise the sample. Filled points support the
sample. The dotted lines represent the distance threshold. The hypothesis
on the lefthand side would be prefered because it has more support.

However, Hartley and Zisserman [21] argue, that for Gaussian measure-
ment error with zero mean, the squared perpendicular distance to the solu-
tion follows a χ2 distribution. When the standard deviation σ of measure-
ment error is known, a threshold T may be computed, such that inliers will
be correctly classified with probability α (with respect to the true model
parameters). For details see [21, p. 102f].

4.2.3 Determining how many samples to take

An important question is: How many samples should be tried to obtain a
good solution? Of course, to make sure the best possible hypothesis is found,
the space of samples can be searched exhaustively. However, this is often
computationally infeasible. Instead, one can choose a number of samples
N such that with probability p at least one of the samples comprises solely
inliers.

Suppose w is the probability of selecting an inlier. The probability of se-
lecting a sample of s points, such that all of them are inliers, is approximately
ws, given that there are much more than s data points. So, the probability
that a sample contains at least one outlier is (1 − ws), and the probability
that each of N samples contains at least one outlier is (1 − ws)N = 1 − p.
Thus, to ensure that with probability p at least one sample of inliers is
selected,

N =
log(1− p)
log(1− ws)

(4.1)

samples have to be taken at least. Note, that the total number of points has
no influence on the number of samples to take.

Returning to the line fit example: If there are 50% outliers and 17 two-
point samples are taken, there is a 99% probability that one of the samples
comprises two inliers (no matter how much data points there are). However,

46 CHAPTER 4. DEALING WITH OUTLIERS

since even two inliers can make for a bad hypothesis, as pointed out in
Section 4.2.1, it is never a bad idea to take more samples.

Often, the fraction of inliers w will be unknown. In such cases, the
necessary number of samples, N , can be adjusted adaptively. N is computed
starting from a pessimistic guess, 20% inliers for instance. When a sample
is found which is supported by more than 20% of the data, it can be inferred
that the fraction of inliers is at least that big, and N is updated accordingly.
This is repeated until N drops below the number of samples that were
actually taken.

4.2.4 Application to finding outliers in tracked features

From the material presented above, some key concepts of the RANSAC al-
gorithm can be identified: A model is fit to outlier-contaminated data. This
is done by computing hypothesis for the models parameters from minimal
samples of the data, and measuring support by evaluating the distance of
the data from the model. This section describes the instantiation of these
concepts when RANSAC is employed for detecting outliers in the results of
the feature tracker.

The data. The data that should be classified into inliers and outliers are
the point correspondences computed by the feature tracker.

The model. From the inliers, we want to estimate the relative orientation
of cameras, using two frames at a time. No information other than point
correspondences will be used. It is assumed that the scene is static, so
features attached to moving objects should be rejected as outliers. Thus,
the model that is to be fit is the epipolar geometry between two frames.
The fundamental matrix or essential matrix for the uncalibrated respective
calibrated case represent the model parameters.

The sample size. The size of a sample depends on the algorithm used to
compute the model parameters.1 To estimate epipolar geometry, a minimum
of 7 point correspondences are needed. If calibrated cameras are used, even
5 points suffice. Unfortunately, in both cases, there need not be a unique
solution. For 7 correspondences there may be one or three real solutions.
For 5 points as much as 10 real solutions may occur. Each of these solutions
has to be checked for support separately. An option is to use the 8-Point
algorithm, which yields a unique solution. On the other hand a larger sample
size implies that more samples have to be tried (see Equation (4.1)).

1The algorithm is also labeled search engine in this context.

4.3. ALTERNATIVE RANDOM SAMPLING METHODS 47

The distance function. Epipolar geometry constrains corresponding
points to lie on their respective epipolar lines. In terms of homogeneous
coordinates and the fundamental matrix

x′>l′ = x′>Fx = 0

and

x>l = x>F>x′ = 0.

The distance function d⊥ should measure, how closely a corresponding pair
of points satisfies the epipolar geometry.

As a common measure we can use the Symmetric epipolar distance:

d⊥(x,x′,F) = d(x′,Fx)2 + d(x,F>x′)2,

where d() denotes the perpendicular distance from a point to a line. Sym-
metric epipolar distance is also known as the residual error.

Another common measure is the geometric error :

d⊥(x,x′,F) = d(x, x̂)2 + d(x′, x̂′)2,

where d() denotes the Euclidean distance between two points and x̂, x̂′ is
the closest pair of points such that x̂′>Fx̂ = 0. The Sampson distance is
a first-order approximation to geometric error. Both measures are more
accurate and more expensive to compute than the residual error. A detailed
description can be found in [21].

4.3 Alternative random sampling methods

Torr and Zisserman [38] propose two variants of the RANSAC approach,
both of which yield improvements of the accuracy of the “winner” hypoth-
esis. They point out that with RANSAC the robust estimate can be very
poor if the distance threshold T is set too high. In effect, RANSAC finds
the minimum of the cost function

C =
∑

i

ρ(d2
⊥i)

where ρ() is

ρ(d2
⊥) =

{
0 if d2

⊥ < T 2

constant if d2
⊥ ≥ T 2

,

which means inliers score nothing and outliers score a constant penalty. This
means that several hypothesis can score the same cost C, although they are

48 CHAPTER 4. DEALING WITH OUTLIERS

in fact not equally “good”. If T is choosen sufficiently large then all data
will be inliers and all hypothesis will have the same support.

The first modification, MSAC (M-estimator sample consensus), improves
this situation by redefining ρ() as

ρ(d2
⊥) =

{
d2
⊥ if d2

⊥ < T 2

T 2 if d2
⊥ ≥ T 2

.

Now, inliers are scored on how well they fit the hypothesis, while outliers
still score a constant penalty.

The second proposed algorithm is labeled MLESAC (maximum likeli-
hood consensus). Here, the error (or distance) for both inliers and outliers
is modeled as a mixture of a Gaussian and a uniform distribution:

P (d⊥) =
(

γ
1√

2πσ2
exp

(
−

d2
⊥

2σ2

)
+ (1− γ)

1
v

)
where γ is the mixing parameter, v is a constant describing the uniform
outlier distribution, σ is the standart deviation of the error for the Gaussian
inlier distribution. For every sample the mixing parameter is estimated using
Expectation-Maximization, and hypothesises are scored by their negative log
likelihood.

Torr and Zisserman evaluated MSAC and MLESAC for fundamental
matrix estimation. Their experiments show that both methods provide a
5% – 10% improvement in accuracy over RANSAC. MLESAC gives slightly
better results while being a little more computationally expensive.

Feng and Hung [14] proposed a further improvement on MLESAC. They
estimate not only the mixing parameter γ but also σ of the inlier distribution
in an iterative algorithm.

The LMS (Least median of squares) method scores hypothesises by the
median of the distances to the data. Zhang [43] applies LMS to the estima-
tion of epipolar relations. The advantage is that no threshold needs to be
defined, thus no prior knowledge of the variance of the measurement error
is necessary. On the other hand, LMS will fail if there are more than 50%
outliers since the median distance is then to an outlier.

