FOUNDATIONS OF COMPLEXITY THEORY

Lecture 6: Nondeterministic Polynomial Time

David Carral
Knowledge-Based Systems

TU Dresden, November 12, 2020

The Class NP

Beyond PTime

- We have seen that the class PTime provides a useful model of "tractable" problems
- This includes 2-Sat and 2-Colourability
- But what about 3-Sat and 3-Colourability?
- No polynomial time algorithms for these problems are known
- On the other hand ...

Verifying Solutions

For many seemingly difficult problems, it is easy to verify the correctness of a "solution" if given.

p	q	r	$p \rightarrow q$
f	f	f	w
f	w	f	w
w	f	f	f
w	w	f	w
f	f	w	w
f	w	w	w
w	f	w	f
w	w	w	w

5		3				7		
			8					6
	7			6			4	
	4		1					
7		8		5		3		9
					9		6	
	5			1			7	
6					4			
		2				5		3

- Satisfiability - a satisfying assignment
- k-Colourability - a k-colouring
- Sudoku - a completed puzzle

Verifiers

Definition 6.1: A Turing machine \mathcal{M} which halts on all inputs is called a verifier for a language \mathbf{L} if

$$
\mathbf{L}=\{w \mid \mathcal{M} \text { accepts }(w \# c) \text { for some string } c\}
$$

The string c is called a certificate (or witness) for w.

Notation: \# is a new separator symbol not used in words or certificates.
Definition 6.2: A Turing machine \mathcal{M} is a polynomial-time verifier for \mathbf{L} if \mathcal{M} is polynomially time bounded and

$$
\mathbf{L}=\{w \mid \mathcal{M} \text { accepts }(w \# c) \text { for some string } c \text { with }|c| \leq p(|w|)\}
$$

for some fixed polynomial p.

The Class NP

NP: "The class of dashed hopes and idle dreams." ${ }^{1}$
More formally:
the class of problems for which a possible solution can be verified in P

Definition 6.3: The class of languages that have polynomial-time verifiers is called NP.

In other words: NP is the class of all languages \mathbf{L} such that:

- for every $w \in \mathbf{L}$, there is a certificate $c_{w} \in \Sigma^{*}$, where
- the length of c_{w} is polynomial in the length of w, and
- the language $\left\{\left(w \# c_{w}\right) \mid w \in \mathbf{L}\right\}$ is in P

[^0]
More Examples of Problems in NP

```
Hamltonian Path
    Input: An undirected graph G
Problem: Is there a path in G that contains each vertex ex-
    actly once?
```

```
k-Clique
    Input: An undirected graph G
Problem: Does G contain a fully connected graph (clique)
        with }k\mathrm{ vertices?
```


More Examples of Problems in NP

Subset Sum

Input: A collection of positive integers

$$
S=\left\{a_{1}, \ldots, a_{k}\right\} \text { and a target integer } t .
$$

Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_{i} \in T} a_{i}=t$?

Travelling Salesperson

Input: A weighted graph G and a target number t.
Problem: Is there a simple path in G with weight $\geq t$?

Complements of NP are often not known to be in NP

> No Hamlitonian Path Input: An undirected graph G Problem: $\begin{aligned} & \text { Is there no path in } G \text { that contains each vertex } \\ & \\ & \text { exactly once? }\end{aligned}$.

Whereas it is easy to certify that a graph has a Hamiltonian path, there does not seem to be a polynomial certificate that it has not.

But we may just not be clever enough to find one.

More Examples

```
Composite (non-prime) Number
    Input: A positive integer n>1
Problem: Are there integers }u,v>1\mathrm{ such that }u\cdotv=n\mathrm{ ?
```


Prime Number

Input: A positive integer $n>1$
Problem: Is n a prime number?

