Complexity Theory NP Completeness

Daniel Borchmann, Markus Krötzsch

Computational Logic

2015-11-17

©•••

Review

Are NP Problems Hard?

$\operatorname{NP}\text{-}\textsc{Hardness}$ and $\operatorname{NP}\text{-}\textsc{Completeness}$

Definition 8.1

- ▶ A language \mathcal{H} is NP-hard, if $\mathcal{L} \leq_p \mathcal{H}$ for every language $\mathcal{L} \in NP$.
- A language *C* is NP-complete, if *C* is NP-hard and $C \in NP$.

NP -Completeness

- ▶ NP-complete problems are the hardest problems in NP.
- They constitute the maximal class (wrt. \leq_p) of problems within NP.
- They are all equally difficult an efficient solution to one would solve them all.

Theorem 8.2

If \mathcal{L} is NP-hard and $\mathcal{L} \leq_{p} \mathcal{L}'$, then \mathcal{L}' is NP-hard as well.

Deterministic vs. Nondeterminsitic Time

Theorem 8.3

 $P \subseteq NP$, and also $P \subseteq CONP$.

(Clear since DTMs are a special case of NTMs)

It is not known to date if the converse is true or not.

- Put differently: "If it is easy to check a candidate solution to a problem, is it also easy to find one?"
- Exaggerated: "Can creativity be automated?" (Wigderson, 2006)
- Unresolved since over 35 years of effort
- One of the major problems in computer science and math of our time
- 1,000,000 USD prize for resolving it ("Millenium Problem") (might not be much money at the time it is actually solved)

Many people believe that $P \neq NP$

- Main argument: "If NP = P, someone ought to have found some polynomial algorithm for an NP-complete problem by now."
- "This is, in my opinion, a very weak argument. The space of algorithms is very large and we are only at the beginning of its exploration." (Moshe Vardi, 2002)
- Another source of intuition: Humans find it hard to solve NP-problems, and hard to imagine how to make them simpler – possibly "human chauvinistic bravado" (Zeilenberger, 2006)
- There are better arguments, but none more than an intuition

Many outcomes conceivable:

• P = NP could be shown with a non-constructive proof

- P = NP could be shown with a non-constructive proof
- The question might be independent of standard mathematics (ZFC)

- P = NP could be shown with a non-constructive proof
- The question might be independent of standard mathematics (ZFC)
- ► Even if NP ≠ P, it is unclear if NP problems require exponential time in a strict sense – many super-polynomial functions exist ...

- P = NP could be shown with a non-constructive proof
- The question might be independent of standard mathematics (ZFC)
- ► Even if NP ≠ P, it is unclear if NP problems require exponential time in a strict sense – many super-polynomial functions exist ...
- The problem might never be solved

Current status in research:

- Results of a poll among 152 experts [Gasarch 2012]:
 - ▶ P ≠ NP: 126 (83%)
 - ▶ P = NP: 12 (9%)
 - Don't know or don't care: 7 (4%)
 - Independent: 5 (3%)
 - And 1 person (0.6%) answered: "I don't want it to be equal."
- Experts have guessed wrongly in other major questions before
- Over 100 "proofs" show P = NP to be true/false/both/neither: https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

Are NP Problems Hard?

Proving NP-Completeness

Proving NP-Completeness

How to show NP-completeness

To show that \mathcal{L} is NP-complete, we must show that every language in NP can be reduced to \mathcal{L} in polynomial time.

Alternative approach

Given an NP-complete language C, we can show that another language \mathcal{L} is NP-complete just by showing that

- $C \leq_p \mathcal{L}$
- $\mathcal{L} \in NP$

Proving NP-Completeness

How to show NP-completeness

To show that \mathcal{L} is NP-complete, we must show that every language in NP can be reduced to \mathcal{L} in polynomial time.

Alternative approach

Given an NP-complete language C, we can show that another language \mathcal{L} is NP-complete just by showing that

- $C \leq_{p} \mathcal{L}$
- $\mathcal{L} \in NP$

However: Is there any NP-complete problem at all?

The First $\operatorname{NP}\text{-}\text{Complete}$ Problem

Is there any NP-complete problem at all?

Of course there is: the word problem for polynomial time NTMs!

POLYTIME NTM	
Input:	A polynomial p , a p -time bounded NTM \mathcal{M} , and an input word w .
Problem:	Does \mathcal{M} accept w (in time $p(w)$)?

