
KNOWLEDGE GRAPHS

Lecture 7: Advanced Features of SPARQL (2)

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 27th Nov 2018

Review

SPARQL:

• . . . is the W3C-standard for querying RDF graphs

• . . . at its core relies on basic graph patterns (BGPs)

• . . . returns sequences or multi-sets of partial functions (“solutions”)

Wikidata:

• . . . is a large, free knowledge graph & open community

• . . . can be viewed as a document-centric or graph-based database

• . . . provides an RDF-mapping, linked-data exports, and the SPARQL-based
Wikidata query service (WDQS)

In this lecture: many more SPARQL features

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 2 of 32

Projection and Solution Set Modifiers

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 3 of 32

From patterns to queries

SELECT clauses

• specify the bindings that get returned (projection = removal of some bindings from
results)

• may define additional results computed by functions

• may define additional results computed by aggregates

Example 7.1: Find cities and their population densities:

SELECT ?city (?population/?area AS ?populationDensity)
WHERE {
?city rdf:type eg:city ;

eg:population ?population ;

eg:areaInSqkm ?area .

}

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 4 of 32

Projection and Duplicates

Projection can increase the multiplicity of solutions

Definition 7.2: The projection of a solutions mapping µ to a set of variables V is
the restriction of the partial function µ to variables in V. The projection of a solu-
tion sequence is the set of all projections of its solution mappings, ordered by the
first occurrence of each projected solution mapping.

The cardinality of a solution mapping µ in a solution Ω is the sum of the cardinali-
ties of all mappings ν ∈ Ω that project to the same mapping µ.

Note: This definition also works if additional results are defined by functions or
aggregates. Solution mappings are extended first by adding the bound variables, and
then subjected to projection.

The keyword DISTINCT can be used after SELECT to remove duplicate solutions
(=to set multiplicity of any element in the result to 1)

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 5 of 32

Solution set modifiers

SPARQL supports several expressions after the query’s WHERE clause:
• ORDER BY defines the desired order of results

– Can be followed by several expressions (separated by space)
– May use order modifiers ASC() (default) or DESC()

• LIMIT defines a maximal number of results

• OFFSET specifies the index of the first result within the list of all results
Note: Both LIMIT and OFFSET should only be used on explicitly ordered results

Example 7.3: In Wikidata, find the largest German cities, rank 6 to 15:

SELECT ?city ?population
WHERE {
?city wdt:P31 wd:Q515 ; # instance of city

wdt:P17 wd:Q183 ; # county Germany

wdt:P1082 ?population # get population

} ORDER BY DESC(?population) OFFSET 5 LIMIT 10

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 6 of 32

Groups, Union, Minus, Optional, Subqueries

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 7 of 32

Groups

So far, all of our queries had a single pattern consisting of

• triple patterns

• property path patterns

• filters

When introducing further features, we will often have to group them:
this is done with braces { . . . }

Terminology: A query part within braces is called a group graph pattern in
SPARQL.

We were already using group graph patterns in all queries: the part after WHERE is one

Semantically, results of juxtaposed group graph patterns are combined using Join.

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 8 of 32

Union

The UNION operator allows us to obtain the union of the results of two group graph
patterns.

Example 7.4: In Wikidata, find everybody who is a composer by occupation or
who has composed something:

SELECT ?person
WHERE {
{ ?person wdt:P106 wd:Q36834 } # ?person occupation: composer

UNION
{ ?music wdt:P86 ?person } # ?music composer: ?person

}

UNION produces the union of results and adds up multiplicities

{ using DISTINCT might be necessary

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 9 of 32

Semantics of SPARQL queries
SPARQL query features are defined by corresponding query algebra operations that
produce results (i.e., multisets of solution mappings).

We already encountered some such operations:
• evalG produced results for BGPs and property path patterns
• Join computed the natural join of two results

We omitted the according operation for FILTER so far. It is simple; we just need to take
into account that the meaning of some filter expressions (e.g., NOT EXISTS) depends on
the given RDF graph:

Definition 7.5: Given a filter expression ϕ, a multiset M of solution mappings,
and an RDF graph G, we define the multiset

Filter(ϕ, M, G) = {µ | µ ∈ M and ϕ evaluates to true for µ (over G)}

with the cardinality of a solution mapping µ defined as cardFilter(ϕ,M,G)(µ) =

cardM(µ).

