TU Dresden, Fakultät Informatik David Carral, Markus Krötzsch

Complexity Theory Exercise 3: Time Complexity 14 November 2017

Exercise 3.1. A language $\mathbf{L} \in \mathbf{P}$ is complete for \mathbf{P} under polynomial-time reductions if $\mathbf{L}' \leq_p \mathbf{L}$ for every $\mathbf{L}' \in \mathbf{P}$. Show that every language in \mathbf{P} except \emptyset and Σ^* is complete for \mathbf{P} under polynomial-time reductions.

Exercise 3.2. Let

 $A_{PNTM} = \{ \langle \mathcal{M}, p, w \rangle \mid \mathcal{M} \text{ is a non-deterministic TM that accepts } w \text{ in time } p(|w|) \\ \text{with p a polynomial function} \}$

Show that A_{PNTM} is NP-complete.

Exercise 3.3. Show that the following problem is NP-complete:

 $\begin{array}{lll} \mbox{Input:} & \mbox{A propositional formula } \varphi \mbox{ in CNF} \\ \mbox{Question:} & \mbox{Does } \varphi \mbox{ have at least 2 different satisfying assignments?} \end{array}$

Exercise 3.4. We recall some definitions.

- Given some language L, $L \in \text{coNP}$ if and only if $\overline{L} \in \text{NP}$.
- L is CONP-hard if and only if $\mathbf{L}' \leq_p \mathbf{L}$ for every $\mathbf{L}' \in \operatorname{cONP}$.
- L is CONP-complete if and only if $L \in CONP$ and L is CONP-hard.

Show that if any CONP-complete problem is in NP, then NP = CONP.

Exercise 3.5. If G is an undirected graph, a *vertex cover* of G is a subset of the nodes where every edge of G touches one of those nodes. The vertex cover problem asks whether a graph contains a vertex cover of a specified size.

VERTEX-COVER = { $\langle G, k \rangle \mid G$ is an undirected graph that has a *k*-node vertex cover.}

Show that **VERTEX-COVER** is NP-complete.

Try to find a reduction from **3-SAT**. **Hiut:**