Zhang [43] also proposes a bucketing technique to make sampling more
efficient. He points out that it is a waste of time to evaluate samples whose
points are very close to each other, since hypothesis estimation from such
samples is highly unstable. To avoid such samples the input region is evenly
divided into a number of buckets. A sample of s points is taken by first ran-
domly selecting s mutually different buckets, and then ramdomly choosing
one point in each selected buckets. The probability of selecting a particular
bucket is linked to the number of points it contains, to ensure that each
input point has the same probability to be selected.

4.4. IMPLEMENTATION 49

4.4 Implementation

The MSAC algorithm was chosen to robustify the results of the KLT feature
tracker. This choice is due to the method being easily implementable and
yielding acceptable results, both in terms of accuracy and computational
efficiency. Symmetric epipolar distance is used as a distance measure. The
threshold distance was experimentally chosen to be T = 1.0 pixels. The nor-
malized 8-Point algorithm is used as a search engine. Consequently, sample
size is 8 point correspondences. The normalized 7-Point algorithm, as de-
scribed in [21, p. 264f], has been implemented, too. However, experimental
comparison of both algorithms as search engines yielded better results for
the 8-Point method.

Epipolar geometry estimates are more reliable, when the baseline be-
tween the frames is large. Most of the time, camera movement between con-
sectutive images is quite small. 2 Thus, to effectively enlarge the baseline
features are tracked for several images and MSAC is only applied between
“key” frames which are selected using the following heuristic:

• Features have been tracked for at least N = 4 input frames since the
last key frame, and

• at least F = 10 features have moved for at least D = 10 pixels since
the last key frame.

The required number of samples is determined adaptively using Equa-
tion (4.1). The starting guess is that there are 50% outliers in the feature
tracker data. The number of samples, N , is determined such that a inliers-
only sample is selected with 99% probability. Actually, 5 times N samples
are taken, to increase the probability that a sample is selected which not
only comprises inliers but yields a good hypothesis, too. The inliers found
by MSAC are then used to obtain the final estimate for the essential matrix
and recover the orientation of consecutive cameras.

Figure 4.4 shows some results obtained for real images. In this example,
the feature tracker yielded 214 correspondences. 78 of those were found to
be outliers. 855 samples were taken.

2This is necessary to ensure good trackability of features. Thus, increasing the time
between input images is not an option.

Figure 4.4: Results of robust estimation. Left: Point correspondences deliv-
ered by the KLT feature tracker. Right: Correspondences labeled as outliers
by the MSAC algorithm.

Chapter 5

Using Redundant
Information

In Chapters 3 and 4, we have shown how to extract features from images,
establish correspondence across images between those, and remove outliers
to the model of epipolar geometry. The remaining inliers form the input to
our “Sequential alignment of image triples” algorithm, which was reviewed in
Section 2.4. The result of the algorithm is a sequence of camera positions and
orientations. The reconstruction is based on two-view geometry estimates
which will be inaccurate due to measurement noise in the feature locations.
Constraints from non-consecutive views are not used explicitly, thus allowing
rotational, translational and scale drift error to accumulate over time. This
chapter describes how we tried to improve this situation.

Most features are tracked across more than two views. A straightforward
way to use this additional information is to estimate epipolar geometry be-
tween non-consecutive frames. This yields a redundant set of orientation
estimates, e.g., we do not only have estimates for relative orientation be-
tween views (1 ↔ 2), (2 ↔ 3) and so on but also between views (1 ↔ 3),
(1 ↔ 4), etc.

These redundant estimates will not be consistent with each other, and
the problem is to find a “best fit” set of orientations to this overdeter-
mined system. We have partially adopted Govindu’s “consistency models”
approach [19, 18] to solve this problem.

This chapter starts with a description of the basic idea of the method and
its application to fitting rotations and translations to inconsistent estimates.
We then discuss open problems with the approach to translation fitting and
propose a solution.

51

52 CHAPTER 5. USING REDUNDANT INFORMATION

Pi Pj

Mi Mj

Mij

Figure 5.1: The notion of consistency. Composition of motions Mi and Mij

must be equal to motion Mj .

5.1 Linear fitting of motion estimates

For a set of N views, there are N(N−1)
2 pairs of views, and consequently

there could be that many estimates of relative two-view motions. Let Mij

denote the motion between views i and j, i.e., the transformation that takes
a scene point from the coordinate frame of view i to the coordinate frame
of view j.

Given noisy measurements of some of the Mij , we want to estimate the
(N−1) independent relative motions between the N views. Equivalently, we
can compute the motions Mi, i.e., the transformations from an arbitrarily
fixed reference system to the coordinate system of view i. For a consistent
system of such motions, it is required that

MijMi = Mj . (5.1)

Moving from the reference frame to view i and then from view i to j should
yield the same result as moving from the reference frame to j directly.

Given an inconsistent set of estimates M̂ij for the two-view motions,
there is no solution for the Mi such that M̂ijMi = Mj . Instead, we try to
find a solution that minimizes the distance between the Mij = MjMi − 1
and the measurements Mij . Using Equation (5.1), we can formulate an
overdetermined system of equations

MijMi −Mj = 0, ∀i 6= j. (5.2)

5.2. ESTIMATING ROTATIONS 53

This can be rewritten as

[
. . . M̂ij . . . −I . . .

]


...
Mi
...

Mj
...


= 0,

from which a linear least squares solution for the Mi can be obtained.
The intuition is, that by estimating the motions Mi that are most con-

sistent with the measurements, the errors in individual estimates M̂ij are
“averaged” out. Of course, it is important to choose a suitable represen-
tation for the motions, in order to make the “distance” between motions
(Mi −Mj) a meaningful quantity.

Note, that finding consistent motion estimates can be separated into two
subproblems: estimating a set of consistent rotations and estimating a set
of consistent translations. The consistency relationship for rotations is

RijRi = Rj .

The consistency relationship for translations is

Tij + Ti = Tj .

Both relationships must hold and can be solved for independently.

5.2 Estimating rotations

Using rotation matrices, Equations (5.2) would be of the form

R̂ijRi − Rj = 0.

However, a rotation has only 3 degrees of freedom whereas a 3×3 matrix has
9 degrees of freedom. Consequently, there are a number of constraints on the
elements of a rotation matrix. In the formulation above, these constraints
are not enforced. Thus, the solutions Ri to the above system most likely will
not be rotation matrices.

We have to choose another representation for rotations. In [19] it was
shown that a formulation using quaternions is optimal in the sense that
its linear least squares solution is the Maximum Likelihood estimate given
Gaussian distributed rotation error in the R̂ij .

Representing the rotation estimates as quaternions q̂ij = (w, x, y, z)>

the system of equations becomes

q̂ijqi − qj = 0,

54 CHAPTER 5. USING REDUNDANT INFORMATION

where q̂ijqi is a quaternion multiplication.
Defining matrices Q̂ij corresponding to q̂ij = (w, x, y, z)> as

Q̂ij =


w −x −y −z
x w −z y
y z w −x
z −y x w


the equations can be reformulated using ordinary matrix multiplication

Q̂ijqi − qj = 0.

The consistent solution qi are obtained by computing a least squares solution
to

[
. . . Q̂ij . . . −I . . .

]


...
qi
...
qj
...


= 0,

and then enforcing ‖qi‖ = 1 on the individual qi. For details on quaternion
notation see Appendix A.

