
COMPLEXITY THEORY

Lecture 10: Polynomial Space

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 21st Nov 2022

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2022/23)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

Review

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 2 of 34

The Class PSpace

We defined PSpace as:
PSpace =

⋃
d≥1

DSpace(nd)

and we observed that

P ⊆ NP ⊆ PSpace = NPSpace ⊆ ExpTime.

We can also define a corresponding notion of PSpace-hardness:

Definition 10.1:

• A language H is PSpace-hard, if L ≤p H for every language L ∈ PSpace.

• A language C is PSpace-complete, if C is PSpace-hard and C ∈ PSpace.

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 3 of 34

Quantified Boolean Formulae (QBF)

A QBF is a formula of the following form:

Q1X1. Q2X2. · · · QℓXℓ.φ[X1, . . . , Xℓ]

where Qi ∈ {∃,∀} are quantifiers, Xi are propositional logic variables, and φ is a
propositional logic formula with variables X1, . . . , Xℓ and constants ⊤ (true) and ⊥ (false)

Semantics:

• Propositional formulae without variables (only constants ⊤ and ⊥) are evaluated as
usual

• ∃X.φ[X] is true if either φ[X/⊤] or φ[X/⊥] are true

• ∀X.φ[X] is true if both φ[X/⊤] and φ[X/⊥] are true

(where φ[X/⊤] is “φ with X replaced by ⊤, and similar for ⊥)

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 4 of 34

Deciding QBF Validity

True QBF

Input: A quantified Boolean formula φ.

Problem: Is φ true (valid)?

Observation: We can assume that the quantified formula is in CNF or 3-CNF
(same transformations possible as for propositional logic formulae)

Consider a propositional logic formula φ with variables X1, . . . , Xℓ:

Example 10.2: The QBF ∃X1. · · · ∃Xℓ.φ is true if and only if φ is satisfiable.

Example 10.3: The QBF ∀X1. · · · ∀Xℓ.φ is true if and only if φ is a tautology.

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 5 of 34

Deciding QBF Validity

True QBF

Input: A quantified Boolean formula φ.

Problem: Is φ true (valid)?

Observation: We can assume that the quantified formula is in CNF or 3-CNF
(same transformations possible as for propositional logic formulae)

Consider a propositional logic formula φ with variables X1, . . . , Xℓ:

Example 10.2: The QBF ∃X1. · · · ∃Xℓ.φ is true if and only if φ is satisfiable.

Example 10.3: The QBF ∀X1. · · · ∀Xℓ.φ is true if and only if φ is a tautology.

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 5 of 34

The Power of QBF

Theorem 10.4: True QBF is PSpace-complete.

Proof:

(1) True QBF ∈ PSpace:
Give an algorithm that runs in polynomial space.

(2) True QBF is PSpace-hard:
Proof by reduction from the word problem of any polynomially space-bounded TM.

□

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 6 of 34

Solving True QBF in PSpace

01 TrueQBF(φ) {

02 if φ has no quantifiers :

03 return “evaluation of φ”

04 else if φ = ∃X.ψ :
05 return (TrueQBF(ψ[X/⊤]) OR TrueQBF(ψ[X/⊥]))
06 else if φ = ∀X.ψ :
07 return (TrueQBF(ψ[X/⊤]) AND TrueQBF(ψ[X/⊥]))
08 }

• Evaluation in line 03 can be done in polynomial space

• Recursions in lines 05 and 07 can be executed one after the other, reusing space

• Maximum depth of recursion = number of variables (linear)

• Store one variable assignment per recursive call

{ polynomial space algorithm

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 7 of 34

PSpace-Hardness of True QBF
Express TM computation in logic, similar to Cook-Levin

Given:
An arbitrary polynomially space-bounded NTM, that is:

• a polynomial p

• a p-space bounded 1-tape NTMM = (Q,Σ,Γ, δ, q0, qaccept)

Intended reduction
Given a word w, define a QBF φp,M,w such that
φp,M,w is true if and only ifM accepts w in space p(|w|).

Notes
• We show the reduction for NTMs, which is more than needed, but makes little

difference in logic and allows us to reuse our previous formulae from Cook-Levin

• The proof actually shows many reductions, one for every polyspace NTM, showing
PSpace-hardness from first principles

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 8 of 34

Review: Encoding Configurations

Use propositional variables for describing configurations:
Qq for each q ∈ Q means “M is in state q ∈ Q”

Pi for each 0 ≤ i < p(n) means “the head is at Position i”

Sa,i for each a ∈ Γ and 0 ≤ i < p(n) means “tape cell i contains Symbol a”

Represent configuration (q, p, a0 . . . ap(n))
by assigning truth values to variables from the set