Surprisingly: both are in NP (see Wikipedia "Primality certificate")
In fact: Composite Number (and thus Prime Number) was shown to be in P

N is for Nondeterministic

Reprise: Nondeterministic Turing Machines

A nondeterministic Turing Machine (NTM) $\mathcal{M}=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}\right)$ consists of

- a finite set Q of states,
- an input alphabet Σ not containing $\stackrel{\text {, }}{ }$
- a tape alphabet Γ such that $\Gamma \supseteq \Sigma \cup\{\cup\}$.
- a transition function $\delta: Q \times \Gamma \rightarrow 2^{Q \times \Gamma \times\{L, R\}}$
- an initial state $q_{0} \in Q$,
- an accepting state $q_{\text {accept }} \in Q$.

Note

An NTM can halt in any state if there are no options to continue \leadsto no need for a special rejecting state

Reprise: Runs of NTMs

An (N)TM configuration can be written as a word $u q v$ where $q \in Q$ is a state and $u v \in \Gamma^{*}$ is the current tape contents.

NTMs produce configuration trees that contain all possible runs:
accept:
reject:
reject (not halting):

Example: Multi-Tape NTM

Consider the NTM $\left.\mathcal{M}=(Q,\{0,1\},\{0,1\lrcorner\},, q_{0}, \Delta, q_{\text {accept }}\right)$ where

$$
\Delta=\left\{\begin{array}{l}
\left(q_{0},\binom{-}{-}, q_{0},\binom{-}{0},\binom{N}{R}\right) \\
\left(q_{0},\binom{-}{-}, q_{0},\binom{-}{1},\binom{N}{R}\right) \\
\left(q_{0},\binom{-}{-}, q_{\text {check }},\binom{-}{-},\binom{N}{N}\right) \\
\ldots \\
\text { transition rules for } \mathcal{M}_{\text {check }}
\end{array}\right\}
$$

and where $\mathcal{M}_{\text {check }}$ is a deterministic TM deciding whether the number on the second tape is > 1 and divides the number on the first evenly.

Example: Multi-Tape NTM

Consider the NTM $\left.\mathcal{M}=(Q,\{0,1\},\{0,1\lrcorner\},, q_{0}, \Delta, q_{\text {accept }}\right)$ where

$$
\Delta=\left\{\begin{array}{l}
\left(q_{0},\binom{-}{-}, q_{0},\binom{-}{0},\binom{N}{R}\right) \\
\left(q_{0},\binom{-}{-}, q_{0},\binom{-}{1},\binom{N}{R}\right) \\
\left(q_{0},\binom{-}{-}, q_{\text {check }},\binom{-}{-},\binom{N}{N}\right) \\
\ldots \\
\text { transition rules for } \mathcal{M}_{\text {check }}
\end{array}\right\}
$$

and where $\mathcal{M}_{\text {check }}$ is a deterministic TM deciding whether number on second tape is >1 and divides the number on the first.

The machine \mathcal{M} decides if the input is a composite number:

- guess a number on the second tape
- check if it divides the number on the first tape
- accept if a suitable number exists

Time and Space Bounded NTMs

Q: Which of the nondeterministic runs do time/space bounds apply to?
A: To all of them!

Definition 6.4: Let \mathcal{M} be a nondeterministic Turing machine and let $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$ be a function.
(1) \mathcal{M} is f-time bounded if it halts on every input $w \in \Sigma^{*}$ and on every computation path after $\leq f(|w|)$ steps.
(2) \mathcal{M} is f-space bounded if it halts on every input $w \in \Sigma^{*}$ and on every computation path using $\leq f(|w|)$ cells on its tapes.
(Here we typically assume that Turing machines have a separate input tape that we do not count in measuring space complexity.)

Nondeterministic Complexity Classes

Definition 6.5: Let $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function.
(1) $\operatorname{NTime}(f(n))$ is the class of all languages \mathbf{L} for which there is an $O(f(n))$-time bounded nondeterministic Turing machine deciding \mathbf{L}.
(2) NSpace $(f(n))$ is the class of all languages \mathbf{L} for which there is an $O(f(n))$-space bounded nondeterministic Turing machine deciding \mathbf{L}.