The First $\operatorname{NP}\text{-}\text{Complete}$ Problem

Is there any NP-complete problem at all?

Of course there is: the word problem for polynomial time NTMs!

POLYTIME NTM	
Input:	A polynomial p , a p -time bounded NTM \mathcal{M} , and an input word w .
Problem:	Does \mathcal{M} accept w (in time $p(w)$)?

Theorem 8.4

POLYTIME NTM is NP-complete.

Proof.

See exercise.

Further NP-Complete Problem?

POLYTIME NTM is NP-complete, but not very interesting:

- not most convenient to work with
- not of much interest outside of complexity theory

Are there more natural NP-complete problems?

Yes, thousands of them!

Theorem 8.5 (Cook 1970, Levin 1973) Sat is NP-complete.

Theorem 8.5 (Cook 1970, Levin 1973)

SAT is NP-complete.

Proof.

• Sat $\in NP$

Take satisfying assignments as polynomial certificates for the satisfiability of a formula.

Theorem 8.5 (Cook 1970, Levin 1973)

SAT is NP-complete.

Proof.

• Sat $\in NP$

Take satisfying assignments as polynomial certificates for the satisfiability of a formula.

► SAT is hard for NP

Proof by reduction from the word problem for NTMs.

Proving the Cook-Levin Theorem

Given:

- a polynomial p
- a *p*-time bounded 1-tape NTM $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}})$
- a word w

Intended reduction

Define a propositional logic formula $\varphi_{p,\mathcal{M},w}$ such that $\varphi_{p,\mathcal{M},w}$ is satisfiable if and only if \mathcal{M} accepts w in time p(|w|).

Note

On input *w* of length n := |w|, every computation path of \mathcal{M} is of length $\leq p(n)$ and uses $\leq p(n)$ tape cells.

Idea

Use logic to describe a run of \mathcal{M} on input w by a formula.

Proving Cook-Levin: Encoding Configurations

Use propositional variables for describing configurations:

- Q_q for each $q \in Q$ means " \mathcal{M} is in state $q \in Q$ "
 - P_i for each $0 \le i \le p(n)$ means "the head is at Position *i*"
- $S_{a,i}$ for each $a \in \Gamma$ and $0 \le i \le p(n)$ means "tape cell *i* contains Symbol *a*"

Represent configuration $(q, p, a_0 \dots a_{p(n)})$

by assigning truth values to variables from the set

 $\overline{C} := \{Q_q, P_i, S_{a,i} \mid q \in Q, \quad a \in \Gamma, \quad 0 \le i < p(n)\}$

using the truth assignment β defined as

$$\beta(Q_s) := \begin{cases} 1 & s = q \\ 0 & s \neq q \end{cases} \qquad \beta(P_i) := \begin{cases} 1 & i = p \\ 0 & i \neq p \end{cases} \qquad \beta(S_{a,i}) := \begin{cases} 1 & a = a_i \\ 0 & a \neq a_i \end{cases}$$

We define a formula $ConF(\overline{C})$ for a set of configuration variables

 $\overline{C} = \{Q_q, P_i, S_{a,i} \mid q \in Q, \quad a \in \Gamma, \quad 0 \le i < p(n)\}$

as follows:

For an assignment β defined on variables in \overline{C} define

$$\operatorname{conf}(\overline{C},\beta) := \begin{cases} \beta(Q_q) = 1, \\ (q, p, w_0 \dots w_{p(n)}) \mid \beta(P_p) = 1, \\ \beta(S_{w_i,i}) = 1 \text{ for all } 0 \le i \le p(n) \end{cases}$$

Note: β may be defined on other variables besides those in \overline{C} .

For an assignment β defined on variables in \overline{C} define

$$\operatorname{conf}(\overline{C},\beta) := \begin{cases} \beta(Q_q) = 1, \\ (q, p, w_0 \dots w_{p(n)}) \mid \beta(P_p) = 1, \\ \beta(S_{w_i,i}) = 1 \text{ for all } 0 \le i \le p(n) \end{cases}$$

Note: β may be defined on other variables besides those in \overline{C} .

Lemma 8.6

If β satisfies $ConF(\overline{C})$ then $|conf(\overline{C},\beta)| = 1$. We can therefore write $conf(\overline{C},\beta) = (q, p, w)$ to simplify notation.

