

Artificial Intelligence, Computational Logic

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE

Lecture 4 Tabu Search

Sarah Gaggl

Dresden, 12th May 2017

Agenda

- Introduction
- 2 Constraint Satisfaction (CSP)
- Uninformed Search versus Informed Search (Best First Search, A* Search, Heuristics)
- 4 Local Search, Stochastic Hill Climbing, Simulated Annealing
- 5 Tabu Search
 - Answer-set Programming (ASP)
- Structural Decomposition Techniques (Tree/Hypertree Decompositions)
- 8 Evolutionary Algorithms/ Genetic Algorithms

Tabu Search

Main Idea

- A memory forces the search to explore new areas of the search space
- Memorize solutions that have been examined recently. They become tabu points in next steps
- Tabu search is deterministic

Tabu Search and SAT

- SAT problem with n = 8 variables
- Initial (random) assignment $\mathbf{x} = (0, 1, 1, 1, 0, 0, 0, 1)$
- Evaluation function: weighted sum of number of satisfied clauses. Weights depend on the number of variables in the clause
- Maximize evaluation function (i.e. we're trying to satisfy all clauses)
- Random assignment provides $eval(\mathbf{x}) = 27$
- Neighborhood of x consists of 8 solutions. Evaluate them and select best
- At this stage, it is the same as hill-climbing
- Suppose flipping 3rd variable generates best evaluation ($eval(\mathbf{x}') = 31$)
- Memory keeps track of actions

Tabu Search and SAT

- SAT problem with n = 8 variables
- Initial (random) assignment $\mathbf{x} = (0, 1, 1, 1, 0, 0, 0, 1)$
- Evaluation function: weighted sum of number of satisfied clauses. Weights depend on the number of variables in the clause
- Maximize evaluation function (i.e. we're trying to satisfy all clauses)
- Random assignment provides $eval(\mathbf{x}) = 27$
- Neighborhood of x consists of 8 solutions. Evaluate them and select best
- At this stage, it is the same as hill-climbing
- Suppose flipping 3rd variable generates best evaluation (*eval*(**x**') = 31)
- Memory keeps track of actions

Question

- What is stored in memory (think of SAT as an example)?
- 2 How can we escape local optima with help of the memory?

Recency-based Memory

- Index of flipped variable + time when it was flipped
- Differentiate between older and more recent flips
- SAT: time stamp for each position of solution vector *M* (initialized to 0)
- Value of time stamp provides information on recency of flip at position

Memory Vector

 $\frac{M(i) = j}{j} \text{ (when } j \neq 0)$ *j* is most recent iteration when *i*-th bit was flipped

Recency-based Memory

- Index of flipped variable + time when it was flipped
- Differentiate between older and more recent flips
- SAT: time stamp for each position of solution vector *M* (initialized to 0)
- Value of time stamp provides information on recency of flip at position

Memory Vector

M(i) = j (when $j \neq 0$) *j* is most recent iteration when *i*-th bit was flipped

Assume information is stored for at most 5 iterations.

Alternative Interpretation

M(i) = j (when $j \neq 0$) *i*-th bit was flipped 5 - j iterations ago

Recency-based Memory

- Index of flipped variable + time when it was flipped
- Differentiate between older and more recent flips
- SAT: time stamp for each position of solution vector M (initialized to 0)
- Value of time stamp provides information on recency of flip at position

Memory Vector

M(i) = j (when $j \neq 0$) *j* is most recent iteration when *i*-th bit was flipped

Assume information is stored for at most 5 iterations.

Alternative Interpretation

M(i) = j (when $j \neq 0$) *i*-th bit was flipped 5 - j iterations ago

Example

Memory after one iteration. 3rd bit is tabu for next 5 iterations.