5.3 Estimating translations

The original paper by Govindu [19] proposes the following approach for
estimating consistent translations, which, unfortunately, is not adequate for
our purposes for reasons that will be explained later.

As noted earlier, the consistency equations for translations will be of
the form Tij + Ti = Tj .1 However, the orientation between two views can
only be reconstructed up to a scale factor, i.e., only the directions tij of
the translations are known. Thus, we arrive at consistency equations of the
form tij = λij(Ti −Tj) where the λij are unknown scale factors.

However, instead of the equality above, we can utilise the fact that tij

and (Ti −Tj) have to be parallel which can be formulated as

[tij]×(Ti −Tj) = 0. (5.3)

Solving Equation (5.3) will recover the translations (not only the direc-
tions) up to a common scale factor then. As Govindu [19] points out, the
solution will not be optimal since the equations of the system are unequally

1Before this equations can be employed, the translations have to be transformed into
a common coordinate system by rotating them according to the previously estimated
consistent rotations.

5.4. RE-ESTIMATING EPIPOLAR GEOMETRY WITH FIXED ROTATION55

weighted. He proposes a method to scale the individual equations correctly
in an iterative procedure.

The problem with the approach above is that it does not work when
the centres of all cameras are collinear. All the tij will be equal then and
obviously Equations (5.3) will be satisfied for any choice of Ti = sitij ,
where si are arbitrary scaling factors.2 This is an inherent problem of this
configuration. As we pointed out in [32], it is impossible to estimate relative
scale in this case without using corresponding features across three images
explicitly.

Since for our application this configuration is quite likely to occur, i.e.,
the robot will often travel in a straight line for longer periods of time, this
method cannot be applied.

5.4 Re-estimating epipolar geometry with fixed
rotation

We have found that we should the approach for estimating consistent trans-
lations, because extended sequences of collinear camera positions are likely in
the application we aim at. However, the consistenct rotation estimation per-
fectly works in this situation. It can be applied to estimate a consistent set
of rotations from multiple inconsistent two-frame rotation estimates. Fur-
thermore, since the rotation between consecutive views is determined more
accurately now, we should be able to recover a better translation estimate
as well. This is achieved by using the computed rotation as an additional
constraint for translation estimation. Finally, we may expect an improve-
ment in the relative scale between consecutive two-view pairs as well. Scale
is determined by the triangulation of scene points. Better estimates for re-
altive orientation will lead to improved accuracy of triangulation and thus,
to more accurate scale recovery.

We adopt the following approach to exploit the redundant rotation in-
formation:

1. Estimate the epipolar geometry between two-view pairs using the nor-
malized 8-point algorithm.

2. As described in Section 5.2, estimate a consistent set of rotations using
quaternion representation.

3. Keeping this rotations fixed, estimate the translation directions be-
tween consecutive views.

2Our experiments have shown, that also for configurations that are close to collinearity,
the estimation is unstable. We did not implement the iterative reweighting procedure,
perhaps this would improve the results. However, inevitably first estimates occur where
all the si but one are 0. This would result in infinite weights, forbidding unmodified
implementation of the reweighting procedure.

56 CHAPTER 5. USING REDUNDANT INFORMATION

4. Using the consistent rotation and the re-estimated translation param-
eters, find the relative scale between consecutive two-view pairs and
concatenate the resulting triples to a complete path (as described in
Section 2.4).

Although the estimation of translation and scale does not directly involve
redundant information, we may still expect that more accurate rotation
estimates lead to improved results in those steps.

We will now give some details on the translation reestimation step. A
linear least squares approach, similar to the 8-point algorithm is used. Using
the normalized epipolar constraint (Equation 2.3) and the definition of the
essential matrix (Equation 2.4), for each pair of corresponding (normalized)
points x̂ ↔ x̂′ the constraint

x̂′>[t]×Rx̂ = 0

must hold. Since we want to fix the known rotation R, we can apply it to x̂
beforehand, yielding

x̂′>[t]×ŷ = 0,

where ŷ = Rx̂.
Using x̂ = (a, b, 1) and ŷ′ = (a′, b′, 1) this is written out as

(b′ − b)t1 + (a− a′)t2 + (a′b− b′a)t3 = 0, (5.4)

a linear equation in the elements of t.
Using a set of n correspondences x̂i ↔ ŷ′i a system of linear equations is

formed

At =

b′1 − b1 a1 − a′1 a′1b1 − b′1a1
...

...
...

b′n − bn an − a′n a′nbn − b′nan

 t = 0, (5.5)

A least squares solution for t can be found by minimizing ‖At‖ subject to
‖t‖ = 1.

In the 8-point algorithm, the solution is overparameterized. We estimate
the 8 independent ratios of the elements of a 3× 3 matrix which has in fact
only 7 (for the fundamental matrix) respective 5 (for the essential matrix)
degrees of freedom. However, our translation reestimation method is not
overparameterized. The translation direction has 2 degrees of freedom, and
we estimate 2 independent ratios of the elements of a 3-vector.

Chapter 6

Experimental Results

We have performed a number of experiments to evaluate our method both
with simulated data and real images. In the first part of the experimental
evaluation, we have used simulation to explore whether the use of redundant
information, as explained in Chapter 5, can improve the “sequential align-
ment” algorithm (Section 2.4, [32]). In this setting, the feature tracker and
outlier detection stages were left. Image measurements and correspondence
were generated from a simulated scene.

In the second part of the experimental evaluation, the algorithms were
applied on the mobile robot. Thereby, features were extracted and tracked
in real-time, by an on-board laptop while the robot followed a predefined
path. Subsequently, we tried to recover the traversed path from the collected
feature data.

Finally, we discuss the experimental results and present a comparison of
“sequential alignment of image triples” and Bundle Adjustment [27], where
similar experiments were performed but corresponding points were deter-
mined manually.

6.1 Simulation

In a series of simulations, we evaluated the “linear consistency” method
described in Chapter 5 against the “sequential alignment of image triples”
algorithm (Section 2.4). We wanted to examine whether using redundant
two-view orientation estimates can improve the reconstruction accuracy of
our previous method. We will first describe the evaluated methods and
the experimental setup that was used. Then, we present results on the re-
construction accuracy with respect to rotation, translation and scale drift
errors. Analysis of the results leads to an interesting conclusion: Appar-
ently, the translation reestimation step always enhances the solution even
if the rotation estimates can not be improved beforehand. This finding is
confirmed in a further experiment.

57

58 CHAPTER 6. EXPERIMENTAL RESULTS

1.8

0.
6

0.6

0.6
camera 0 camera 9

Figure 6.1: First scenario: Camera movement is along the X axis, i.e.,
perpendicular to the viewing direction.

6.1.1 Setup

The following algorithms have been compared:

1. “triples”. This is the “sequential alignment of image triples” algorithm
described in Section 2.4. It does not make use of redundant informa-
tion. The rotation and translation direction parameters of consecutive
camera poses are estimated from image pairs using the normalized 8-
point algorithm. The relative scale of two-view pairs is determined us-
ing point correspondences across three images to obtain image triples,
which in turn are concatenated to a path.

