
Alternating Complexity Classes

Complexity Theory
Alternating Complexity Classes

Daniel Borchmann, Markus Krötzsch

Computational Logic

2016-01-06

cba

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-06 #1

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternating Complexity Classes Review

Review

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-06 #2

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternating Complexity Classes Alternating vs. Deterministic Time and Space

Alternating vs. Deterministic Time and Space

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-06 #3

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternating Complexity Classes Alternating vs. Deterministic Time and Space

From Alternating Time to Deterministic Space

Theorem 15.1

For f(n) ≥ n, we have ATime(f) ⊆ DSpace(f2).

Proof.
We simulate an ATMM using a TM S:

S performs a depth-first search of the configuration tree ofM

The acceptance status of each node is computed recursively
(similar to typical PSpace algorithms we have seen before)

M accepts exactly if the root of the configuration tree is accepting

The maximum recursion depth is f(n). The maximum size of a
configuration is O(f(n)). Hence the claim follows. �

Note: the result can be strengthened to ATime(f) ⊆ DSpace(f) by not
storing the whole configuration. See [Sipser, Lemma 10.22].

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-06 #4

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternating Complexity Classes Alternating vs. Deterministic Time and Space

From Alternating Time to Deterministic Space

Theorem 15.1

For f(n) ≥ n, we have ATime(f) ⊆ DSpace(f2).

Proof.
We simulate an ATMM using a TM S:

S performs a depth-first search of the configuration tree ofM

The acceptance status of each node is computed recursively
(similar to typical PSpace algorithms we have seen before)

M accepts exactly if the root of the configuration tree is accepting

The maximum recursion depth is f(n). The maximum size of a
configuration is O(f(n)). Hence the claim follows. �

Note: the result can be strengthened to ATime(f) ⊆ DSpace(f) by not
storing the whole configuration. See [Sipser, Lemma 10.22].

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-06 #4

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternating Complexity Classes Alternating vs. Deterministic Time and Space

From Nondeterministic Space to Alternating Time

Theorem 15.2

For f(n) ≥ n, we have NSpace(f) ⊆ ATime(f2).

Proof.
We simulate an NTMM using an ATM S.
Challenge: the computing paths ofM might be up to 2df(n) in length.
Solution: recursively solve Yieldability problems, as in Savitch’s Theorem:

We want to check ifM can go from configuration C1 to C2 in at most
k steps

To do this, existentially guess an intermediate configuration C ′.

Universally check ifM can go from C1 to C ′ in k/2 steps, and from
C ′ to C2 in k/2 steps.

Storing one intermediate configuration C ′ takes space O(f(n)). Maximal
recursion depth is O(f(n)). Hence the result follows. �

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-06 #5

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternating Complexity Classes Alternating vs. Deterministic Time and Space

From Nondeterministic Space to Alternating Time

Theorem 15.2

For f(n) ≥ n, we have NSpace(f) ⊆ ATime(f2).

Proof.
We simulate an NTMM using an ATM S.
Challenge: the computing paths ofM might be up to 2df(n) in length.

Solution: recursively solve Yieldability problems, as in Savitch’s Theorem:

We want to check ifM can go from configuration C1 to C2 in at most
k steps

To do this, existentially guess an intermediate configuration C ′.

Universally check ifM can go from C1 to C ′ in k/2 steps, and from
C ′ to C2 in k/2 steps.

Storing one intermediate configuration C ′ takes space O(f(n)). Maximal
recursion depth is O(f(n)). Hence the result follows. �

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-06 #5

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternating Complexity Classes Alternating vs. Deterministic Time and Space

From Nondeterministic Space to Alternating Time

Theorem 15.2

For f(n) ≥ n, we have NSpace(f) ⊆ ATime(f2).

Proof.
We simulate an NTMM using an ATM S.
Challenge: the computing paths ofM might be up to 2df(n) in length.
Solution: recursively solve Yieldability problems, as in Savitch’s Theorem:

We want to check ifM can go from configuration C1 to C2 in at most
k steps

To do this, existentially guess an intermediate configuration C ′.

Universally check ifM can go from C1 to C ′ in k/2 steps, and from
C ′ to C2 in k/2 steps.

Storing one intermediate configuration C ′ takes space O(f(n)). Maximal
recursion depth is O(f(n)). Hence the result follows. �

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-06 #5

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternating Complexity Classes Alternating vs. Deterministic Time and Space

Harvest: Alternating Time = Deterministic Space

For f(n) ≥ n, we have shown
ATime(f) ⊆ DSpace(f2) and DSpace(f) ⊆ NSpace(f) ⊆ ATime(f2).

The quadratic increase is swallowed by (super)polynomial bounds:

Corollary 15.3 (“Alternating Time = Deterministic Space”)

APTime = PSpace and AExpTime = ExpSpace.

Proof.

ATime(nd) ⊆ DSpace(n2d) ⊆ PSpace
DSpace(nd) ⊆ NSpace(nd) ⊆ ATime(n2d) ⊆ APTime

Second claim is left as an exercise

�

One can also read this as “Parallel Time = Sequential Space.”