Different Interpretations

1st Variant

- Stores iteration number of most recent flip
- Requires a current iteration counter *t* which is compared with memory values
- If t M(i) > 5 forget
- Only requires updating a single entry, and increase the counter
- Used in most implementations

Different Interpretations

1st Variant

- Stores iteration number of most recent flip
- Requires a current iteration counter *t* which is compared with memory values
- If t M(i) > 5 forget
- Only requires updating a single entry, and increase the counter
- Used in most implementations

2nd Variant

- Values are interpreted as number of iterations for which a position is not available
- All nonzero entries are decreased by one at every iteration

- Initial assignment $\mathbf{x} = (0, 1, 1, 1, 0, 0, 0, 1)$
- After 4 additional iterations *M* :

- Most recent flip M(4) = 5
- Current solution: $\mathbf{x} = (1, 1, 0, 0, 0, 1, 1, 1)$ with $eval(\mathbf{x}) = 33$

- Initial assignment $\mathbf{x} = (0, 1, 1, 1, 0, 0, 0, 1)$
- After 4 additional iterations *M* :

- Most recent flip M(4) = 5
- Current solution: $\mathbf{x} = (1, 1, 0, 0, 0, 1, 1, 1)$ with $eval(\mathbf{x}) = 33$

Neighborhood of x

$\mathbf{x}_1 = (0, 1, 0, 0, 0, 1, 1, 1)$
$\mathbf{x}_2 = (1, 0, 0, 0, 0, 1, 1, 1)$
$\mathbf{x}_3 = (1, 1, 1, 0, 0, 1, 1, 1)$
$\mathbf{x}_4 = (1, 1, 0, 1, 0, 1, 1, 1)$

 $\begin{aligned} \mathbf{x}_5 &= (1, 1, 0, 0, 1, 1, 1, 1) \\ \mathbf{x}_6 &= (1, 1, 0, 0, 0, 0, 1, 1) \\ \mathbf{x}_7 &= (1, 1, 0, 0, 0, 1, 0, 1) \\ \mathbf{x}_8 &= (1, 1, 0, 0, 0, 1, 1, 0) \end{aligned}$

TU Dresden, 12th May 2017

- Initial assignment $\mathbf{x} = (0, 1, 1, 1, 0, 0, 0, 1)$
- After 4 additional iterations *M* :

- Most recent flip M(4) = 5
- Current solution: $\mathbf{x} = (1, 1, 0, 0, 0, 1, 1, 1)$ with $eval(\mathbf{x}) = 33$

Neighborhood of x

$\mathbf{x}_1 = (0, 1, 0, 0, 0, 1, 1, 1)$	$\mathbf{x}_5 = (1, 1, 0, 0, 1, 1, 1, 1)$
$\mathbf{x}_2 = (1, 0, 0, 0, 0, 1, 1, 1)$	$\mathbf{x}_6 = (1, 1, 0, 0, 0, 0, 1, 1)$
$\mathbf{x}_3 = (1, 1, 1, 0, 0, 1, 1, 1)$	$\mathbf{x}_7 = (1, 1, 0, 0, 0, 1, 0, 1)$
$\mathbf{x}_4 = (1, 1, 0, 1, 0, 1, 1, 1)$	$\mathbf{x}_8 = (1, 1, 0, 0, 0, 1, 1, 0)$

TABU, best evaluation $eval(\mathbf{x}_5) = 32$, decrease!

TU Dresden, 12th May 2017

- Current solution: $\mathbf{x} = (1, 1, 0, 0, 0, 1, 1, 1)$ with $eval(\mathbf{x}) = 33$
- New solution: $\mathbf{x}_5 = (1, 1, 0, 0, 1, 1, 1, 1)$ with $eval(\mathbf{x}_5) = 32$

3 0 1	5	0	4	2	0
-------	---	---	---	---	---

changes to:

- Current solution: $\mathbf{x} = (1, 1, 0, 0, 0, 1, 1, 1)$ with $eval(\mathbf{x}) = 33$
- New solution: $\mathbf{x}_5 = (1, 1, 0, 0, 1, 1, 1, 1)$ with $eval(\mathbf{x}_5) = 32$

changes to:

Policy might be too restrictive

- What if tabu neighbor x₆ provides excellent evaluation score?
- Make search more flexible: override tabu classification if solution is outstanding
- \Rightarrow aspiriation criterion

Frequency-based Memory

- Operates over a longer horizon
- SAT: vector *H* serves as long-term memory.
 - Initialized to 0, at any stage of the search

H(i) = j

interpreted as: during last h (horizon) iterations, the *i*-th bit was flipped j times

- Usually horizon is large
- After 100 iterations with h = 50, long-term memory *H* might have the following values

5 7 1	1 3 9	8 1	6
-------	-------	-----	---

- Shows distribution of moves throughout the last 50 iterations

Diversity of Search

Frequency-based memory provides information about which flips have been under-represented or not represented.