2. “consistency”. This is the algorithm described in Section 5.4. Using
the normalized 8-point algorithm, rotation estimates between all im-
age pairs in a short subsequence are computed. For the experiments
the length of the subsequence was chosen to be 5 frames. Then, a
consistent set of rotations is computed from the redundant estimates.
Keeping the rotation parameters fixed, the translation directions for
consecutive frames are re-estimated from point correspondences. The
final steps are the same as in the “triples” algorithm: Image triples
are obtained using correspondences across three views. Triples are
concatenated to a path.

Both algorithms yield a path of camera poses which are then compared to
the true poses. The input to the algorithms is a set of simulated image
measurements and correspondence generated as follows.

Two different scenarios are used. Figures 6.1 and 6.2 illustrate the setups.
In both cases, the scenes consisted of 400 point features randomly distributed
inside a cuboid. The points are projected onto the image plane of a camera
with the following internal parameters:

6.1. SIMULATION 59

0.8

0.
6

1.6

0.6
camera 0

camera 9

Figure 6.2: Second scenario: Camera movement is along the Z axis, i.e.,
parallel to the viewing direction.

image width 0.8 units = 800 pixel
image height 0.6 units = 600 pixel
focal length 0.6 units
principal point x = 0.4, y = 0.3 units

Along with correspondence between image points, this forms the input to
the compared algorithms. In both cases 10 camera positions are used. The
distance between consecutive cameras is 0.1 units. In the first scenario,
the camera is moved along the X axis, i.e., perpendicular to the viewing
direction. In the second scenario, the camera is moved along the Z axis, i.e.,
in the viewing direction.

To simulate measurement error the projected image points are perturbed
by adding noise vectors (x, y) drawn from a uniform distribution x, y ∈
[−ε/2, ε/2]. The error level ε is varied between 0 and 10 pixels.

6.1.2 Results

The following criteria are used to evaluate the results:

Rotation error. The angle between reconstructed and true camera rota-
tion in degrees, averaged over the reconstructed reconstructed path.

Translation error. Since only the direction of translation can be recov-
ered, we use the angle between reconstructed and true translation

60 CHAPTER 6. EXPERIMENTAL RESULTS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

er
ro

r [
de

g]
 o

f r
ot

at
io

n

measurement error [px]

Rotation Error X

triples

consistency

Figure 6.3: Average rotation error for motion perpendicular to the viewing
direction (first scenario). Mean and standard deviation for 1000 runs.

direction in degrees, averaged over the reconstructed path.

Scale drift. There are 10 cameras in a straight line, equally spaced. As-
suming that the distance between the first two cameras is 1 unit, the
length of the path should be 9 units. The scale drift value denotes by
how many percents the length of the reconstructed path deviates from
this.

For each scenario and value ε, 1000 experiments were performed. The
results are shown in Figures 6.3 through 6.8.

For movement in the viewing direction, rotation reconstruction is im-
proved by the “linear consistency” algorithm as expected. To get the best
results from the consistent rotation fitting procedure, we would want rota-
tional errors to be Gaussian distributed. Obviously, this is not the case for
the second scenario: For movement perpendicular to the viewing direction,
rotation improvement is very small respective not visible at all.

However, surprisingly the error of the translation estimates is signifi-
cantly improved in both scenarios. Other than we expected, this seems not
only due to the improvement in rotation accuracy. In fact, the mere transla-
tion reestimation procedure seems beneficial. To confirm this, we augmented
the “triples” method by the translation reestimation step, and evaluated it,
too. The results are included in Figures 6.5 through 6.8, labeled as “triples

6.1. SIMULATION 61

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

er
ro

r [
de

g]
 o

f r
ot

at
io

n

measurement error [px]

Rotation Error Z

triples

consistency

Figure 6.4: Average rotation error for motion parallel to the viewing direc-
tion (second scenario). Mean and standard deviation for 1000 runs.

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

er
ro

r [
de

g]
 o

f t
ra

ns
la

tio
n

di
re

ct
io

n

measurement error [px]

Translation Error X

triples

consistency

triples and translation

Figure 6.5: Average translation error for motion perpendicular to the view-
ing direction (first scenario). Mean and standard deviation for 1000 runs.

62 CHAPTER 6. EXPERIMENTAL RESULTS

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

er
ro

r [
de

g]
 o

f t
ra

ns
la

tio
n

di
re

ct
io

n

measurement error [px]

Translation Error Z

triples

consistency

triples and translation

Figure 6.6: Average translation error for motion parallel to the viewing
direction (second scenario). Mean and standard deviation for 1000 runs.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 2 4 6 8 10

sc
al

e
dr

ift
 e

rr
or

 [p
er

ce
nt

]

measurement error [px]

Scale Error X

triples

consistency

triples and translation

Figure 6.7: Scale drift for motion perpendicular to the viewing direction
(first scenario). Mean and standard deviation for 1000 runs.

6.2. ROBOT VISION EXPERIMENTS 63

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

sc
al

e
dr

ift
 e

rr
or

 [p
er

ce
nt

]

measurement error [px]

Scale Error Z

triples

consistency

triples and translation

Figure 6.8: Scale drift for motion parallel to the viewing direction (second
scenario). Mean and standard deviation for 1000 runs.

and translation”. Indeed, we find that translation reestimation improves the
results even without using rotation redundancy.

Figures 6.7 and 6.8 show the evaluation for scale drift error. First, we
see that scale drift is less severe for motion perpendicular to the vieweing
direction. This is not surprising since scale estimation is done via triangu-
lation of scenepoints and the geometry for triangulation is better for the
first scenario, i.e., the angles between the image point reprojection rays are
larger.

Both, “consistency” and “triples and translation” succeed in decreasing
scale drift, although not as hefty as one might have hoped. For high levels
of noise, we observe that “triples and translation” actually performs a little
better than “consistency”. This is possibly due to the fact that the relative
motion obtained by “consistency” is closer to reality, but the two-frame
estimates of “triples and translation” better match the (erroneous) image
measurements.

6.2 Robot vision experiments

The mobile robot used in the experiments was a Pioneer 2 equipped with a
Sony EVI-D30 camera. Feature data was collected using the feature tracker
while the robot followed a predefined path in the environment. Two different

64 CHAPTER 6. EXPERIMENTAL RESULTS

Figure 6.9: Some images acquired by the robot camera during the “navi-
gation” experiment. Since natural visual features in the scene are sparse,
several cardboard boxes have been placed on the floor.

scenarios have been set up having two different potential applications of
visual sensors in mind. The first is referred to as “navigation scenario”.
Being given a target location, the robot at first steers toward the target
and follows a fairly straight line afterwards. Thereby, the camera is looking
straight ahead. This is a common situation in many robotic applications.
Secondly, a “mapping scenario” was set up where the robot circled around
an object situated on the flooe. In this case, the aim is to obtain a 3D model
of the object and add it to the robots representation of the environment.

We will first describe the setup in detail and discuss some problems
and limitations that had to be addressed in the practical performance of
the experiments. Then, we present results of our method. We find that
reasonable results can be obtained, but some unsolved problems still remain.

6.2.1 Setup

For the experiments, the robot is required to collect feature data while it is
moving along a predefined path. In the “navigation” experiment, the robot
drives down a corridor. Some images taken by the robot camera during
execution are shown in Figure 6.9. It can be seen that the corridor has been
decorated with some cardboard boxes. This is meant to provide the naked
white-walled corridor with some additional visual cues. Figure 6.10 depicts
the trajectory for this experiment.