C := {Qq, Pi, Sa,i | q ∈ Q, a ∈ Γ, 0 ≤ i < p(n)}

using the truth assignment β defined as

β(Qs) :=

1 s = q

0 s , q
β(Pi) :=

1 i = p

0 i , p
β(Sa,i) :=

1 a = ai

0 a , ai

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 9 of 34

Review: Validating Configurations

We define a formula Conf(C) for a set of configuration variables

C = {Qq, Pi, Sa,i | q ∈ Q, a ∈ Γ, 0 ≤ i < p(n)}

as follows:

Conf(C) := “the assignment is a valid configuration”:∨
q∈Q

(
Qq ∧

∧
q′,q

¬Qq′
)

“TM in exactly one state q ∈ Q”

∧
∨

p<p(n)

(
Pp ∧

∧
p′,p

¬Pp′
)

“head in exactly one position p < p(n)”

∧
∧

0≤i<p(n)

∨
a∈Γ

(
Sa,i ∧

∧
b,a∈Γ

¬Sb,i
)

“exactly one a ∈ Γ in each cell”

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 10 of 34

Review: Validating Configurations

For an assignment β defined on variables in C define

conf(C, β) :=

(q, p, w0 . . .wp(n)) |
β(Qq) = 1,
β(Pp) = 1,
β(Swi,i) = 1 for all 0 ≤ i < p(n)

Note: β may be defined on other variables besides those in C.

Lemma 10.5: If β satisfies Conf(C) then |conf(C, β)| = 1.
We can therefore write conf(C, β) = (q, p, w) to simplify notation.

Observations:

• conf(C, β) is a potential configuration ofM, but it may not be reachable from the
start configuration ofM on input w.

• Conversely, every configuration (q, p, w1 . . .wp(n)) induces a satisfying assignment β
for which conf(C, β) = (q, p, w1 . . .wp(n)).

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 11 of 34

Review: Transitions Between Configurations

Consider the following formula Next(C, C
′
) defined as

Conf(C) ∧ Conf(C
′
) ∧ NoChange(C, C

′
) ∧ Change(C, C

′
).

NoChange :=
∨

0≤p<p(n)

(
Pp ∧

∧
i,p,a∈Γ

(
Sa,i → S′a,i

))
Change :=

∨
0≤p<p(n)

(
Pp ∧

∨
q∈Q
a∈Γ

(
Qq ∧ Sa,p ∧

∨
(q′,b,D)∈δ(q,a)

(Q′q′ ∧ S′b,p ∧ P′D(p))
))

where D(p) is the position reached by moving in direction D from p.

Lemma 10.6: For any assignment β defined on C ∪ C
′
:

β satisfies Next(C, C
′
) if and only if conf(C, β) ⊢M conf(C

′
, β)

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 12 of 34

Review: Start and End

Defined so far:
• Conf(C): C describes a potential configuration

• Next(C, C
′
): conf(C, β) ⊢M conf(C

′
, β)

Start configuration: Let w = w0 · · ·wn−1 ∈ Σ
∗ be the input word

StartM,w(C) := Conf(C) ∧ Qq0 ∧ P0 ∧
∧n−1

i=0 Swi,i ∧
∧p(n)−1

i=n S␣,i

Then an assignment β satisfies StartM,w(C) if and only if C represents the start
configuration ofM on input w.

Accepting stop configuration:

Acc-Conf(C) := Conf(C) ∧ Qqaccept

Then an assignment β satisfies Acc-Conf(C) if and only if C represents an accepting
configuration ofM.

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 13 of 34

Simulating Polynomial Space Computations
For Cook-Levin, we used one set of configuration variables for every computating step:
polynomially time{ polynomially many variables

Problem: For polynomial space, we have 2O(p(n)) possible steps . . .

What would Savitch do?

Define a formula CanYieldi(C1, C2) to state that C2 is reachable from C1 in at most 2i

steps:

CanYield0(C1, C2) := (C1 = C2) ∨ Next(C1, C2)

CanYieldi+1(C1, C2) := ∃C.Conf(C) ∧ CanYieldi(C1, C) ∧ CanYieldi(C, C2)

But what is C1 = C2 supposed to mean here? It is short for:∧
q∈Q

Q1
q ↔ Q2

q ∧
∧

0≤i<p(n)

P1
i ↔ P2

i ∧
∧

a∈Γ,0≤i<p(n)

S1
a,i ↔ S2

a,i

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 14 of 34

Simulating Polynomial Space Computations
For Cook-Levin, we used one set of configuration variables for every computating step:
polynomially time{ polynomially many variables

Problem: For polynomial space, we have 2O(p(n)) possible steps . . .

What would Savitch do?

Define a formula CanYieldi(C1, C2) to state that C2 is reachable from C1 in at most 2i

steps:

CanYield0(C1, C2) := (C1 = C2) ∨ Next(C1, C2)

CanYieldi+1(C1, C2) := ∃C.Conf(C) ∧ CanYieldi(C1, C) ∧ CanYieldi(C, C2)

But what is C1 = C2 supposed to mean here? It is short for:∧
q∈Q

Q1
q ↔ Q2

q ∧
∧

0≤i<p(n)

P1
i ↔ P2

i ∧
∧

a∈Γ,0≤i<p(n)

S1
a,i ↔ S2

a,i

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 14 of 34

Simulating Polynomial Space Computations
For Cook-Levin, we used one set of configuration variables for every computating step:
polynomially time{ polynomially many variables

Problem: For polynomial space, we have 2O(p(n)) possible steps . . .

