Foundations of Knowledge Representation Approximation Fixpoint Theory Problems

Problem 1. Compute the least fixpoint of the operator $_{P_1}T$ for the definite logic program P_1 defined as follows:

 $P_1 =$

$p \leftarrow q, r$	$p \leftarrow s, t$
$w \leftarrow s, r$	$z \leftarrow p, w$
$s \leftarrow p, q$	$v \leftarrow w$
$r \leftarrow t, m$	$q \leftarrow$
$t \leftarrow$	$m \leftarrow$

Problem 2. Approximation Fixpoint Theory can be used to define the semantics of argumentation frameworks. For an AF F = (A, R) we thus consider the complete lattice (L, \subseteq) with $L = 2^A$ and its associated bilattice (L^2, \leq_i) .

The stable extension semantics is characterised by the operator $_{\rm F}U$ defined as follows:

Definition 1. For each AF F = (A, R), the operator $_FU : A \to A$ yields – for a given set $S \subseteq A$ – a new set

$$_{F}U(S) = \{a \in A \mid b \in S \text{ implies } (b,a) \notin R\}$$

Intuitively, the operator returns the set of all arguments that are unattacked (hence the U) by the input set.

An approximator of $_{F}U$ is given by $_{F}U$ defined as follows:

Definition 2. For each AFF = (A, R), the operator $_{F}\mathcal{U} : 2^{A} \times 2^{A} \rightarrow 2^{A} \times 2^{A}$ yields – for a given pair $(P, S) \in 2^{A} \times 2^{A}$ – a new pair

$$_{F}\mathcal{U}(P,S) = (_{F}U(S), _{F}U(P))$$

Now, consider the two AFs: $F_1 = (A_1, R_1)$ with $A_1 = \{a, b\}$ and $R_1 = \{a, b, (b, a)\}$ and $F_2 = (A_2, R_2)$ with $A_2 = \{a, b, c\}$ and $R_2 = \{(a, b), (b, c), (c, a)\}$.

Do the following:

- (i) For both frameworks F_i , i = 1, 2, illustrate the corresponding complete lattice $(2^{A_i}, \subseteq)$ and the mappings of F_iU .
- (ii) Show that $_{F}U$ characterises stable extension semantics. More precisely: Show that for every AF F, every set $S \subseteq A$ is a stable extension of F iff $_{F}U(S) = S$.
- (iii) Argue whether or not $_{F}U$ is \subseteq -monotone for every AF F.
- (iv) Show that $_{F}\mathcal{U}$ is an approximator for $_{F}U$.

Problem 3. Consider the normal logic programs P_2 and P_3 :

 $P_2 =$

$$\begin{array}{ll} p \leftarrow p, q & q \leftarrow p \\ r \leftarrow \sim s & s \leftarrow \sim q \end{array}$$

 $P_{3} =$

$p \leftarrow q, s$	
$q \leftarrow r, \sim \!\! u$	
$r \leftarrow u$	$r \leftarrow$
$s \leftarrow {\sim}t$	
$t \leftarrow u$	

Recall the definition of the approximator ${}_{P}\mathcal{T}$ from the lecture. Compute the least fixpoint of ${}_{P_2}\mathcal{T}$ and ${}_{P_3}\mathcal{T}$.