For an assignment β defined on variables in \overline{C} define

$$\operatorname{conf}(\overline{C},\beta) := \begin{cases} \beta(Q_q) = 1, \\ (q, p, w_0 \dots w_{p(n)}) \mid & \beta(P_p) = 1, \\ & \beta(S_{w_i,i}) = 1 \text{ for all } 0 \le i \le p(n) \end{cases}$$

Note: β may be defined on other variables besides those in \overline{C} .

Lemma 8.6

If β satisfies $ConF(\overline{C})$ then $|conf(\overline{C},\beta)| = 1$. We can therefore write $conf(\overline{C},\beta) = (q, p, w)$ to simplify notation.

Observations:

- $\operatorname{conf}(\overline{C},\beta)$ is a potential configuration of \mathcal{M} , but it may not be reachable from the start configuration of \mathcal{M} on input *w*.
- Conversely, every configuration (q, p, w₁ ... w_{p(n)}) induces a satisfying assignment β or which conf(C,β) = (q, p, w₁ ... w_{p(n)}).

Proving Cook-Levin: Transitions Between Configurations

Consider the following formula $NEXT(\overline{C}, \overline{C}')$ defined as

 $\mathsf{Conf}(\overline{C}) \land \mathsf{Conf}(\overline{C}') \land \mathsf{NoChange}(\overline{C}, \overline{C}') \land \mathsf{Change}(\overline{C}, \overline{C}').$

$$\begin{split} \mathsf{NoChange} &:= \bigvee_{0 \le p \le p(n)} \left(\mathsf{P}_p \land \bigwedge_{i \ne p, a \in \Gamma} \left(S_{a,i} \to S'_{a,i} \right) \right) \\ \mathsf{Change} &:= \bigvee_{0 \le p \le p(n)} \left(\mathsf{P}_p \land \bigvee_{q \in Q \atop a \in \Gamma} \left(\mathsf{Q}_q \land S_{a,p} \land \bigvee_{(q',b,D) \in \delta(q,a)} \left(\mathsf{Q}'_{q'} \land S'_{b,p} \land \mathsf{P}'_{D(p)} \right) \right) \right) \end{split}$$

where D(p) is the position reached by moving in direction D from p.

Proving Cook-Levin: Transitions Between Configurations

Consider the following formula $NEXT(\overline{C}, \overline{C}')$ defined as

 $\mathsf{Conf}(\overline{C}) \land \mathsf{Conf}(\overline{C}') \land \mathsf{NoChange}(\overline{C},\overline{C}') \land \mathsf{Change}(\overline{C},\overline{C}').$

$$\begin{split} \mathsf{NoChange} &:= \bigvee_{0 \le p \le p(n)} \left(\mathsf{P}_p \land \bigwedge_{i \ne p, a \in \Gamma} \left(S_{a,i} \to S'_{a,i} \right) \right) \\ \mathsf{Change} &:= \bigvee_{0 \le p \le p(n)} \left(\mathsf{P}_p \land \bigvee_{q \in Q \atop a \in \Gamma} \left(Q_q \land S_{a,p} \land \bigvee_{(q',b,D) \in \delta(q,a)} \left(Q'_{q'} \land S'_{b,p} \land \mathsf{P}'_{D(p)} \right) \right) \right) \end{split}$$

where D(p) is the position reached by moving in direction D from p.

Lemma 8.7

For any assignment β defined on $\overline{C} \cup \overline{C}'$:

 β satisfies Next $(\overline{C}, \overline{C}')$ if and only if $\operatorname{conf}(\overline{C}, \beta) \vdash_{\mathcal{M}} \operatorname{conf}(\overline{C}', \beta)$

Proving Cook-Levin: Start and End

Defined so far:

- $CONF(\overline{C})$: \overline{C} describes a potential configuration
- ► NEXT($\overline{C}, \overline{C}'$): conf(\overline{C}, β) $\vdash_{\mathcal{M}}$ conf(\overline{C}', β)

Proving Cook-Levin: Start and End

Defined so far:

- $CONF(\overline{C})$: \overline{C} describes a potential configuration
- ► NEXT($\overline{C}, \overline{C}'$): conf(\overline{C}, β) $\vdash_{\mathcal{M}}$ conf(\overline{C}', β)

Start configuration: Let $w = w_0 \cdots w_{n-1} \in \Sigma^*$ be the input word

$$\mathsf{Start}_{\mathcal{M}, w}(\overline{C}) := \mathsf{Conf}(\overline{C}) \land Q_{q_0} \land P_0 \land \bigwedge_{i=0}^{n-1} S_{w_i, i} \land \bigwedge_{i=n}^{p(n)} S_{\square, i}$$

Then an assignment β satisfies $\operatorname{Start}_{\mathcal{M},w}(\overline{C})$ if and only if \overline{C} represents the start configuration of \mathcal{M} on input w.