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-06 #6

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternating Complexity Classes Alternating vs. Deterministic Time and Space

From Alternating Space to Deterministic Time

In this direction, the increase is exponential:

Theorem 15.4

For f(n) ≥ log n, we have ASpace(f) ⊆ DTime(2O(f)).

Proof.
The proof is similar to the exponential deterministic simulation of
space-bounded NTMs in Lecture 13 (Theorem 10.7):

Construct configuration graph of ATM

Iteratively compute acceptance status of each configuration

Check if starting configuration is accepting

Each step can be done in exponential time (in particular, computing the
acceptance condition in each step is no more difficult than for plain
NTMs). �

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-06 #7

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternating Complexity Classes Alternating vs. Deterministic Time and Space

From Alternating Space to Deterministic Time

In this direction, the increase is exponential:

Theorem 15.4

For f(n) ≥ log n, we have ASpace(f) ⊆ DTime(2O(f)).

Proof.
The proof is similar to the exponential deterministic simulation of
space-bounded NTMs in Lecture 13 (Theorem 10.7):

Construct configuration graph of ATM

Iteratively compute acceptance status of each configuration

Check if starting configuration is accepting

Each step can be done in exponential time (in particular, computing the
acceptance condition in each step is no more difficult than for plain
NTMs). �

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-06 #7

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternating Complexity Classes Alternating vs. Deterministic Time and Space

From Deterministic Time To Alternating Space

The exponential blow-up can be reversed when going back to ATMs:

Theorem 15.5

For f(n) ≥ log n space-constructible, we have
DTime(2O(f)) ⊆ ASpace(f).

Proof.

We show: for any g(n) ≥ n, we have DTime(g) ⊆ ASpace(log g).

We simulate an TMM using an ATM S. This is not so easy:

A computation ofM is exponentially longer than the space available
to S{ we solved this before with Yieldability

A configuration ofM is exponentially longer than the space available
to S{ this is more tricky . . .

There is a coarse proof sketch in [Sipser, Lemma 10.25]. We follow a more detailed proof

from the lecture notes of Erich Grädel [Complexity Theory, WS 2009/10] (link).

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-06 #8

http://logic.rwth-aachen.de/files/KTQC/KTQC-script.pdf
http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternating Complexity Classes Alternating vs. Deterministic Time and Space

From Deterministic Time To Alternating Space

The exponential blow-up can be reversed when going back to ATMs:

Theorem 15.5

For f(n) ≥ log n space-constructible, we have
DTime(2O(f)) ⊆ ASpace(f).

Proof.

We show: for any g(n) ≥ n, we have DTime(g) ⊆ ASpace(log g).

We simulate an TMM using an ATM S. This is not so easy

:

A computation ofM is exponentially longer than the space available
to S{ we solved this before with Yieldability

A configuration ofM is exponentially longer than the space available
to S{ this is more tricky . . .

There is a coarse proof sketch in [Sipser, Lemma 10.25]. We follow a more detailed proof

from the lecture notes of Erich Grädel [Complexity Theory, WS 2009/10] (link).

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-06 #8

http://logic.rwth-aachen.de/files/KTQC/KTQC-script.pdf
http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternating Complexity Classes Alternating vs. Deterministic Time and Space

From Deterministic Time To Alternating Space

The exponential blow-up can be reversed when going back to ATMs:

Theorem 15.5

For f(n) ≥ log n space-constructible, we have
DTime(2O(f)) ⊆ ASpace(f).

Proof.

We show: for any g(n) ≥ n, we have DTime(g) ⊆ ASpace(log g).

We simulate an TMM using an ATM S. This is not so easy:

A computation ofM is exponentially longer than the space available
to S{ we solved this before with Yieldability

A configuration ofM is exponentially longer than the space available
to S{ this is more tricky . . .

There is a coarse proof sketch in [Sipser, Lemma 10.25]. We follow a more detailed proof

from the lecture notes of Erich Grädel [Complexity Theory, WS 2009/10] (link).

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-06 #8

http://logic.rwth-aachen.de/files/KTQC/KTQC-script.pdf
http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternating Complexity Classes Alternating vs. Deterministic Time and Space

From Deterministic Time To Alternating Space

The exponential blow-up can be reversed when going back to ATMs:

Theorem 15.5

For f(n) ≥ log n space-constructible, we have
DTime(2O(f)) ⊆ ASpace(f).

Proof.

We show: for any g(n) ≥ n, we have DTime(g) ⊆ ASpace(log g).

We simulate an TMM using an ATM S. This is not so easy:

A computation ofM is exponentially longer than the space available
to S{ we solved this before with Yieldability

A configuration ofM is exponentially longer than the space available
to S{ this is more tricky . . .

There is a coarse proof sketch in [Sipser, Lemma 10.25]. We follow a more detailed proof

from the lecture notes of Erich Grädel [Complexity Theory, WS 2009/10] (link).