Sample images from the “mapping” experiment are shown in Figure 6.11.
The trajectory is shown in Figure 6.12. Thereby, the camera keeps looking
at the object, the robot is going around. Camera motion is approximately
perpendicular to the viewing direction.

The robot control architecture described in Section 2.6 is employed to
make the robot execute the pre-planned motion. Particularly, control points
are defined in the map, each annotated with a target, the camera should look
at. Based on this, the robot controller generates motion commands that

6.2. ROBOT VISION EXPERIMENTS 65

 8500

 9000

 9500

 10000

 10500
 16000 16500 17000 17500 18000 18500 19000 19500 20000 20500 21000

start

end

Figure 6.10: The trajectory of the robot for the “navigation” experiment in
birds-eye view. The camera is oriented in the heading direction of the robot.

Figure 6.11: Some images acquired by the robot camera during the “map-
ping” experiment. The robot is circling around an object.

66 CHAPTER 6. EXPERIMENTAL RESULTS

 8000

 8500

 9000

 9500

 10000

 10500
 16500 17000 17500 18000 18500 19000 19500 20000 20500

start
end

Figure 6.12: The trajectory of the robot for the “mapping” experiment in
birds-eye view. The robot circles around an object which is depicted, too.
The camera is looking at the object, i.e., the robot is “looking over it’s left
shoulder”.

make the robot move smoothly from one control point to the next. The
camera pan/tilt angles are smoothly interpolated between control points,
too. Feature tracking is done by the on-board laptop. The feature data is
sent to an external PC, where it is synchronized with the odometry data
and stored into files.

Several problems had to be solved in the planning and execution of the
experiments. Firstly, with the onboard laptop we achieve frame rates of
about 3.75 Hz. This is sufficient for movement in the viewing direction
but rapid turns have to be avoided since the resulting magnitude of image
motion cannot be handled by the feature tracker. Consequently, we have
tried to keep the velocity of image motion low for the experiments.

Secondly, pure rotations pose some problems for the reconstruction al-
gorithms, e.g., a pan of the camera while the robot stands still. As yet, our
approach cannot handle such cases at all. Corresponding features between
images are related by a 2D to 2D homography in a pure rotation situation.
In this case, there are a family of essential matrices that satisfy the epipolar
constraint. Augmenting our method with the detection of homographies
and recovering rotations from them should not be overly difficult, though.
The situation becomes worse if the magnitude of the pure rotation is such
that all the features that were visible before the rotation have moved out of
view when the robot starts to move again. In this case, the scale is lost, i.e.,

6.2. ROBOT VISION EXPERIMENTS 67

 8500

 9000

 9500

 10000

 10500
 16000 17000 18000 19000 20000 21000 22000 23000

triples
consistency

triples and translation
odometry

Figure 6.13: Reconstructed trajectories for the “navigation” experiment in
birds-eye view. Odometry readings are shown for comparison. The trajecto-
ries have been scaled such that the distances between the leftmost position
and the mid of the bend match.

there is an undetermined scale factor relating the motion sequences before
and after the pure rotation. Without further information, the latter problem
cannot be solved by Bundle Adjustment either.

Finally, to update the reconstruction to the correct scale, some metric
information is needed. This so-called datum definitions must relate image
coordinates in the image to coordinates in the world. Indeed, no solution
can be obtained at all from the ORIENT software unless such information is
known. In order to obtain the datum definitions, a cardboard box is marked
in a special color and placed at a known location in the scene. The box can be
detected in the laser range scans by it’s shape and estimated position. It can
be detected in the camera image by color-segmentation, too. Together, this
provides the necessary datum information. When planning the trajectory,
it must be observed that, unlike the camera, the laser range finder cannot
be panned. For instance, when the camera is panned left all the way, as it is
in the mapping scenario, a marked box in the camera’s field of view cannot
be detected in the laser range scan and vice versa.

6.2.2 Results

Figures 6.13 and 6.14 show the reconstructed paths for the navigation and
mapping experiments. For reference, the robot path as obtained by the
odometry sensors is shown, too. Respectively, the following algorithms are
compared:

1. “triples”. This is the “sequential alignment of image triples” algo-
rithm described in Section 2.4. The relative orientation of consec-
utive cameras is estimated from image pairs. Using three-image-
correspondences, the relative scale of two-view pairs is determined to
obtain image triples. These are concatenated to a path.

68 CHAPTER 6. EXPERIMENTAL RESULTS

 8000

 8500

 9000

 9500

 10000

 10500
 16500 17000 17500 18000 18500 19000 19500 20000 20500

odometry
consistency

triples and translation
triples

Figure 6.14: Reconstructed trajectories for the “mapping” experiment in
birds-eye view. Odometry readings are shown for comparison. The trajec-
tories have been scaled such that the distances between the leftmost and
rightmost positions match.

2. “consistency”. This is the algorithm described in Section 5.4. Rota-
tions between all image pairs in a 5 frame subsequence are estimated.
A consistent set of rotations is computed from these redundant es-
timates. Keeping the rotation parameters fixed, the translations be-
tween consecutive frames are re-estimated. Image triples are obtained
using correspondences across three views and subsequently concate-
nated to a path.

3. “triples and translation”. The relative orientation of consecutive cam-
eras is estimated from image pairs. Keeping the rotation parameters
fixed, the translation parameters are re-estimated. Image triples are
obtained using correspondences across three views and subsequently
concatenated to a path.

All algorithms operate on identical input data, i.e., outlier detection is per-
formed beforehand and the detected inlier set is used by all algorithms.
Since the path reconstruction is only up to scale for our methods, we fixed
scale as follows. For the mapping experiment, scale factors were chosen such
that the distance between the leftmost and rightmost positions in the path
matches the distance between the respective odometry positions. For the
navigation experiment, scale was chosen such that the distance between the
starting position and the bend in the path match.

6.2. ROBOT VISION EXPERIMENTS 69

As can be seen in Figure 6.14, at one point in the mapping experiment
the “consistency” and “triples and translation” fail. The estimated mo-
tion direction is almost orthogonal to the true motion. Subsequently, this
causes severe error in the estimated relative scale. Scale is obtained by tri-
angulation of scene points and the accuracy of the triangulation depends
on the accuracy of the recovered relative motion. We have performed the
experiments several times and such fatal mistakes inevitably occur in the
processing of extended image sequences. Although this is the case for the
“triples” algorithm as well, in this particular experiment, it succeeds in com-
pleting the sequence. As yet, we can offer no satisfying explanation for the
circumstances that trigger these failures. This is subject to further inves-
tigations since practical applicability of the methods depends on detecting
such situations and recovering from them.

Ground truth for the camera positions is not known, but odometry is
supposed to be quite accurate over short distances. Odometry error is com-
monly modeled [17] by three contributing sources of error:

1. distance. Accumulating distance error is about 1 centimeter per meter.
This is the least worrisome source of error.

2. rotation. Error of this kind occurs when the robot is changing direc-
tion. It amounts to about 8 degrees per full revolution (360 degrees).

3. drift. Drift error is the angular deviation when the robot is driving in
a straight line. It is about 1 degree per meter.