Proving Cook-Levin: Start and End

Defined so far:

- $CONF(\overline{C})$: \overline{C} describes a potential configuration
- ► NEXT($\overline{C}, \overline{C}'$): conf(\overline{C}, β) $\vdash_{\mathcal{M}}$ conf(\overline{C}', β)

Start configuration: Let $w = w_0 \cdots w_{n-1} \in \Sigma^*$ be the input word

$$\mathsf{Start}_{\mathcal{M}, w}(\overline{C}) := \mathsf{Conf}(\overline{C}) \land Q_{q_0} \land P_0 \land \bigwedge_{i=0}^{n-1} S_{w_i, i} \land \bigwedge_{i=n}^{p(n)} S_{\square, i}$$

Then an assignment β satisfies $\text{Start}_{\mathcal{M},w}(\overline{C})$ if and only if \overline{C} represents the start configuration of \mathcal{M} on input w.

Accepting stop configuration:

$$\mathsf{Acc} ext{-}\mathsf{Conf}(\overline{\mathcal{C}}) := \mathsf{Conf}(\overline{\mathcal{C}}) \wedge \mathit{Q}_{q_{\mathsf{accept}}}$$

Then an assignment β satisfies Acc-Conf(\overline{C}) if and only if \overline{C} represents an accepting configuration of \mathcal{M} .

© € 2015 Daniel Borchmann, Markus Krötzsch

Proving Cook-Levin: Adding Time

Since M is *p*-time bounded, each run may contain up to p(n) steps \rightsquigarrow we need one set of configuration variables for each

Propositional variables

 $Q_{q,t}$ for all $q \in Q$, $0 \le t \le p(n)$ means "at time t, \mathcal{M} is in state $q \in Q$ "

 $P_{i,t}$ for all $0 \le i, t \le p(n)$ means "at time *t*, the head is at position *i*"

 $S_{a,i,t}$ for all $a \in \Sigma \dot{\cup} \{\Box\}$ and $0 \le i, t \le p(n)$ means

"at time t, tape cell i contains symbol a"

Notation

 $\overline{C}_t := \{Q_{q,t}, P_{i,t}, S_{a,i,t} \mid q \in Q, 0 \le i \le p(n), a \in \Gamma\}$

Proving Cook-Levin: The Formula

Given:

- a polynomial p
- a *p*-time bounded 1-tape NTM $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}})$
- a word w

We define the formula $\varphi_{p,\mathcal{M},w}$ as follows:

$$\varphi_{p,\mathcal{M},w} := \mathsf{Start}_{\mathcal{M},w}(\overline{C}_0) \land \bigvee_{0 \leq t \leq p(n)} \left(\mathsf{Acc-Conf}(\overline{C}_t) \land \bigwedge_{0 \leq i < t} \mathsf{Next}(\overline{C}_i,\overline{C}_{i+1}) \right)$$

" C_0 encodes the start configuration" and for some polynomial time *t*: " \mathcal{M} accepts after *t* steps" and " $\overline{C}_0, ..., \overline{C}_t$ encode a comp. path"

Lemma 8.8

 $\varphi_{p,\mathcal{M},w}$ is satisfiable if and only if \mathcal{M} accepts w in time p(|w|).

Note that an accepting or rejecting stop configuration has no successor.

Complexity Theory

Theorem 8.5 (Cook 1970, Levin 1973)

SAT is NP-complete.

Proof.

• Sat $\in NP$

Take satisfying assignments as polynomial certificates for the satisfiability of a formula.

► SAT is hard for NP

Proof by reduction from the word problem for NTMs.

