

FOUNDATIONS OF COMPLEXITY THEORY

Lecture 6: Nondeterministic Polynomial Time

David Carral

Knowledge-Based Systems

TU Dresden, November 12, 2020

The Class NP

Beyond PTime

- We have seen that the class PTime provides a useful model of "tractable" problems
- This includes 2-Sat and 2-Colourability
- But what about 3-Sat and 3-Colourability?
- No polynomial time algorithms for these problems are known
- On the other hand ...

Verifying Solutions

For many seemingly difficult problems, it is easy to verify the correctness of a "solution" if given.

p	q	r	$p \rightarrow q$
f	f	f	W
f	W	f	w
w	f	f	f
W	w	f	W
f	f	w	w
f	W	w	W
W	f	w	f
W	W	w	W

5		3				7		
			8					6
	7			6			4	
	4		1					
7		8		5		3		9
					9		6	
	5			1			7	
6					4			
		2				5		3

- Satisfiability a satisfying assignment
- k-Colourability a k-colouring
- Sudoku a completed puzzle

Verifiers

Definition 6.1: A Turing machine \mathcal{M} which halts on all inputs is called a verifier for a language \mathbf{L} if

$$\mathbf{L} = \{ w \mid \mathcal{M} \text{ accepts } (w \# c) \text{ for some string } c \}$$

The string c is called a certificate (or witness) for w.

Notation: # is a new separator symbol not used in words or certificates.

Definition 6.2: A Turing machine $\mathcal M$ is a polynomial-time verifier for $\mathbf L$ if $\mathcal M$ is polynomially time bounded and

L = { $w \mid \mathcal{M}$ accepts (w#c) for some string c with $|c| \le p(|w|)$ }

for some fixed polynomial p.

The Class NP

NP: "The class of dashed hopes and idle dreams."1

More formally:

the class of problems for which a possible solution can be verified in P

Definition 6.3: The class of languages that have polynomial-time verifiers is called NP.

In other words: NP is the class of all languages **L** such that:

- for every $w \in \mathbf{L}$, there is a certificate $c_w \in \Sigma^*$, where
- the length of c_w is polynomial in the length of w, and
- the language $\{(w#c_w) \mid w \in \mathbf{L}\}$ is in P

More Examples of Problems in NP

HAMILTONIAN PATH

Input: An undirected graph *G*

Problem: Is there a path in G that contains each vertex ex-

actly once?

k-CLIQUE

Input: An undirected graph *G*

Problem: Does G contain a fully connected graph (clique)

with k vertices?

More Examples of Problems in NP

SUBSET SUM

Input: A collection of positive integers

 $S = \{a_1, \ldots, a_k\}$ and a target integer t.

Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

TRAVELLING SALESPERSON

Input: A weighted graph G and a target number t.

Problem: Is there a simple path in G with weight $\geq t$?

Complements of NP are often not known to be in NP

No Hamiltonian Path

Input: An undirected graph G

Problem: Is there no path in *G* that contains each vertex

exactly once?

Whereas it is easy to certify that a graph has a Hamiltonian path, there does not seem to be a polynomial certificate that it has not.

But we may just not be clever enough to find one.

More Examples

COMPOSITE (NON-PRIME) NUMBER

Input: A positive integer n > 1

Problem: Are there integers u, v > 1 such that $u \cdot v = n$?

PRIME NUMBER

Input: A positive integer n > 1

Problem: Is n a prime number?

Surprisingly: both are in NP (see Wikipedia "Primality certificate")

In fact: Composite Number (and thus Prime Number) was shown to be in P

N is for Nondeterministic

Reprise: Nondeterministic Turing Machines

A nondeterministic Turing Machine (NTM) $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}})$ consists of

- a finite set Q of **states**,
- an **input alphabet** Σ not containing \Box ,
- a tape alphabet Γ such that $\Gamma \supseteq \Sigma \cup \{ \bot \}$.
- a transition function $\delta \colon O \times \Gamma \to 2^{Q \times \Gamma \times \{L,R\}}$
- an initial state $q_0 \in Q$,
- an accepting state $q_{\text{accept}} \in Q$.

Note

An NTM can halt in any state if there are no options to continue

→ no need for a special rejecting state

Reprise: Runs of NTMs

An (N)TM configuration can be written as a word uqv where $q \in Q$ is a state and $uv \in \Gamma^*$ is the current tape contents.