What would Savitch do?

Define a formula CanYieldi(C1, C2) to state that C2 is reachable from C1 in at most 2i

steps:

CanYield0(C1, C2) := (C1 = C2) ∨ Next(C1, C2)

CanYieldi+1(C1, C2) := ∃C.Conf(C) ∧ CanYieldi(C1, C) ∧ CanYieldi(C, C2)

But what is C1 = C2 supposed to mean here? It is short for:∧
q∈Q

Q1
q ↔ Q2

q ∧
∧

0≤i<p(n)

P1
i ↔ P2

i ∧
∧

a∈Γ,0≤i<p(n)

S1
a,i ↔ S2

a,i

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 14 of 34

Simulating Polynomial Space Computations
For Cook-Levin, we used one set of configuration variables for every computating step:
polynomially time{ polynomially many variables

Problem: For polynomial space, we have 2O(p(n)) possible steps . . .

What would Savitch do?

Define a formula CanYieldi(C1, C2) to state that C2 is reachable from C1 in at most 2i

steps:

CanYield0(C1, C2) := (C1 = C2) ∨ Next(C1, C2)

CanYieldi+1(C1, C2) := ∃C.Conf(C) ∧ CanYieldi(C1, C) ∧ CanYieldi(C, C2)

But what is C1 = C2 supposed to mean here?

It is short for:∧
q∈Q

Q1
q ↔ Q2

q ∧
∧

0≤i<p(n)

P1
i ↔ P2

i ∧
∧

a∈Γ,0≤i<p(n)

S1
a,i ↔ S2

a,i

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 14 of 34

Simulating Polynomial Space Computations
For Cook-Levin, we used one set of configuration variables for every computating step:
polynomially time{ polynomially many variables

Problem: For polynomial space, we have 2O(p(n)) possible steps . . .

What would Savitch do?

Define a formula CanYieldi(C1, C2) to state that C2 is reachable from C1 in at most 2i

steps:

CanYield0(C1, C2) := (C1 = C2) ∨ Next(C1, C2)

CanYieldi+1(C1, C2) := ∃C.Conf(C) ∧ CanYieldi(C1, C) ∧ CanYieldi(C, C2)

But what is C1 = C2 supposed to mean here? It is short for:∧
q∈Q

Q1
q ↔ Q2

q ∧
∧

0≤i<p(n)

P1
i ↔ P2

i ∧
∧

a∈Γ,0≤i<p(n)

S1
a,i ↔ S2

a,i

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 14 of 34

Putting Everything Together

We define the formula φp,M,w as follows:

φp,M,w := ∃C1.∃C2.StartM,w(C1) ∧ Acc-Conf(C2) ∧ CanYielddp(n)(C1, C2)

where we select d to be the least number such thatM has less than 2dp(n) configurations
in space p(n).

Lemma 10.7: φp,M,w is satisfiable if and only if M accepts w in space p(|w|).

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 15 of 34

Did we do it?

Note: we used only existential quantifiers when defining φp,M,w:

CanYield0(C1, C2) := (C1 = C2) ∨ Next(C1, C2)

CanYieldi+1(C1, C2) := ∃C.Conf(C) ∧ CanYieldi(C1, C) ∧ CanYieldi(C, C2)

φp,M,w := ∃C1.∃C2.StartM,w(C1) ∧ Acc-Conf(C2) ∧ CanYielddp(n)(C1, C2)

Now that’s quite interesting . . .

• With only (non-negated) ∃ quantifiers, True QBF coincides with Sat

• Sat is in NP

• So we showed that the word problem for PSpace NTMs to be in NP

So we found that NP = PSpace!

Strangely, most textbooks claim that this is not known to be true . . .
Are we up for the next Turing Award, or did we make a mistake?

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 16 of 34

Did we do it?

Note: we used only existential quantifiers when defining φp,M,w:

CanYield0(C1, C2) := (C1 = C2) ∨ Next(C1, C2)

CanYieldi+1(C1, C2) := ∃C.Conf(C) ∧ CanYieldi(C1, C) ∧ CanYieldi(C, C2)

φp,M,w := ∃C1.∃C2.StartM,w(C1) ∧ Acc-Conf(C2) ∧ CanYielddp(n)(C1, C2)

Now that’s quite interesting . . .

• With only (non-negated) ∃ quantifiers, True QBF coincides with Sat

• Sat is in NP

• So we showed that the word problem for PSpace NTMs to be in NP

So we found that NP = PSpace!