Further NP-complete Problems

Towards More NP-Complete Problems

Starting with SAT, one can readily show more problems \mathcal{P} to be NP-complete, each time performing two steps:

- (1) Show that $\mathcal{P} \in NP$
- (2) Find a known NP-complete problem \mathcal{P}' and reduce $\mathcal{P}' \leq_p \mathcal{P}$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

Towards More NP-Complete Problems

Starting with SAT, one can readily show more problems \mathcal{P} to be NP-complete, each time performing two steps:

- (1) Show that $\mathcal{P} \in NP$
- (2) Find a known NP-complete problem \mathcal{P}' and reduce $\mathcal{P}' \leq_p \mathcal{P}$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

 $\leq_{p} \text{Clique} \leq_{p} \text{Independent Set}$ Sat $\leq_{p} 3$ -Sat $\leq_{p} \text{Dir. Hamiltonian Path}$ $\leq_{p} \text{Subset Sum} \leq_{p} \text{Knapsack}$

NP-Completeness of CLIQUE

Theorem 8.9

CLIQUE *is* NP*-complete*.

CLIQUE: Given G, k, does G contain a clique of order $\geq k$?

Proof.

• CLIQUE $\in NP$

Take the vertex set of a clique of order k as a certificate.

► CLIQUE is NP-hard

We show SAT \leq_p CLIQUE

To every CNF-formula φ assign G_{φ} , k_{φ} such that

 φ satisfiable $\iff G_{\varphi}$ contains clique of order k_{φ}

SAT $\leq_p CLIQUE$

To every CNF-formula φ assign G_{φ} , k_{φ} such that

 φ satisfiable if and only if G_{φ} contains clique of order k_{φ}

- Given $\varphi = C_1 \wedge \cdots \wedge C_k$:
 - Set $k_{\varphi} := k$
 - For each clause C_j and literal $L \in C_j$ add a vertex $v_{L,j}$
 - Add edge $\{u_{L,j}, v_{K,i}\}$ if $i \neq j$ and $L \land K$ is satisfiable (that is: if $L \neq \neg K$ and $\neg L \neq K$)

Example 8.10

$$(X \lor Y \lor \neg Z) \land (X \lor \neg Y) \land (\neg X \lor Z)$$

See blackboard.

SAT $\leq_p CLIQUE$

To every CNF-formula φ assign G_{φ} , k_{φ} such that

 φ satisfiable if and only if G_{φ} contains clique of order k_{φ}

- Given $\varphi = C_1 \wedge \cdots \wedge C_k$:
 - ► Set k_φ := k
 - For each clause C_j and literal $L \in C_j$ add a vertex $v_{L,j}$
 - Add edge $\{u_{L,j}, v_{K,i}\}$ if $i \neq j$ and $L \land K$ is satisfiable (that is: if $L \neq \neg K$ and $\neg L \neq K$)

Correctness:

 G_{φ} has clique of order *k* iff φ is satisfiable.

Complexity:

The reduction is clearly computable in polynomial time.

NP-Completeness of INDEPENDENT SET

INDEPENDENT SET

Input: An undirected graph *G* and a natural number *k*

Problem: Does *G* contain *k* vertices that share no edges (independent set)?

Theorem 8.11 INDEPENDENT SET *is* NP*-complete*.

NP-Completeness of INDEPENDENT SET

INDEPENDENT SET

Input: An undirected graph *G* and a natural number *k*

Problem: Does *G* contain *k* vertices that share no edges (independent set)?

Theorem 8.11 INDEPENDENT SET *is* NP*-complete.*

Proof.

Hardness by reduction CLIQUE \leq_p INDEPENDENT SET:

• Given G := (V, E) construct $\overline{G} := (V, \{\{u, v\} \mid \{u, v\} \notin E \text{ and } u \neq v\})$

NP-Completeness of INDEPENDENT SET

INDEPENDENT SET

Input: An undirected graph *G* and a natural number *k*

Problem: Does *G* contain *k* vertices that share no edges (independent set)?

Theorem 8.11 INDEPENDENT SET *is* NP*-complete.*

Proof.

Hardness by reduction CLIQUE \leq_p INDEPENDENT SET:

- Given G := (V, E) construct $\overline{G} := (V, \{\{u, v\} \mid \{u, v\} \notin E \text{ and } u \neq v\})$
- A set $X \subseteq V$ induces a clique in G iff X induces an ind. set in \overline{G} .
- Reduction: G has a clique of order k iff \overline{G} has an ind. set of order k.