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-06 #8

http://logic.rwth-aachen.de/files/KTQC/KTQC-script.pdf
http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternating Complexity Classes Alternating vs. Deterministic Time and Space

From Deterministic Time To Alternating Space (2)

Notation: The proof is easier if we write a configuration
σ1 · · ·σi−1qσiσi+1 · · ·σm as a sequence

∗ σ1 · · · σi−1 〈q, σi〉 σi+1 · · · σm ∗

of symbols from the set Ω = {∗} ∪ Γ ∪ (Q × Γ).

Then the Ω-symbol (state and tape) at position i follows deterministically
from the Ω-symbols at positions i − 1, i, and i + 1 in the previous step.
We writeM(ωi−1, ωi , ωi+1) for this symbol.

Proof idea:

Only store a pointers to one cell in one configuration ofM

Verify the contents of current cell i in step j by guessing the previous
cell contents ωi−1, ωi , ωi+1 in step j.

Check iteratively that the guessed symbols are correct

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-06 #9

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternating Complexity Classes Alternating vs. Deterministic Time and Space

From Deterministic Time To Alternating Space (2)

Notation: The proof is easier if we write a configuration
σ1 · · ·σi−1qσiσi+1 · · ·σm as a sequence

∗ σ1 · · · σi−1 〈q, σi〉 σi+1 · · · σm ∗

of symbols from the set Ω = {∗} ∪ Γ ∪ (Q × Γ).

Then the Ω-symbol (state and tape) at position i follows deterministically
from the Ω-symbols at positions i − 1, i, and i + 1 in the previous step.
We writeM(ωi−1, ωi , ωi+1) for this symbol.

Proof idea:

Only store a pointers to one cell in one configuration ofM

Verify the contents of current cell i in step j by guessing the previous
cell contents ωi−1, ωi , ωi+1 in step j.

Check iteratively that the guessed symbols are correct

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-06 #9

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternating Complexity Classes Alternating vs. Deterministic Time and Space

From Deterministic Time To Alternating Space (2)

Notation: The proof is easier if we write a configuration
σ1 · · ·σi−1qσiσi+1 · · ·σm as a sequence

∗ σ1 · · · σi−1 〈q, σi〉 σi+1 · · · σm ∗

of symbols from the set Ω = {∗} ∪ Γ ∪ (Q × Γ).

Then the Ω-symbol (state and tape) at position i follows deterministically
from the Ω-symbols at positions i − 1, i, and i + 1 in the previous step.
We writeM(ωi−1, ωi , ωi+1) for this symbol.

Proof idea:

Only store a pointers to one cell in one configuration ofM

Verify the contents of current cell i in step j by guessing the previous
cell contents ωi−1, ωi , ωi+1 in step j.

Check iteratively that the guessed symbols are correct

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-06 #9

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternating Complexity Classes Alternating vs. Deterministic Time and Space

From Deterministic Time To Alternating Space (3)

Let h : N→ R be a space-constructible function in O(g) that defines the
exact time bound forM (no O-notation).

01 AtmSimulateTm(TM M, input word w, time bound h) :
02 existentially guess s ≤ h(|w |) // halting step
03 existentially guess i ∈ {0, . . . , s} // halting position
04 existentially guess ω ∈ Q × Σ // halting cell + state
05 if ω does not have a halting state :
06 return FALSE
07 for j = s, . . . , 1 do :
08 existentially guess 〈ω−1, ω0, ω1〉 ∈ Ω3

09 if M(ω−1, ω0, ω+1) , ω : return FALSE
10 universally choose ` ∈ {−1, 0, 1}
11 ω := ω`
12 i := i + `
13 // after tracing back s steps, check input configuration:
14 return “input configuration of M on w has ω at position i”

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-06 #10

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternating Complexity Classes Alternating vs. Deterministic Time and Space

A Remark About Space-Constructibility

Our algorithm needs space-constructibility of h to implement the line

02 existentially guess s ≤ h(|w |) // halting step

However, we could also avoid this:

The algorithm from line 03 on checks if the TM halts after s steps

We can make a similar algorithm that checks if the TM does not halt
after s steps

We can then use an overall algorithm that increments s one by one
(starting from 1):

For each value of s, guess if the TM halts after this time or not
Check the guess using the above procedures
Stop when the halting configuration has been found

Because of the time bound on the simulated TM, s will not become
larger than 2O(f) here, so we can always store it in space f .

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-06 #11

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternating Complexity Classes Alternating vs. Deterministic Time and Space

Harvest

For f(n) ≥ log n, we have shown ASpace(f) = DTime(2O(f)).

Corollary 15.6 (“Alternating Space = Exponential Deterministic Time”)

AL = P and APSpace = ExpTime.

We can sum up our findings as follows:

L ⊆ PTime ⊆ PSpace ⊆ ExpTime ⊆ ExpSpace

= = = =

ALogSpace ⊆ APTime ⊆ APSpace ⊆ AExpTime

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-06 #12

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

	Alternating Complexity Classes
	Review
	Alternating vs. Deterministic Time and Space