Strangely, most textbooks claim that this is not known to be true . . .
Are we up for the next Turing Award, or did we make a mistake?

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 16 of 34

Did we do it?

Note: we used only existential quantifiers when defining φp,M,w:

CanYield0(C1, C2) := (C1 = C2) ∨ Next(C1, C2)

CanYieldi+1(C1, C2) := ∃C.Conf(C) ∧ CanYieldi(C1, C) ∧ CanYieldi(C, C2)

φp,M,w := ∃C1.∃C2.StartM,w(C1) ∧ Acc-Conf(C2) ∧ CanYielddp(n)(C1, C2)

Now that’s quite interesting . . .

• With only (non-negated) ∃ quantifiers, True QBF coincides with Sat

• Sat is in NP

• So we showed that the word problem for PSpace NTMs to be in NP

So we found that NP = PSpace!

Strangely, most textbooks claim that this is not known to be true . . .
Are we up for the next Turing Award, or did we make a mistake?

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 16 of 34

Did we do it?

Note: we used only existential quantifiers when defining φp,M,w:

CanYield0(C1, C2) := (C1 = C2) ∨ Next(C1, C2)

CanYieldi+1(C1, C2) := ∃C.Conf(C) ∧ CanYieldi(C1, C) ∧ CanYieldi(C, C2)

φp,M,w := ∃C1.∃C2.StartM,w(C1) ∧ Acc-Conf(C2) ∧ CanYielddp(n)(C1, C2)

Now that’s quite interesting . . .

• With only (non-negated) ∃ quantifiers, True QBF coincides with Sat

• Sat is in NP

• So we showed that the word problem for PSpace NTMs to be in NP

So we found that NP = PSpace!

Strangely, most textbooks claim that this is not known to be true . . .
Are we up for the next Turing Award, or did we make a mistake?

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 16 of 34

Did we do it?

Note: we used only existential quantifiers when defining φp,M,w:

CanYield0(C1, C2) := (C1 = C2) ∨ Next(C1, C2)

CanYieldi+1(C1, C2) := ∃C.Conf(C) ∧ CanYieldi(C1, C) ∧ CanYieldi(C, C2)

φp,M,w := ∃C1.∃C2.StartM,w(C1) ∧ Acc-Conf(C2) ∧ CanYielddp(n)(C1, C2)

Now that’s quite interesting . . .

• With only (non-negated) ∃ quantifiers, True QBF coincides with Sat

• Sat is in NP

• So we showed that the word problem for PSpace NTMs to be in NP

So we found that NP = PSpace!

Strangely, most textbooks claim that this is not known to be true . . .
Are we up for the next Turing Award, or did we make a mistake?

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 16 of 34

Did we do it?

Note: we used only existential quantifiers when defining φp,M,w:

CanYield0(C1, C2) := (C1 = C2) ∨ Next(C1, C2)

CanYieldi+1(C1, C2) := ∃C.Conf(C) ∧ CanYieldi(C1, C) ∧ CanYieldi(C, C2)

φp,M,w := ∃C1.∃C2.StartM,w(C1) ∧ Acc-Conf(C2) ∧ CanYielddp(n)(C1, C2)

Now that’s quite interesting . . .

• With only (non-negated) ∃ quantifiers, True QBF coincides with Sat

• Sat is in NP

• So we showed that the word problem for PSpace NTMs to be in NP

So we found that NP = PSpace!

Strangely, most textbooks claim that this is not known to be true . . .
Are we up for the next Turing Award, or did we make a mistake?

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 16 of 34

Did we do it?

Note: we used only existential quantifiers when defining φp,M,w:

CanYield0(C1, C2) := (C1 = C2) ∨ Next(C1, C2)

CanYieldi+1(C1, C2) := ∃C.Conf(C) ∧ CanYieldi(C1, C) ∧ CanYieldi(C, C2)

φp,M,w := ∃C1.∃C2.StartM,w(C1) ∧ Acc-Conf(C2) ∧ CanYielddp(n)(C1, C2)

Now that’s quite interesting . . .

• With only (non-negated) ∃ quantifiers, True QBF coincides with Sat

• Sat is in NP

• So we showed that the word problem for PSpace NTMs to be in NP

So we found that NP = PSpace!

Strangely, most textbooks claim that this is not known to be true . . .
Are we up for the next Turing Award, or did we make a mistake?

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 16 of 34

Size

How big is φp,M,w?

CanYield0(C1, C2) := (C1 = C2) ∨ Next(C1, C2)

CanYieldi+1(C1, C2) := ∃C.Conf(C) ∧ CanYieldi(C1, C) ∧ CanYieldi(C, C2)

φp,M,w := ∃C1.∃C2.StartM,w(C1) ∧ Acc-Conf(C2) ∧ CanYielddp(n)(C1, C2)

Size of CanYieldi+1 is more than twice the size of CanYieldi

{ Size of φp,M,w is in 2O(p(n)). Oops.