We can judge the expected accuracy of our methods only in relation to the
odometry data.

The mapping experiment is considered only up to the point where “con-
sistency” and “triples and translation” deviate from the expected behaviour.
The corresponding position is marked by a cross in the plot on all trajecto-
ries, respectively. The expected odometry error in the final position is in the
order of 20 centimeters. In this experiment, “consistency” performs best.
The positional deviation for the final position is in the same order of mag-
nitude as the odometry error. For “triples” and “triples and translation”,
the deviation is approximately twice as large. Visually judged, both “triples
and translation” and “consisteny” yield much smoother paths than “triples”.
Probably, accumulated scale drift is responsible for the large deviation in
“triples and translation”.

In the navigation experiment, expected odometry error in the final po-
sition is about 10 centimeters. The effects of scale drift are obvious for the
“triples” result, mounting up to a final positional deviation that is approxi-
mately 15 times the odometry error. It is known, that the 8-point algorithm
suffers from a bias in the viewing direction. Furthermore, the average image
motion of the features for camera motion in the viewing direction is small

70 CHAPTER 6. EXPERIMENTAL RESULTS

in comparison with camera motion perpendicular to the vieweing direction.
Thus, the angles between triangulation rays for scene point reconstruction
are smaller and consequently, relative scale estimates are less accurate. It is
highly likely, that the combination of these two facts is responsible for the
bad performance of “triples”. Both of the other algorithms can significantly
reduce scale drift. Nevertheless, in both cases positional deviation is about
twice the expected odometry error.

We have also separately evaluated the rotational errors. Thereby, we
have manually separated path segments corresponding to straight and cir-
cular motion, respectively. For straight segments, we have found that the
magnitude of rotational error is comparable the odometry drift error: 1 de-
gree per meter. For circular motion, the most prominent source of odometry
error is rotation which is about 8 degrees per revolution. In this case, all
of our algorithms perform worse. Rotational error is about 12 degrees per
revolution for “consistency” and more than 20 degrees per revolution for the
other two algorithms.

6.3 Discussion

Based on our experiments, we can clearly say that our method cannot rival
the accuracy of odometry, as yet. This is in part due to the algorithms
themselves. In part, it is due to the restrictions of the hardware we use,
such as the limited resolution of the camera, image distortion introduced
by the frame grabber, etc. Yet, what if odometry is not an option? For
humanoid robots (or more general, legged robots) odometry is simply not
available. Camera based navigation might prove as a viable alternative in
these cases.

It is desirable for the task of navigation that motion estimates are in-
stantly available. This is an important aspect in the visual motion estima-
tion methods, we have explored. We do not necessarily require optimally
accurate estimates. Instead, we are interested in obtaining reasonably good
estimates in about real-time. However, to evaluate the accuracy of our re-
sults, it is useful to compare them to the optimal solution.

We will present some experimental results [27] in which our “triples and
scale” algorithm is compared with the ORIENT software [25], a commercial
Bundle Adjustment solution. In Bundle Adjustment, nonlinear optimization
is applied to find a maximum likelihood solution, i.e., the set of camera
and scene point parameters that represents the most likely explanation for
a sequence of images. Two experiments were performed, resembling the
navigation and mapping scenario, respectively. A mobile robot was used
to collect images in which features were manually selected, subsequently.
Correspondence between features was established manually, too.

The reconstructed trajectories are shown in Figures 6.15 and 6.16. The

6.3. DISCUSSION 71

 9400

 9450

 9500

 9550

 9600

 9650

 9700

 0 2000 4000 6000 8000 10000 12000

odometry
triples and scale

ORIENT

Figure 6.15: Results for the navigation scenario with manually extracted
features. The trajectory was reconstructed using “sequential alignment of
image triples” and ORIENT, respectively. Odometry readings are shown for
comparison.

 7500

 8000

 8500

 9000

 9500

 10000

 10500

 11000
 17000 17500 18000 18500 19000 19500 20000 20500 21000

odometry
triples and scale

ORIENT

Figure 6.16: Results for the mapping scenario with manually extracted fea-
tures. The trajectory was reconstructed using “sequential alignment of im-
age triples” and ORIENT, respectively. Odometry readings are shown for
comparison.

72 CHAPTER 6. EXPERIMENTAL RESULTS

Triples ORIENT

t [s] ∆XY [cm] ∆α [deg] t [s] ∆XY [cm] ∆α [deg]

Navigation 0.15 67 -0.3 10 31 0.3

Mapping 0.32 45 20.3 7 6 0.6

Table 6.1: Runtimes and final deviations for the navigation and mapping
experiments.

overall scale of the ORIENT solution was determined by the known reference
points in the scene. To fix the scale of the “triples” solution, the recovered
relative scale estimates between consecutive camera pairs were fused with
the distances between the corresponding odometry positions using a least
squares fit, treating both as unreliable measurements. The final camera po-
sitions were measured in both experiments. Table 6.3 lists the positional
and rotational deviations in the final positions, respectively. The runtime
results obtained on a 1.5 GHz PC are shown as well. The advantage of the
“triples” algorithm in terms of processing speed is obvious. The execution
times for the Bundle Adjustment are higher by several orders of magnitude.
Bundle Adjustment is an iterative optimization technique, where each itera-
tion requires the inversion of a large coefficient matrix formed by the camera
and scene point parameters. Thus, the complexity of one iteration step is
O(n3), where n is the number of parameters, i.e., 3 for each scene point and
6 for each camera [41]. The complexity of triples is O(n2) for each image,
where n is the number of point correspondences. That is, complexity does
not increase with the length of the sequence.

In prelimiary experiments with automatically detected features we have
also found that ORIENT is suspectible to outliers. A few of outliers can
be detected, but computation is aborted if their number increases beyond
a predefined threshold. The outliers have to be manually removed from the
input. Then, the computation can be repeated. Thus, straightforward inte-
gration of ORIENT into the robot control architecture is not possible, unless
the feature data is preprocessed, e.g., by the robust MSAC algorithm [38].
This is a peculiarity of ORIENT, though, and should not be generalized to
Bundle Adjustment methods in the whole.

It is obvious that the accuracy of Bundle Adjustment is by far superior
in the mapping experiment. When the robot has completed its path, fea-
tures from the start of the sequenc become visible again. This allows to
back-propagate errors throughout the sequence that otherwise would have
accumulated over time. Bundle Adjustment can employ such information
since it operates on the image sequence as a whole. In our method, the path
is reconstructed sequentially. Since, essentially, we only look at two images

6.3. DISCUSSION 73

Figure 6.17: Recovering structure of scene objects. From left to right: An
image of the actual object, view from above of the reconstructed scene
points, view from the side. The red dots in the reconstructed views indicate
camera positions.

at a time, the closedness of the sequence cannot be exploited. In this partic-
ular case, correspondence is easiely re-established since the feature extration
is performed manually. The situation is very different if automatic feature
detection is used. The feature tracker is not able of reestablishing corre-
spondence, once it has been lost. This points us to an important capability
of visual sensors, that we have as yet neglected. So far, we have looked at
the camera as a motion sensor although information about structure can be
extracted, too.