 \implies we can diversify the search by exploring these possibilities

Use of Long-term Memory

Special Circumstances

- Situations where all non-tabu moves lead to worse solution
- To make a meaningful decision about which direction to explore next
- Typically: most frequent moves are less attractive
- Value of evaluation score is decreased by some penalty measure that depends on frequency, final score implies the winner

- Assume value of current solution is $eval(\mathbf{x}) = 35$
- Non-tabu flips 2, 3 and 7 have values 30, 33, 31
- None of tabu moves provides value greater than 37 (highest value so far)
 we can't apply aspiration criterion

- Assume value of current solution is $eval(\mathbf{x}) = 35$
- Non-tabu flips 2, 3 and 7 have values 30, 33, 31
- None of tabu moves provides value greater than 37 (highest value so far)
 we can't apply aspiration criterion
- Frequency based-memory and evaluation function for new solution \mathbf{x}' is

$$\textit{eval}(x') - \textit{penalty}(x')$$

- *penalty*(**x**') = 0.7 × *H*(*i*), where 0.7 coefficient, *H*(*i*) value from long-term memory *H*:
 - 7 for solution created by flipping 2nd bit
 - 11 for solution created by flipping 3nd bit
 - 1 for solution created by flipping 7nd bit

- Assume value of current solution is $eval(\mathbf{x}) = 35$
- Non-tabu flips 2, 3 and 7 have values 30, 33, 31
- None of tabu moves provides value greater than 37 (highest value so far)
 we can't apply aspiration criterion
- Frequency based-memory and evaluation function for new solution \mathbf{x}' is

$$\textit{eval}(x') - \textit{penalty}(x')$$

• $penalty(\mathbf{x}') = 0.7 \times H(i)$, where 0.7 coefficient, H(i) value from long-term memory H:

7	for solution created by flipping 2nd bit
11	for solution created by flipping 3nd bit
1	for solution created by flipping 7nd bit

New scores are:

$30 - 0.7 \times 7 = 25.1$	2nd bit
$33 - 0.7 \times 11 = 25.3$	3nd bit
$31 - 0.7 \times 1 = 30.3$	7th bit

• Frequency based-memory and evaluation function for new solution \boldsymbol{x}' is

 $\mathit{eval}(x') - \mathit{penalty}(x')$

• $penalty(\mathbf{x}') = 0.7 \times H(i)$, where 0.7 coefficient, H(i) value from long-term memory H:

7	for solution created by flipping 2nd bit
11	for solution created by flipping 3nd bit
1	for solution created by flipping 7nd bit

• New scores are:

$30 - 0.7 \times 7 = 25.1$	2nd bit
$33 - 0.7 \times 11 = 25.3$	3nd bit
$31 - 0.7 \times 1 = 30.3$	7th bit

Diversify Search

Including frequency values in a penalty measure for evaluating solutions.

TU Dresden, 12th May 2017

Further Options to Diversify Search

We migth add additional rules:

- Aspiration by default: select the oldest of all considered
- Aspiration by search direction: memorize whether or not the performed moves generated any improvement
- Aspiration by influence: measures the degree of change of the new solution
 - a) in terms of the distance between old and new solution
 - b) change in solution's feasibility, if we deal with a constraint problem
 - Intuition: particular move has a larger influence if a larger step was made from old to new solution

Summary

- Simulated annealing and tabu search are both design to escape local optima
- Tabu search makes uphill moves only when it is stuck in local optima
- · Simulated annealing can make uphill moves at any time
- Simulated annealing is stochastic, tabu search is deterministic
- Compared to classic algorithms, both work on complete solutions. One can halt them at any iteration and obtain a possible solution
- Both have many parameters to worry about

References

Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern Heuristics, volume 2. Springer, 2004.