A correct reduction: We redefine CanYield by setting

CanYieldi+1(C1, C2) :=

∃C.Conf(C) ∧

∀Z1.∀Z2.
(
((Z1 =C1 ∧ Z2 =C) ∨ (Z1 =C ∧ Z2 =C2))→ CanYieldi(Z1, Z2)

)

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 17 of 34

Size

How big is φp,M,w?

CanYield0(C1, C2) := (C1 = C2) ∨ Next(C1, C2)

CanYieldi+1(C1, C2) := ∃C.Conf(C) ∧ CanYieldi(C1, C) ∧ CanYieldi(C, C2)

φp,M,w := ∃C1.∃C2.StartM,w(C1) ∧ Acc-Conf(C2) ∧ CanYielddp(n)(C1, C2)

Size of CanYieldi+1 is more than twice the size of CanYieldi

{ Size of φp,M,w is in 2O(p(n)). Oops.

A correct reduction: We redefine CanYield by setting

CanYieldi+1(C1, C2) :=

∃C.Conf(C) ∧

∀Z1.∀Z2.
(
((Z1 =C1 ∧ Z2 =C) ∨ (Z1 =C ∧ Z2 =C2))→ CanYieldi(Z1, Z2)

)

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 17 of 34

Size

How big is φp,M,w?

CanYield0(C1, C2) := (C1 = C2) ∨ Next(C1, C2)

CanYieldi+1(C1, C2) := ∃C.Conf(C) ∧ CanYieldi(C1, C) ∧ CanYieldi(C, C2)

φp,M,w := ∃C1.∃C2.StartM,w(C1) ∧ Acc-Conf(C2) ∧ CanYielddp(n)(C1, C2)

Size of CanYieldi+1 is more than twice the size of CanYieldi

{ Size of φp,M,w is in 2O(p(n)). Oops.

A correct reduction: We redefine CanYield by setting

CanYieldi+1(C1, C2) :=

∃C.Conf(C) ∧

∀Z1.∀Z2.
(
((Z1 =C1 ∧ Z2 =C) ∨ (Z1 =C ∧ Z2 =C2))→ CanYieldi(Z1, Z2)

)
Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 17 of 34

Size

Let’s analyse the size more carefully this time:

CanYieldi+1(C1, C2) :=

∃C.Conf(C) ∧

∀Z1.∀Z2.
(
((Z1 =C1 ∧ Z2 =C) ∨ (Z1 =C ∧ Z2 =C2))→ CanYieldi(Z1, Z2)

)
• CanYieldi+1(C1, C2) extends CanYieldi(C1, C2) by parts that are linear in the size of

configurations{ growth in O(p(n))
• Maximum index i used in φp,M,w is dp(n), that is in O(p(n))
• Therefore: φp,M,w has size O(p2(n)) – and thus can be computed in polynomial time

Exercise:
Why can we just use dp(n) in the reduction? Don’t we have to compute it somehow?
Maybe even in polynomial time?

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 18 of 34

The Power of QBF

Theorem 10.4: True QBF is PSpace-complete.

Proof:

(1) True QBF ∈ PSpace:
Give an algorithm that runs in polynomial space.

(2) True QBF is PSpace-hard:
Proof by reduction from the word problem of any polynomially space-bounded TM.

□

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 19 of 34

A More Common Logical Problem in PSpace

Recall standard first-order logic:

• Instead of propositional variables, we have atoms (predicates with constants and
variables)

• Instead of propositional evaluations we have first-order structures (or
interpretations)

• First-order quantifiers can be used on variables

• Sentences are formulae where all variables are quantified

• A sentence can be satisfied or not by a given first-order structure

FOL Model Checking

Input: A first-order sentence φ and a finite first-order
structure I.

Problem: Is φ satisfied by I?

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 20 of 34

A More Common Logical Problem in PSpace

Recall standard first-order logic:

• Instead of propositional variables, we have atoms (predicates with constants and
variables)

• Instead of propositional evaluations we have first-order structures (or
interpretations)

• First-order quantifiers can be used on variables

• Sentences are formulae where all variables are quantified

• A sentence can be satisfied or not by a given first-order structure

FOL Model Checking

Input: A first-order sentence φ and a finite first-order
structure I.

Problem: Is φ satisfied by I?

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 20 of 34

First-Order Logic is PSpace-complete

Theorem 10.8: FOL Model Checking is PSpace-complete.

Proof:

(1) FOL Model Checking ∈ PSpace:
Give algorithm that runs in polynomial space.

(2) FOL Model Checking is PSpace-hard:
Proof by reduction True QBF ≤p FOL Model Checking.