6.3.1 3D mapping as a potential application

For sequences of a few images, our motion estimation method should be suf-
ficiently accurate to allow for a reconstruction of scene structure. We have
performed the following experiment for a subsequence of the mapping sce-
nario: Camera positions were estimated using the “consistency” approach.
Subsequently, a 3D reconstruction of scene points is obtained by triangula-
tion of backprojected image rays. Plots of the reconstructed scene are shown
in Figure 6.17.

An aim of future work is to use such partial scene recostruction to extract
visual landmarks. One could imagine an approximation of the point cloud
by planar patches, may be augmented with texture from the input images.
Once we succeed in obtaining models for individual objects, these could be
used to recognize objects and update the position estimate in turn.

Chapter 7

Conclusion

Today, mobile robots are equipped with a variety of sensors, among which
cameras are only one modality. As the complexity of application scenarios
increases, the limitations of the traditional sonar and odometry sensors will
become more prominent. A humanoid robot acting in a realistic, complex
scenario cannot successfully represent it’s environment in a 2D abstraction.
It is our belief, that visual sensors will prove as an important alternative in
the near future.

For mobile robots, localization and mapping are important lower-level
tasks which must be reliably solved for almost every conceivable application.
Clearly, data from all available sensors has to be integrated to achieve the
best possible result in terms of robustness and accuracy. The aim of this
thesis, though, has been to explore what can be achieved with visual sensors
only.

It was indicated that both motion and structure can be recovered from
sequences of images. Visual sensors can supply both position and distance
information in this respect. In the present work, we have focussed on the
properties of a single camera as a means of estimating relative motion. On
the other hand, the preprocessing steps we implemented provide an abstrac-
tion from the input images that also forms a solid basis for the recovery of
scene structure.

The work we presented can be divided into two parts. Firstly, we were
concerned with the extraction of point features corresponding to a rigid
scene from raw images. The correspondence problem, i.e., establishing a
connection between the projections of a scene feature in different images
is addressed, too. We used the Kanade-Lucas-Tomasi Feature Tracker [33]
to locate features and track them across images. We have proposed and
implemented several modifications to a widely-used implementation, thereby
decreasing processing time by more than factor 5. The output of the tracker
is contaminated by outliers, i.e., incorrectly tracked features or features that
correspond to non-rigid parts of the scene. The presence of outliers can

75

76 CHAPTER 7. CONCLUSION

severely disturb the estimation of structure and motion. Consequently, they
should be removed from the data. We applied the MSAC algorithm [38] to
detect outliers in the feature data.

Secondly, we have evaluated the “sequential alignment of image triples”
algorithm [32] in real-world scenarios. Feature tracking and outlier detec-
tion have been used, to process images obtaine by a mobile robot equipped
with a camera. Subsequently, the feature data was used to reconstruct the
trajectory of the robot. We have proposed a modification to the “sequen-
tial alignment of image triples” algorithm which integrates additional con-
straints available in the feature data. Several redundant estimates of motion
between non-consecutive views are computed and integrated. The benefits
of this modification have been evaluated in both simulated and real-world
experiments. This forms the main contribution of the thesis.

Our experiments have shown that indeed the trajectory of a mobile robot
can be recovered efficiently. We are not able to compete with the accuracy
of odometry, though. Various sources of error contribute to a degradation
of accuracy over time. Rotational and translational errors of individual two-
frame estimates accumulate. However, drift in the relative scale of image
triples seems to the most critical problem, since the accumulation of indi-
vidual errors is multiplicative. Thus, the accuracy of a position estimate
obtained by our method will decrease over time.

A subject of future work is to obtain visual representations of fixed land-
marks in the environment. These could be used to correct the estimated tra-
jectory whenever they are visible. Using our position estimation approach,
short subsequences of oriented cameras can be obtained. Subsequently, the
structure of the scene can be partially recovered. The reconstructed “scene”
is basically a number of 3D points. However, in structured environments
these points can be used, to approximate planar surfaces. One could envi-
sion an approach similar to the one Liu et. al. [28] apply to map-building
from 3D Laser range scans.

Appendix A

Quaternion Rotations

Rotations in space can be represented by various means. Commonly used
are 3 × 3 rotation matrices. This representation is unique, each rotation
is associated with a unique matrix. Since a rotation has only 3 degrees of
freedom, there are several constraints on the 9 entries of the matrix. Each
pair of columns must be orthogonal and each column must have unit norm.
Furthermore, the matrix must be orthonormal, i.e. have determinant 1.

Another common representation are Euler angles. A rotation is decom-
posed as 3 angles, specifying rotations about the x, y and z axis respectively.
Euler angles are a minimal representation, i.e., 3 numbers represent the 3
degrees of freedom. Unfortunately, for some rotations there is not a unique
representation

Unit quaternions represent a rotation by 4 numbers, q = (w, x, y, z)>.
There is only one constraint, that ‖q‖ = 1. Unit quaternions, too, are
unique, each rotation is associated with a unique quaternion.

The unit quaternion representing a rotation by θ radians, −2π < θ < 2π,
about the unit vector x̃ is

q =
[

cos(θ
2)

sin(θ
2)x̃

]
. (A.1)

Antipodal Quaternions. Rotation about x̃ by θ − 2π yields the same
result as roation by θ. In fact, this is the same rotation, only “the other
way around”. The quaternions associated with both rotations are called
antipodal quaternions. From the definition above, the rotation antipodal to
q is [

cos(θ−2π
2)

sin(θ−2π
2)x̃

]
=

[
cos(θ

2 − π)
sin(θ

2 − π)x̃

]
= −q.

Quaternion multiplication. Given two quaternion rotations q1 and q2,
it is easy to obtain the composite rotation q, i.e. the rotation which has to be

77

78 APPENDIX A. QUATERNION ROTATIONS

applied to obtain the same result as by applying q2 and then q1. Quaternion
multiplication is defined as

q = q1q2 =
[
w1

v1

] [
w2

v2

]
=

[
w1w2 − v1 · v2

w1v2 + w2v1 + v1 × v2

]
. (A.2)

As one would expect, quaternion multiplication is an associative but not
commutative operation.

The above definition can be used, for instance, to derive the rotation
q−1 which reverses the effect of rotation q. It is required that q−1q =
qq−1 = (1, 0, 0, 0)>, and using Equation (A.2) obviously the inverse rotation
to q = (w, x, y, z)> is q−1 = (w,−x,−y,−z)>.

Rotation of a vector. When some rotation represented by q is to be
applied to a 3-vector x̃, the resulting rotated vector x̃′ is obtained by the
following quaternion multiplication[

0
x̃′

]
= q

[
0
x̃

]
q−1.

Relation between quaternions and rotation matrices. The columns
of a rotation matrix form the base vectors of the rotated frame. Thus,
the rotation matrix corresponding to a quaternion q = (w, x, y, z)> can be
obtained by rotating the columns of the 3× 3 identity matrix, yielding:

Rq =

1− 2y2 − 2z2 2xy − 2wz 2xz + 2wy
2xy + 2wz 1− 2x2 − 2z2 2yz − 2wx
2xz − 2wy 2yz + 2wx 1− 2x2 − 2y2


The inverse operation, obtaining a quaternion from a roation matrix, is

quite easy too. Given the above rotation matrix, from its diagonal entries

1 + r11 + r22 + r33 = 4− 4x2 − 4y2 − 4z2,

and since ‖q‖ = 1,

w = ±
√

1 + r11 + r22 + r33
2

.