NTMs produce configuration trees that contain all possible runs:

Example: Multi-Tape NTM

Consider the NTM $\mathcal{M} = (Q, \{0, 1\}, \{0, 1, \bot\}, q_0, \Delta, q_{\text{accept}})$ where

$$\Delta = \left\{ \begin{array}{l} (q_0, \left(\begin{matrix} - \\ - \end{matrix}), q_0, \left(\begin{matrix} - \\ 0 \end{matrix}), \left(\begin{matrix} N \\ R \end{matrix} \right)) \\ (q_0, \left(\begin{matrix} - \\ - \end{matrix}), q_0, \left(\begin{matrix} - \\ 1 \end{matrix}), \left(\begin{matrix} N \\ R \end{matrix} \right)) \\ (q_0, \left(\begin{matrix} - \\ - \end{matrix}), q_{\mathrm{check}}, \left(\begin{matrix} - \\ - \end{matrix}), \left(\begin{matrix} N \\ N \end{matrix} \right)) \\ \cdots \\ \mathrm{transition\ rules\ for\ } \mathcal{M}_{\mathrm{check}} \end{array} \right\}$$

and where $\mathcal{M}_{\text{check}}$ is a deterministic TM deciding whether the number on the second tape is > 1 and divides the number on the first evenly.

Example: Multi-Tape NTM

Consider the NTM $\mathcal{M} = (Q, \{0, 1\}, \{0, 1, \bot\}, q_0, \Delta, q_{\text{accept}})$ where

$$\Delta = \left\{ \begin{array}{l} (q_0, \left(\begin{matrix} - \\ - \end{matrix}), q_0, \left(\begin{matrix} - \\ 0 \end{matrix}), \left(\begin{matrix} N \\ R \end{matrix}) \right) \\ (q_0, \left(\begin{matrix} - \\ - \end{matrix}), q_0, \left(\begin{matrix} - \\ 1 \end{matrix}), \left(\begin{matrix} N \\ R \end{matrix}) \right) \\ (q_0, \left(\begin{matrix} - \\ - \end{matrix}), q_{\mathrm{check}}, \left(\begin{matrix} - \\ - \end{matrix}), \left(\begin{matrix} N \\ N \end{matrix}\right) \right) \\ \dots \\ \text{transition rules for } \mathcal{M}_{\mathrm{check}} \end{array} \right\}$$

and where \mathcal{M}_{check} is a deterministic TM deciding whether number on second tape is > 1 and divides the number on the first.

The machine \mathcal{M} decides if the input is a composite number:

- guess a number on the second tape
- check if it divides the number on the first tape
- accept if a suitable number exists

Time and Space Bounded NTMs

Q: Which of the nondeterministic runs do time/space bounds apply to?

A: To all of them!

Definition 6.4: Let \mathcal{M} be a nondeterministic Turing machine and let $f: \mathbb{N} \to \mathbb{R}^+$ be a function.

- (1) \mathcal{M} is f-time bounded if it halts on every input $w \in \Sigma^*$ and on every computation path after $\leq f(|w|)$ steps.
- (2) \mathcal{M} is f-space bounded if it halts on every input $w \in \Sigma^*$ and on every computation path using $\leq f(|w|)$ cells on its tapes.

(Here we typically assume that Turing machines have a separate input tape that we do not count in measuring space complexity.)

Nondeterministic Complexity Classes

Definition 6.5: Let $f : \mathbb{N} \to \mathbb{R}^+$ be a function.

- (1) $\mathsf{NTime}(f(n))$ is the class of all languages L for which there is an O(f(n))-time bounded nondeterministic Turing machine deciding L .
- (2) $\operatorname{NSpace}(f(n))$ is the class of all languages **L** for which there is an O(f(n))-space bounded nondeterministic Turing machine deciding **L**.

All Complexity Classes Have a Nondeterministic Variant

$$\mathsf{NPTime} = \bigcup_{d \geq 1} \mathsf{NTime}(n^d) \qquad \qquad \mathsf{nondet. polynomial time}$$

$$\mathsf{NExp} = \mathsf{NExpTime} = \bigcup_{d \geq 1} \mathsf{NTime}(2^{n^d}) \qquad \qquad \mathsf{nondet. exponential time}$$

$$\mathsf{N2Exp} = \mathsf{N2ExpTime} = \bigcup_{d \geq 1} \mathsf{NTime}(2^{2^{n^d}}) \qquad \qquad \mathsf{nondet. double-exponential time}$$

$$\mathsf{NL} = \mathsf{NLogSpace} = \mathsf{NSpace}(\log n) \qquad \qquad \mathsf{nondet. logarithmic space}$$

$$\mathsf{NPSpace} = \bigcup_{d \geq 1} \mathsf{NSpace}(n^d) \qquad \qquad \mathsf{nondet. polynomial space}$$

$$\mathsf{NExpSpace} = \bigcup_{d \geq 1} \mathsf{NSpace}(2^{n^d}) \qquad \qquad \mathsf{nondet. exponential space}$$

Equivalence of NP and NPTime

Theorem 6.6: NP = NPTime.