□

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 21 of 34

Checking FOL Models in Polynomial Space (Sketch)

01 Eval(φ,I) {
02 switch (φ) :
03 case p(c1, . . . , cn) : return ⟨c1, . . . , cn⟩ ∈ pI

04 case ¬ψ : return NOT Eval(ψ,I)
05 case ψ1 ∧ ψ2 : return Eval(ψ1,I) AND Eval(ψ2,I)
06 case ∃x.ψ :
07 for c ∈ ∆I :
08 if Eval(ψ[x 7→ c],I) : return TRUE

09 // eventually, if no success:

10 return FALSE

11 }

• We can assume φ only uses ¬, ∧ and ∃ (easy to get)

• We use ∆I to denote the (finite!) domain of I

• We allow domain elements to be used like constants in the formula

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 22 of 34

Hardness of FOL Model Checking

Given: a QBF φ = Q1X1. · · · QℓXℓ.ψ

FOL Model Checking Problem:

• Interpretation domain ∆I := {0, 1}
• Single predicate symbol true with interpretation trueI = {⟨1⟩}
• FOL formula φ′ is obtained by replacing variables in input QBF with corresponding

first-order expressions:

Q1x1. · · · Qℓxℓ.ψ[X1 7→ true(x1), . . . , Xℓ 7→ true(xℓ)]

Lemma 10.9: ⟨I,φ′⟩ ∈ FOL Model Checking if and only if φ ∈ True QBF.

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 23 of 34

First-Order Logic is PSpace-complete

Theorem 10.8: FOL Model Checking is PSpace-complete.

Proof:

(1) FOL Model Checking ∈ PSpace:
Give algorithm that runs in polynomial space.

(2) FOL Model Checking is PSpace-hard:
Proof by reduction True QBF ≤p FOL Model Checking.

□

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 24 of 34

FOL Model Checking: Practical Significance

Why is FOL Model Checking a relevant problem?

Correspondence with database query answering:

• Finite first-order interpretation = database

• First-order logic formula = database query

• Satisfying assignments (for non-sentences) = query results

Known correspondence:
As a query language, FOL has the same expressive power as
(basic) SQL (relational algebra).

Corollary 10.10: Answering SQL queries over a given database is PSpace-
complete.

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 25 of 34

FOL Model Checking: Practical Significance

Why is FOL Model Checking a relevant problem?

Correspondence with database query answering:

• Finite first-order interpretation = database

• First-order logic formula = database query

• Satisfying assignments (for non-sentences) = query results

Known correspondence:
As a query language, FOL has the same expressive power as
(basic) SQL (relational algebra).

Corollary 10.10: Answering SQL queries over a given database is PSpace-
complete.

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 25 of 34

Games

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 26 of 34

Games as Computational Problems

Many single-player games relate to NP-complete problems:

• Sudoku

• Minesweeper

• Tetris

• . . .

Decision problem: Is there a solution?
(For Tetris: is it possible to clear all blocks?)

What about two-player games?

• Two players take moves in turns

• The players have different goals

• The game ends if a player wins

Decision problem: Does Player 1 have a winning strategy?
In other words: can Player 1 enforce winning, whatever Player 2 does?

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 27 of 34

Games as Computational Problems

Many single-player games relate to NP-complete problems:

• Sudoku

• Minesweeper

• Tetris

• . . .

Decision problem: Is there a solution?
(For Tetris: is it possible to clear all blocks?)

What about two-player games?

• Two players take moves in turns

• The players have different goals

• The game ends if a player wins

Decision problem: Does Player 1 have a winning strategy?
In other words: can Player 1 enforce winning, whatever Player 2 does?

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 27 of 34

Example: The Formula Game

A contrived game, to illustrate the idea:

• Given: a propositional logic formula φ with consecutively numbered variables
X1, . . .Xℓ.

• Two players take turns in selecting values for the next variable:
– Player 1 sets X1 to true or false
– Player 2 sets X2 to true or false
– Player 1 sets X3 to true or false
– . . .

until all variables are set.

• Player 1 wins if the assignment makes φ true.
Otherwise, Player 2 wins.

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 28 of 34

Deciding the Formula Game

Formula Game

Input: A formula φ.

Problem: Does Player 1 have a winning strategy on φ?

Theorem 10.11: Formula Game is PSpace-complete.

Proof sketch: Formula Game is essentially the same as True QBF.

Having a winning strategy means: there is a truth value for X1, such that, for all truth values of X2,
there is a truth value of X3, . . . such that φ becomes true.
If we have a QBF where quantifiers do not alternate, we can add dummy quantifiers and variables
that do not change the semantics to get the same alternating form as for the Formula Game. □

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 29 of 34

Deciding the Formula Game

Formula Game

Input: A formula φ.

Problem: Does Player 1 have a winning strategy on φ?

Theorem 10.11: Formula Game is PSpace-complete.

Proof sketch: Formula Game is essentially the same as True QBF.

Having a winning strategy means: there is a truth value for X1, such that, for all truth values of X2,
there is a truth value of X3, . . . such that φ becomes true.
If we have a QBF where quantifiers do not alternate, we can add dummy quantifiers and variables
that do not change the semantics to get the same alternating form as for the Formula Game. □

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 29 of 34

Example: The Geography Game

A children’s game:

• Two players are taking turns naming cities.