The other components can be easily retrieved now, too:

x =
r32 − r23

4w
=

4wx

4w

y =
r13 − r31

4w
=

4wy

4w

z =
r21 − r12

4w
=

4wz

4w
.

The choice of sign for w reflects the direction of rotation, i.e., choice
between antipodal quaternions.

Bibliography

[1] Vision workbench. Available via http://www.robots.ox.ac.uk/˜lav
/Internal/Software/.

[2] Vxl vision libraries. Available via http://vxl.sourceforge.net/.

[3] ActivMedia, Inc. Saphira software manual version 5.3, 1997.

[4] A. Benedetti and P. Perona. Real-time 2-D feature detection on a
reconfigurable computer. In IEEE Conference on Computer Vision
and Pattern Recognition, 1998.

[5] S. Birchfield. An implementation of the Kanade-Lucas-Tomasi feature
tracker. Available via http://vision.stanford.edu/˜birch/klt/.

[6] S. Birchfield. Derivation of Kanade-Lucas-Tomasi tracking equation.
May 1996.

[7] J. Bouget and P. Perona. Visual navigation using a single camera. In
International Conference on Computer Vision, pages 645–652, 1995.

[8] J. Bouguet. Camera calibration toolbox for Matlab. Available via
http://www.vision.caltech.edu/bouguetj/calib doc/index.html.

[9] J. Bouguet. Pyramidal implementation of the Lucas Kanade feature
tracker. Available via http://graphics.stanford.edu/courses/cs448a-00-
fall/bouget00.pdf.

[10] D. C. Brown. Decentering distortion of lenses. Photometric Engineer-
ing, 32(3):444–462, 1966.

[11] A. Chiuso, P. Favaro, H. Jin, and S. Soatto. Structure from motion
causally integrated over time. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(4):523–535, 2002.

[12] A. J. Davison. Real-time simultaneous localisation and mapping with a
single camera. In International Conference on Computer Vision, 2003.

[13] Andrew J. Davison and David W. Murray. Mobile robot localisation
using active vision. Lecture Notes in Computer Science, 1407, 1998.

79

80 BIBLIOGRAPHY

[14] C. L. Feng and Y. S. Hung. A robust method for estimating the funda-
mental matrix. In 7th Conference on Digital Image Computing: Tech-
niques and Applications, pages 633–642, December 2003.

[15] M. A. Fischler and R. C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and au-
tomated cartography. Communications of the ACM, 24(6):381–395,
1981.

[16] W. Förstner and E. Gülch. A fast operator for detection and precise
location of distinct points, corners and centres of circular features. In
ISPRS Intercommission Workshop, pages 281–305, Interlaken, 1987.

[17] D. Fox. Markov localization: A probabilistic framework for mobile robot
localization and navigation. PhD thesis, Universität Bonn, 1999.

[18] V. Govindu. Probabilistic models for motion estimation. PhD thesis,
University of Maryland, December 1999.

[19] V. Govindu. Combining two-view constraints for motion estimation. In
IEEE Conference on Computer Vision and Pattern Recognition, 2001.

[20] C. J. Harris and M. Stephens. A combined corner and edge detector.
In 4th Alvey Vision Conference, pages 147–151, Manchester, 1988.

[21] R. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge Univerity Press, 2000.

[22] R. I. Hartley. In defense of the 8-point algorithm. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 19(6):580–593, 1997.

[23] B. K. P. Horn. Recovering baseline and orien-
tation from essential matrix, 1990. Available via
http://www.ai.mit.edu/people/bkph/publications.html.

[24] A. Johnson and L. Matthies. Precise image based motion estimation for
autonomous small body exploration. In 5th International Symposium
On Artificial Intelligence, Robotics and Automation in Space, pages
627–634, 1999.

[25] H. Kager. ORIENT: A universal photogrammetric adjustment system.
In Optical 3-D Measurement Techniques, pages 447–455. Herbert Wich-
man Verlag, 1989.

[26] L. Kitchen and A. Rosenfeld. Gray level corner detection. Pattern
Recognition Letters, pages 95–102, December 1982.

BIBLIOGRAPHY 81

[27] A. Knöppler and T. Pietzsch. Vergleich von Bündelblockausgleichung
und sequentieller relativer Orientierung von Bildtripeln zur Roboterpo-
sitionierung. In 23. Jahrestagung der Deutschen Gesellschaft für Pho-
togrammetrie, Fernerkundung und Geoinformation, 2003.

[28] Y. Liu, R. Emery, D. Chakrabarti, W. Burgard, and S. Thrun. Us-
ing EM to learn 3D models with mobile robots. In Proceedings of the
International Conference on Machine Learning (ICML), 2001.

[29] H. C. Longuet-Higgins. A computer algorithm for reconstructing a
scene from two projections. Nature, 293:133–135, September 1981.

[30] B. D. Lucas and T. Kanade. An iterative image registration technique
with an application to stereo vision. In International Joint Conference
on Artificial Intelligence, pages 674–679, 1981.

[31] T. Luhmann. Nahbereichsphotogrammetrie. Herbert Wichman Verlag,
2003.

[32] T. Pietzsch. Position estimation of a mobile robot using a single
vehicle-mounted camera, 2002. Available via http://www.wv.inf.tu-
dresden.de/Publications/Prediploma/pietzsch.pdf.

[33] J. Shi and C. Tomasi. Good features to track. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 593–600, 1994.

[34] C. V. Stewart. Robust parameter estimation in computer vision. SIAM
Review, 41(3):513–537, 1999.

[35] C. Tomasi and T. Kanade. Detection and tracking of point features.
Technical Report CMU-CS-91-132, Carnegie Mellon University, April
1991.

[36] T. Tommasini, A. Fusiello, E. Trucco, and V. Roberto. Making good
features track better. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 178–183, 1998.

[37] P. H. S. Torr. Bayesian model estimation and selection for epipolar ge-
ometry and general manifold fitting. International Journal of Computer
Vision, 50(1):35–61, 2002.

[38] P. H. S. Torr and A. Zisserman. MLESAC: A new robust estimator
with application to estimating image geometry. CVIU, 78(1):138–156,
2000.

[39] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle ad-
justment – A modern synthesis. In Vision Algorithms: Theory and
Practice, Lecture Notes in Computer Science, pages 298–375. Springer
Verlag, 2000.

82 BIBLIOGRAPHY

[40] F. M. Waltz and J. W. V. Miller. An efficient algorithm for gaussian blur
using finite-state machines. In SPIE Conference on Machine Vision
Systems for Inspection and Metrology VII, volume 3521, pages 334–341,
Boston, MA, 1998.

[41] X. Wang and T. A. Clarke. Separate adjustment of close range pho-
togrammetric measurements. ISPRS Journal of Photogrammetry and
Remote Sensing, 32(5):177–184, 1998.

[42] Zhengyou Zhang. Parameter estimation techniques: A tutorial with
application to conic fitting. Technical Report RR-2676, INRIA, October
1995.

[43] Zhengyou Zhang. A new multistage approach to motion and structure
estimation: From essential parameters to euclidean motion via funda-
mental matrix. Technical Report RR-2910, INRIA, June 1996.