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 10 of 32

Semantics of UNION

The semantics of UNION is defined by the operation Union(M1, M2) that computes the
union of two multisets M1 and M2 of solution mappings:

Definition 7.6: Given multisets M1 and M2 of solution mappings, we define the
multiset

Union(M1, M2) = {µ | µ ∈ M1 or µ ∈ M2}
with the cardinality of a solution mapping µ defined as

cardUnion(M1,M2)(µ) = cardM1 (µ) + cardM2 (µ).

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 11 of 32

Minus

The MINUS operator allows us to remove the results of one group graph pattern from the
results of another.

Example 7.7: In Wikidata, find living people who are composers by occupation:

SELECT ?person
WHERE {
{ ?person wdt:P106 wd:Q36834 } # ?person occupation: composer

MINUS
{ ?person wdt:P570 [] } # ?person date of death: some value

}

Similar results can often be achieved with FILTER NOT EXISTS, but the two are used
differently:

MINUS and FILTER NOT EXISTS behave differently, e.g., when applied to a group graph
patterns that do not share any variables.

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 12 of 32

Semantics of MINUS

The semantics of MINUS is defined by the operation Minus(M1, M2) that computes the
set difference of two results M1 and M2:

Definition 7.8: Given multisets M1 and M2 of solution mappings, we define the
multiset

Minus(M1, M2) = {µ | µ ∈ M1 and for all µ′ ∈ M2 : µ and µ′ are not compatible

or have disjoint domains: dom(µ) ∩ dom(µ′) = ∅}

with the cardinality of a mapping µ defined as cardMinus(M1,M2)(µ) = cardM1 (µ).

Recall: mappings µ1 and µ2 are compatible if µ1(x) = µ2(x) for all variable names
x ∈ dom(µ1) ∩ dom(µ2)

Note: Minus(M1, M2) does not depend on cardinalities of mappings in M2.

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 13 of 32

Optional

The OPTIONAL operator is used to extend solution mappings with additional, optional
information.

Example 7.9: In Wikidata, find composers, and, optionally, their spouses:

SELECT ?person ?spouse
WHERE {
?person wdt:P106 wd:Q36834 # ?person occupation: composer

OPTIONAL { ?person wdt:P26 ?spouse } # ?person spouse: ?spouse
}

Solutions for queries with OPTIONAL may leave some query variables unbound (people
without spouses in the example).

Note: Like FILTER, OPTIONAL patterns are used inside one group graph pattern,
together with triple patterns etc.

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 14 of 32

Optional and filters

What does the following query mean?

Example 7.10:

SELECT ?person ?spouse
WHERE {
?person wdt:P106 wd:Q36834 ; # ?person occupation: composer

wdt:P569 ?bd . # ?person date of birth: ?bd

OPTIONAL {
?person wdt:P26 ?spouse . # ?person spouse: ?spouse

?spouse wdt:P569 ?bd2 . # ?spouse date of birth: ?bd2

FILTER (year(?bd)=year(?bd2)) # born in same year
}

}

SPARQL: “Composers, and, optionally, their spouses that were born in the same year.”

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 15 of 32

Semantics of OPTIONAL
The semantics of OPTIONAL is defined by the operation LeftJoin(M1, M2,ϕ, G) that
augments solutions in M1 with compatible solutions in M2 if this combination satisfies
the filter condition ϕ (w.r.t. graph G):

Definition 7.11: Given multisets M1 and M2 of solution mappings, a filter expres-
sion ϕ, and an RDF graph G, we define the multiset

LeftJoin(M1, M2,ϕ, G) = Filter(ϕ, Join(M1, M2), G) ∪
{µ1 ∈ M1 | for all µ2 ∈ M2 : µ1 incompatible µ2 or

ϕ evaluates to false on µ1] µ2 (over G)}

with the cardinality of each mapping µ being its cardinality
in Filter(ϕ, Join(M1, M2), G) (in case µ ∈ Filter(ϕ, Join(M1, M2), G))
or in M1 (in case µ < Filter(ϕ, Join(M1, M2), G)).
Note that only one of the two cases can occur.

Recall: mappings µ1 and µ2 are compatible if µ1(x) = µ2(x) for all variable names
x ∈ dom(µ1) ∩ dom(µ2)
Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 16 of 32

Subqueries

Subqueries are used to use results of other queries within queries, typically to achieve
results that cannot be accomplished using other patterns.