• Each city must start with the last letter of the previous.

• Repetitions are not allowed.

• The first player who cannot name a new city looses.

A mathematicians’ game:

• Two players are marking nodes on a directed graph.

• Each node must be a successor of the previous one.

• Repetitions are not allowed.

• The first player who cannot mark a new node looses.

Decision problem (Generalised) Geography:
given a graph and start node, does Player 1 have a winning strategy?

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 30 of 34

Example: The Geography Game

A children’s game:

• Two players are taking turns naming cities.

• Each city must start with the last letter of the previous.

• Repetitions are not allowed.

• The first player who cannot name a new city looses.

A mathematicians’ game:

• Two players are marking nodes on a directed graph.

• Each node must be a successor of the previous one.

• Repetitions are not allowed.

• The first player who cannot mark a new node looses.

Decision problem (Generalised) Geography:
given a graph and start node, does Player 1 have a winning strategy?

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 30 of 34

Example: The Geography Game

A children’s game:

• Two players are taking turns naming cities.

• Each city must start with the last letter of the previous.

• Repetitions are not allowed.

• The first player who cannot name a new city looses.

A mathematicians’ game:

• Two players are marking nodes on a directed graph.

• Each node must be a successor of the previous one.

• Repetitions are not allowed.

• The first player who cannot mark a new node looses.

Decision problem (Generalised) Geography:
given a graph and start node, does Player 1 have a winning strategy?

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 30 of 34

Geography is PSpace-complete

Theorem 10.12: Generalised Geography is PSpace-complete.

Proof:

(1) Geography ∈ PSpace:
Give algorithm that runs in polynomial space.
It is not difficult to provide a recursive algorithm similar to the one for True QBF or
FOL Model Checking.

(2) Geography is PSpace-hard:
Proof by reduction Formula Game ≤p Geography.

□

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 31 of 34

Geography is PSpace-hard

Let φ with variables X1, . . . , Xℓ be an instance of Formula Game.
Without loss of generality, we assume:

• ℓ is odd (Player 1 gets the first and last turn)

• φ is in CNF

We now build a graph that encodes Formula Game in terms of Geography

• The left-hand side of the graph is a chain of diamond structures that represent the
choices that players have when assigning truth values

• The right-hand side of the graph encodes the structure of φ: Player 2 may choose
a clause (trying to find one that is not true under the assignment); Player 1 may
choose a literal (trying to find one that is true under the assignment).

(see board or [Sipser, Theorem 8.14]) □

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 32 of 34

Geography is PSpace-hard: Example

We consider the formula ∃X.∀Y.∃Z.(X ∨ Z ∨ Y) ∧ (¬Y ∨ Z) ∧ (¬Z ∨ Y)

Xs

X0 X1

Xe

Start

Player 1

Player 2

Ys

Y0 Y1

Ye

Zs

Z0 Z1

Ze

Q

X ∨ Z ∨ Y

¬Y ∨ Z

¬Z ∨ Y

X

Y

¬Y

Z

¬Z

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 33 of 34

Geography is PSpace-hard: Example

We consider the formula ∃X.∀Y.∃Z.(X ∨ Z ∨ Y) ∧ (¬Y ∨ Z) ∧ (¬Z ∨ Y)

Xs

X0 X1

Xe

Start

Player 1

Player 2

Ys

Y0 Y1

Ye

Zs

Z0 Z1

Ze

Q

X ∨ Z ∨ Y

¬Y ∨ Z

¬Z ∨ Y

X

Y

¬Y

Z

¬Z

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 33 of 34

Geography is PSpace-hard: Example

We consider the formula ∃X.∀Y.∃Z.(X ∨ Z ∨ Y) ∧ (¬Y ∨ Z) ∧ (¬Z ∨ Y)

Xs

X0 X1

Xe

Start

Player 1

Player 2

Ys

Y0 Y1

Ye

Zs

Z0 Z1

Ze

Q

X ∨ Z ∨ Y

¬Y ∨ Z

¬Z ∨ Y

X

Y

¬Y

Z

¬Z

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 33 of 34

Geography is PSpace-hard: Example

We consider the formula ∃X.∀Y.∃Z.(X ∨ Z ∨ Y) ∧ (¬Y ∨ Z) ∧ (¬Z ∨ Y)

Xs

X0 X1

Xe

Start

Player 1

Player 2

Ys

Y0 Y1

Ye

Zs

Z0 Z1

Ze

Q

X ∨ Z ∨ Y

¬Y ∨ Z

¬Z ∨ Y

X

Y

¬Y

Z

¬Z

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 33 of 34

Geography is PSpace-hard: Example

We consider the formula ∃X.∀Y.∃Z.(X ∨ Z ∨ Y) ∧ (¬Y ∨ Z) ∧ (¬Z ∨ Y)