Proof: We first show NP ⊇ NPTime:

- Suppose $L \in NPTime$.
- Then there is an NTM M such that

 $w \in \mathbf{L} \iff$ there is an accepting run of \mathcal{M} of length $O(n^d)$

for some d.

- This path can be used as a certificate for w.
- A DTM can check in polynomial time that a candidate certificate is a valid accepting run.

Therefore NP ⊃ NPTime.

Equivalence of NP and NPTime

Theorem 6.??: NP = NPTime.

Proof: We now show NP ⊆ NPTime:

- Assume **L** has a polynomial-time verifier \mathcal{M} with certificates of length at most p(n) for a polynomial p.
- Then we can construct an NTM \mathcal{M}^* deciding **L** as follows:
 - (1) \mathcal{M}^* guesses a string of length p(n)
 - (2) \mathcal{M}^* checks in deterministic polynomial time if this is a certificate.

Therefore NP ⊂ NPTime.

NP and coNP

Note: the definition of NP is not symmetric

- there does not seem to be any polynomial certificate for Sudoku unsolvability or propositional logic unsatisfiability . . .
- converse of an NP problem is coNP
- similar for NExpTime and N2ExpTime

Other complexity classes are symmetric:

- Deterministic classes (coP = P etc.)
- Space classes mentioned above (esp. coNL = NL)

Deterministic vs. Nondeterministic Time

Theorem 6.7: $P \subseteq NP$, and also $P \subseteq coNP$.

(Clear since DTMs are a special case of NTMs)

It is not known to date if the converse is true or not.

- Put differently: "If it is easy to check a candidate solution to a problem, is it also easy to find one?"
- Exaggerated: "Can creativity be automated?" (Wigderson, 2006)
- Unsolved since over 35 years of effort
- One of the major problems in computer science and math of our time
- 1,000,000 USD prize for solving it ("Millenium Problem")
 (might not be much money at the time it is actually solved)

Status of P vs. NP

Many people believe that $P \neq NP$

- Main argument: "If NP = P, someone ought to have found some polynomial algorithm for an NP-complete problem by now."
- "This is, in my opinion, a very weak argument. The space of algorithms is very large and we are only at the beginning of its exploration." (Moshe Vardi, 2002)
- Another source of intuition: Humans find it hard to solve NP-problems, and hard to imagine how to make them simpler – possibly "human chauvinistic bravado" (Zeilenberger, 2006)
- There are better arguments, but none more than an intuition

Status of P vs. NP

Many outcomes conceivable:

- P = NP could be shown with a non-constructive proof
- The question might be independent of standard mathematics (ZFC)
- Even if NP ≠ P, it is unclear if NP problems require exponential time in a strict sense many super-polynomial functions exist . . .
- The problem might never be solved

Status of P vs. NP

Current status in research:

- Results of a poll among 152 experts [Gasarch 2012]:
 - P ≠ NP: 126 (83%)
 - P = NP: 12 (9%)
 - Don't know or don't care: 7 (4%)
 - Independent: 5 (3%)
 - And 1 person (0.6%) answered: "I don't want it to be equal."
- Experts have guessed wrongly in other major questions before
- Over 100 "proofs" show P = NP to be true/false/both/neither: https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

A Simple Proof for P = NP

Clearly	L ∈ P	implies	$L \in NP$		
therefore	L ∉ NP	implies	L∉P		
hence	$L \in coNP$	implies	$\boldsymbol{L}\in coP$		
that is	coN	$coNP \subseteq coP$			
using coP = P	sing $coP = P$ $coNP \subseteq P$				
and hence $NP \subseteq P$					
so by $P \subseteq NP$					

q.e.d.?

Summary and Outlook

NP can be defined using polynomial-time verifiers or polynomial-time nondeterministic Turing machines

Many problems are easily seen to be in NP

NTM acceptance is not symmetric: coNP as complement class, which is assumed to be unequal to NP

What's next?

- NP hardness and completeness
- More examples of problems
- Space complexities