Example 7.12: In Wikidata, find universities located in one of the 15 largest Ger-
man cities:

SELECT DISTINCT ?university ?city
WHERE {
{ SELECT DISTINCT ?city ?population
WHERE { ?city wdt:P31/wdt:P279* wd:Q515 ; # instance of: city

wdt:P17 wd:Q183 ; # country: Germany

wdt:P1082 ?population . # population: ?population

} ORDER BY DESC(?population) LIMIT 15 # get top 15 by ?population
}

?university wdt:P31/wdt:P279* wd:Q3918 ; # instance of: university

wdt:P131+ ?city . # located in+: ?city

}

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 17 of 32

Semantics of subqueries

The semantics of subqueries does not require any special operator: the result multiset
of the subquery is simply used like the result of any other (sub) group graph pattern.

Notes:

• The order of results from subqueries is not conveyed to the enclosing query
(subqueries return multisets, not sequences).

• The use of ORDER BY is still meaningful to select top-k results by some ordering.

• Only selected variable names are part of the subquery result; other variables might
be hidden from the enclosing query

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 18 of 32

Values and Bind

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 19 of 32

Defining own values

It is often useful to add bindings to results that do not come directly from the database:

• Predefine batches of (tuples of) constants{ VALUES

• Define derived values by applying functions to query results{ BIND

Both constructs behave slightly differently.

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 20 of 32

Values
VALUES is used to inject pre-defined result multisets into the query evaluation.

Example 7.13: In Wikidata, find people who are composers, or musicians, or who
play some instrument:

SELECT DISTINCT ?item
WHERE {
VALUES (?predicate ?value) { # define values for two variables
(wdt:P106 wd:Q36834) # occupation / composer

(wdt:P106 wd:Q639669) # occupation / musician

(wdt:P1303 UNDEF) # instrument played / any

}

?item ?predicate ?value ;

}

The VALUES expression defines three solution mappings, two of which are defined
for variable names predicate and value, and one defined for predicate only.

Note: One may leave away the (. . .) if values are given for just one variable.
Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 21 of 32

Semantics and usage of VALUES

VALUES behaves just like a subquery with the specified result.

• As with subqueries, order does not matter.

• The special value UNDEF is used to signify that a variable should be unbound for a
solution mapping

• Otherwise, only IRIs or literals can be used in VALUES – especially no functions

In practice, the most important use of VALUES is to encode batch queries that ask
for many possible options in a single query. Using this to ask about, say, 100 pos-
sible values in one query is much more efficient than sending 100 small queries
or using nested UNION with 100 possibilities.

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 22 of 32

Bind
BIND is used to assign a computed value to a variable.

Example 7.14: Find cities and their population densities:

SELECT ?city ?populationDensity
WHERE {
?city rdf:type eg:city ;

eg:population ?population ;

eg:areaInSqkm ?area .

BIND (?population/?area AS ?populationDensity)
}

BIND can be used instead of expression assignments with AS in SELECT

However, variables assigned with BIND can already be used in the query pattern, but not
before they were assigned.

Assignments of constants to variables are better realised with VALUES, which can be
used before or after other patterns using the variable.
Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 23 of 32

Semantics of BIND

The semantics of BIND is defined by the operation Extend(M, v,ϕ) that computes the
extension of solution mappings in M by assigning the output of expression ϕ to variable
name v.

Definition 7.15: Consider a variable name v and an expression ϕ. Given a solu-
tion mapping µ such that v < dom(µ), we define an extended mapping

Extend(µ, v,ϕ) =

µ ∪ {v 7→ eval(µ(ϕ))} if eval(µ(ϕ)) is not “error”

µ if eval(µ(ϕ)) is “error”

Given a multiset M of solution mappings, we define Extend(M, v,ϕ) =

{Extend(µ, v,ϕ) | µ ∈ M}, where the cardinalities of extended mappings are the
same as in M.

Notation: eval(µ(ϕ)) denotes evaluation of the expression obtained from ϕ by replacing
variables by their values in µ.

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 24 of 32

Summary: SPARQL algebra
We have already encountered a number of operators for extending results:

• Join(M1, M2): join compatible mappings from M1 and M2

• Filter(ϕ, M, G): remove from multiset M all mappings for which ϕ does not evaluate
to EBV “true”

• Union(M1, M2): compute the union of mappings from multisets M1 and M2

• Minus(M1, M2): remove from multiset M1 all mappings compatible with a
non-empty mapping in M2

• LeftJoin(M1, M2,ϕ, G): extend mappings from M1 by compatible mappings from M2

when filter condition is satisfied; keep remaining mappings from M1 unchanged
• Extend(M, v,ϕ): extend all mappings from M by assigning v the value of ϕ.