Xs

X0 X1

Xe

Start

Player 1

Player 2

Ys

Y0 Y1

Ye

Zs

Z0 Z1

Ze

Q

X ∨ Z ∨ Y

¬Y ∨ Z

¬Z ∨ Y

X

Y

¬Y

Z

¬Z

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 33 of 34

Geography is PSpace-hard: Example

We consider the formula ∃X.∀Y.∃Z.(X ∨ Z ∨ Y) ∧ (¬Y ∨ Z) ∧ (¬Z ∨ Y)

Xs

X0 X1

Xe

Start

Player 1

Player 2

Ys

Y0 Y1

Ye

Zs

Z0 Z1

Ze

Q

X ∨ Z ∨ Y

¬Y ∨ Z

¬Z ∨ Y

X

Y

¬Y

Z

¬Z

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 33 of 34

Geography is PSpace-hard: Example

We consider the formula ∃X.∀Y.∃Z.(X ∨ Z ∨ Y) ∧ (¬Y ∨ Z) ∧ (¬Z ∨ Y)

Xs

X0 X1

Xe

Start

Player 1

Player 2

Ys

Y0 Y1

Ye

Zs

Z0 Z1

Ze

Q

X ∨ Z ∨ Y

¬Y ∨ Z

¬Z ∨ Y

X

Y

¬Y

Z

¬Z

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 33 of 34

Geography is PSpace-hard: Example

We consider the formula ∃X.∀Y.∃Z.(X ∨ Z ∨ Y) ∧ (¬Y ∨ Z) ∧ (¬Z ∨ Y)

Xs

X0 X1

Xe

Start

Player 1

Player 2

Ys

Y0 Y1

Ye

Zs

Z0 Z1

Ze

Q

X ∨ Z ∨ Y

¬Y ∨ Z

¬Z ∨ Y

X

Y

¬Y

Z

¬Z

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 33 of 34

Geography is PSpace-hard: Example

We consider the formula ∃X.∀Y.∃Z.(X ∨ Z ∨ Y) ∧ (¬Y ∨ Z) ∧ (¬Z ∨ Y)

Xs

X0 X1

Xe

Start

Player 1

Player 2

Ys

Y0 Y1

Ye

Zs

Z0 Z1

Ze

Q

X ∨ Z ∨ Y

¬Y ∨ Z

¬Z ∨ Y

X

Y

¬Y

Z

¬Z

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 33 of 34

Geography is PSpace-hard: Example

We consider the formula ∃X.∀Y.∃Z.(X ∨ Z ∨ Y) ∧ (¬Y ∨ Z) ∧ (¬Z ∨ Y)

Xs

X0 X1

Xe

Start

Player 1

Player 2

Ys

Y0 Y1

Ye

Zs

Z0 Z1

Ze

Q

X ∨ Z ∨ Y

¬Y ∨ Z

¬Z ∨ Y

X

Y

¬Y

Z

¬Z

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 33 of 34

Geography is PSpace-hard: Example

We consider the formula ∃X.∀Y.∃Z.(X ∨ Z ∨ Y) ∧ (¬Y ∨ Z) ∧ (¬Z ∨ Y)

Xs

X0 X1

Xe

Start

Player 1

Player 2

Ys

Y0 Y1

Ye

Zs

Z0 Z1

Ze

Q

X ∨ Z ∨ Y

¬Y ∨ Z

¬Z ∨ Y

X

Y

¬Y

Z

¬Z

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 33 of 34

Geography is PSpace-hard: Example

We consider the formula ∃X.∀Y.∃Z.(X ∨ Z ∨ Y) ∧ (¬Y ∨ Z) ∧ (¬Z ∨ Y)

Xs

X0 X1

Xe

Start

Player 1

Player 2

Ys

Y0 Y1

Ye

Zs

Z0 Z1

Ze

Q

X ∨ Z ∨ Y

¬Y ∨ Z

¬Z ∨ Y

X

Y

¬Y

Z

¬Z

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 33 of 34

Geography is PSpace-hard: Example

We consider the formula ∃X.∀Y.∃Z.(X ∨ Z ∨ Y) ∧ (¬Y ∨ Z) ∧ (¬Z ∨ Y)

Xs

X0 X1

Xe

Start

Player 1

Player 2

Ys

Y0 Y1

Ye

Zs

Z0 Z1

Ze

Q

X ∨ Z ∨ Y

¬Y ∨ Z

¬Z ∨ Y

X

Y

¬Y

Z

¬Z

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 33 of 34

Summary and Outlook

True QBF is PSpace-complete

FOL Model Checking and the related problem of SQL query answering are
PSpace-complete

Some games are PSpace-complete

What’s next?

• Some more remarks on games

• Logarithmic space

• Complements of space classes

Markus Krötzsch, 21st Nov 2022 Complexity Theory slide 34 of 34

	Polynomial Space
	Quantified Boolean Formulae
	More Problems in PSpace
	Games