3-Sat, Hamiltonian Path and SubsetSum

Towards More NP-Complete Problems

Starting with SAT, one can readily show more problems \mathcal{P} to be NP-complete, each time performing two steps:

- (1) Show that $\mathcal{P} \in NP$
- (2) Find a known NP-complete problem \mathcal{P}' and reduce $\mathcal{P}' \leq_p \mathcal{P}$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

 $\leq_{p} \text{Clique} \leq_{p} \text{Independent Set}$ Sat $\leq_{p} 3$ -Sat $\leq_{p} \text{Dir. Hamiltonian Path}$ $\leq_{p} \text{Subset Sum} \leq_{p} \text{Knapsack}$

NP-Completeness of 3-SAT

3-SAT: Satisfiability of formulae in CNF with \leq 3 literals per clause

Theorem 8.12 3-SAT is NP-complete.

Proof.

Hardness by reduction SAT \leq_p 3-SAT:

- Given: φ in CNF
- Construct φ' by replacing clauses $C_i = (L_1 \lor \cdots \lor L_k)$ with k > 3 by

 $C'_{i} := (L_{1} \vee Y_{1}) \land (\neg Y_{1} \vee L_{2} \vee Y_{2}) \land ... \land (\neg Y_{k-1} \vee L_{k})$

Here, the Y_i are fresh variables for each clause.

• Claim: φ is satisfiable iff φ' is satisfiable.

Example

Let $\varphi := (X_1 \lor X_2 \lor \neg X_3 \lor X_4) \land (\neg X_4 \lor \neg X_2 \lor X_5 \lor \neg X_1)$ Then $\varphi' := (X_1 \vee Y_1) \wedge$ $(\neg Y_1 \lor X_2 \lor Y_2) \land$ $(\neg Y_2 \lor \neg X_3 \lor Y_3) \land$ $(\neg Y_3 \lor X_4) \land$ $(\neg X_4 \lor Z_1) \land$ $(\neg Z_1 \lor \neg X_2 \lor Z_2) \land$ $(\neg Z_2 \lor X_5 \lor Z_3) \land$ $(\neg Z_3 \vee \neg X_1)$

Proving NP-Completeness of 3-SAT

" \Rightarrow " Given $\varphi := \bigwedge_{i=1}^{m} C_i$ with clauses C_i , show that if φ is satisfiable then φ' is satisfiable

For a satisfying assignment β for φ , define an assignment β' for φ' :

For each $C := (L_1 \vee \cdots \vee L_k)$, with k > 3, in φ there is

 $C' = (L_1 \vee Y_1) \land (\neg Y_1 \vee L_2 \vee Y_2) \land ... \land (\neg Y_{k-1} \vee L_k) \text{ in } \varphi'$

As β satisfies φ , there is $i \le k$ s.th. $\beta(L_i) = 1$ i.e. $\beta(X) = 1$ if $L_i = X$ $\beta(X) = 0$ if $L_i = -\chi X$

 $\beta'(Y_j) = 1$ for j < i

Set $\beta'(Y_j) = 0$ for $j \ge i$ $\beta'(X) = \beta(X)$ for all variables in φ

This is a satisfying asignment for φ'

Proving NP-Completeness of 3-SAT

" \Leftarrow " Show that if φ' is satisfiable then so is φ

Suppose β is a satisfying assignment for φ' – then β satisfies φ :

Let $C := (L_1 \vee \cdots \vee L_k)$ be a clause of φ

- (1) If $k \leq 3$ then *C* is a clause of φ
- (2) If k > 3 then

 $C' = (L_1 \vee Y_1) \land (\neg Y_1 \vee L_2 \vee Y_2) \land ... \land (\neg Y_{k-1} \vee L_k) \text{ in } \varphi'$

 β must satisfy at least one L_i , $1 \le i \le k$

Case (2) follows since, if $\beta(L_i) = 0$ for all $i \le k$ then C' can be reduced to

$$C' = (Y_1) \land (\neg Y_1 \lor Y_2) \land \dots \land (\neg Y_{k-1})$$

$$\equiv \quad Y_1 \ \land \ \left(Y_1 \rightarrow Y_2 \right) \ \land ... \ \land \ \left(Y_{k-2} \rightarrow Y_{k-1} \right) \ \land \neg Y_{k-1}$$

which is not satisfiable.