SPARQL also defines operators for solution set modifiers, which work on lists of
mappings (“ordered multisets”):
• OrderBy(L, condition): sort list by a condition
• Slice(L, start, length): apply limit and offset modifiers

Further operators exist, e.g., Distinct(L).
Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 25 of 32

Aggregates

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 26 of 32

Grouping and aggregates

Aggregate functions compute values from multisets of solution mappings (rather than
from individual mappings)

Grouping is used to split a multiset of solutions into several multisets based on some key
that is computed for each solution

Example 7.16: In Wikidata, find the ten most common professions of people born
in Dresden:

SELECT ?job (COUNT(?person) as ?count)
WHERE {
?person wdt:P19 wd:Q1731 ; # born in: Dresden

wdt:P106 ?job . # occuptation: ?job

} GROUP BY ?job
ORDER BY DESC(?count) LIMIT 10

Note: we can select non-aggregate terms used for grouping (since they are the
same across the whole group!).

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 27 of 32

SPARQL aggregate functions

SPARQL offers several aggregate functions:

• COUNT: count the sum of all multiplicities of solutions

• SUM: sum up numeric values

• AVG: compute the average of numeric values

• MIN/MAX: compute the minimum/maximum (over any type of term)

• SAMPLE: non-deterministically get one value from all values (no probability
distribution implied)

• GROUP_CONCAT: concatenate string values into one large string (in any order)

All aggregate functions receive one expression as parameter, e.g., SUM(?population)
or MIN(year(?birthdate)).

All aggregates optionally accept DISTINCT before the parameter to indicate that
duplicates should be eliminated from the multiset of expression results before applying
the aggregate.

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 28 of 32

HAVING

The keyword HAVING is used to specify a filter condition on mappings produces by
aggregation:

Example 7.17: In Wikidata, find all professions of more than 100 people born in
Dresden:

SELECT ?job (COUNT(?person) as ?count)
WHERE {
?person wdt:P19 wd:Q1731 ; # born in: Dresden

wdt:P106 ?job . # occuptation: ?job

} GROUP BY ?job
HAVING (COUNT(?person) > 100)

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 29 of 32

Semantics of grouping

The semantics of GROUP BY is defined by the operation Group(Φ, M) that computes a
mapping from keys (that we group by) to multisets (that are the groups of solution
mappings).

Definition 7.18: Consider a list of expressions Φ = 〈ϕ1, . . . ,ϕn〉. Given a solu-
tion mapping µ, we define Φ(µ) as the list 〈ϕ1(µ), . . . ,ϕn(µ)〉 of values obtained by
evaluating expressions for the bindings of µ.

Given a multiset M of solution mappings, we define

Group(Φ, M) =
{
Φ(µ) 7→ {µ′ ∈ M | Φ(µ′) = Φ(µ)} | µ ∈ M

}

where the cardinality of each solution within the sub-multisets is the same as its
cardinality in M.

Note: We can group by multiple expressions, hence the list Φ rather than a single
expression only (example: GROUP BY ?occupation year(?date) would group by two
expressions, where one is derived using a function)
Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 30 of 32

Semantics of aggregate functions
Results that include aggregate function values are computed as follows:
• An aggregate function takes as input a mapping of the form
{k1 7→ M1, . . . , k` 7→ M`} from keys ki to mulitsets Mi and produces a new mapping
{k1 7→ v1, . . . , k` 7→ v`} from keys to values.

• If several aggregates are selected in the query, they are joined by combining value
assignments for the same key into a single solution mapping.

The formal definition in SPARQL is rather general (hence more complicated) to allow for
extension points where tools can add support for more complex aggregates.

Example 7.19: In Wikidata, find the most common professions of people born in
Dresden, together with average birth years of people with this job:

SELECT ?job (COUNT(?person) as ?count) (AVG(year(?bdate)) as ?aYear)
WHERE {
?person wdt:P19 wd:Q1731 ; # born in: Dresden

wdt:P106 ?job ; # occuptation: ?job

wdt:P569 ?bdate . # date of birth: ?bdate

} GROUP BY ?job ORDER BY DESC(?count)

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 31 of 32

Summary

Solutions set modifiers define standard operations on result sets

Important SPARQL query operators are UNION, MINUS, OPTIONAL, BIND, and VALUES

The semantics of SPARQL is defined using algebraic operators

Aggregates are used to obtain answers that combine several solutions.

What’s next?

• Further background on SPARQL complexity and semantics

• Other graph models and their query languages

• Other aspects of graph analysis and management

Markus Krötzsch, 27th Nov 2018 Knowledge Graphs slide 32 of 32