All Complexity Classes Have a Nondeterministic Variant

$$
\begin{aligned}
\text { NPTime }=\bigcup_{d \geq 1} \operatorname{NTime}\left(n^{d}\right) & \text { nondet. polynomial time } \\
\text { NExp }=\operatorname{NExpTime}=\bigcup_{d \geq 1} \operatorname{NTime}\left(2^{n^{d}}\right) & \text { nondet. exponential time } \\
\text { N2Exp }=\operatorname{N2ExpTime}=\bigcup_{d \geq 1} \operatorname{NTime}\left(2^{2^{n^{d}}}\right) & \text { nond. double-exponential time } \\
\mathrm{NL}=\operatorname{NLogSpace}=\operatorname{NSpace}(\log n) & \text { nondet. logarithmic space } \\
\text { NPSpace }=\bigcup_{d \geq 1} \operatorname{NSpace}\left(n^{d}\right) & \text { nondet. polynomial space } \\
\text { NExpSpace }=\bigcup_{d \geq 1} \operatorname{NSpace}\left(2^{n^{d}}\right) & \text { nondet. exponential space }
\end{aligned}
$$

Equivalence of NP and NPTime

Theorem 6.6: NP = NPTime.

Proof: We first show NP \supseteq NPTime:

- Suppose L \in NPTime.
- Then there is an NTM \mathcal{M} such that
$w \in \mathbf{L} \Longleftrightarrow$ there is an accepting run of \mathcal{M} of length $O\left(n^{d}\right)$
for some d.
- This path can be used as a certificate for w.
- A DTM can check in polynomial time that a candidate certificate is a valid accepting run.
Therefore NP \supseteq NPTime.

Equivalence of NP and NPTime

Theorem 6.??: NP = NPTime.
Proof: We now show NP \subseteq NPTime:

- Assume \mathbf{L} has a polynomial-time verifier \mathcal{M} with certificates of length at most $p(n)$ for a polynomial p.
- Then we can construct an NTM \mathcal{M}^{*} deciding \mathbf{L} as follows:
(1) \mathcal{M}^{*} guesses a string of length $p(n)$
(2) \mathcal{M}^{*} checks in deterministic polynomial time if this is a certificate.

Therefore NP \subseteq NPTime.

NP and coNP

Note: the definition of NP is not symmetric

- there does not seem to be any polynomial certificate for Sudoku unsolvability or propositional logic unsatisfiability .
- converse of an NP problem is coNP
- similar for NExpTime and N2ExpTime

Other complexity classes are symmetric:

- Deterministic classes (coP = P etc.)
- Space classes mentioned above (esp. coNL = NL)

Deterministic vs. Nondeterminsitic Time

Theorem 6.7: $\mathrm{P} \subseteq \mathrm{NP}$, and also $\mathrm{P} \subseteq$ coNP.
(Clear since DTMs are a special case of NTMs)
It is not known to date if the converse is true or not.

- Put differently: "If it is easy to check a candidate solution to a problem, is it also easy to find one?"
- Exaggerated: "Can creativity be automated?" (Wigderson, 2006)
- Unsolved since over 35 years of effort
- One of the major problems in computer science and math of our time
- $1,000,000$ USD prize for solving it ("Millenium Problem") (might not be much money at the time it is actually solved)

Status of P vs. NP

Many people believe that $P \neq N P$

- Main argument: "If NP = P, someone ought to have found some polynomial algorithm for an NP-complete problem by now."
- "This is, in my opinion, a very weak argument. The space of algorithms is very large and we are only at the beginning of its exploration." (Moshe Vardi, 2002)
- Another source of intuition: Humans find it hard to solve NP-problems, and hard to imagine how to make them simpler - possibly "human chauvinistic bravado" (Zeilenberger, 2006)
- There are better arguments, but none more than an intuition

Status of P vs. NP

Many outcomes conceivable:

- $\mathrm{P}=\mathrm{NP}$ could be shown with a non-constructive proof
- The question might be independent of standard mathematics (ZFC)
- Even if $N P \neq P$, it is unclear if NP problems require exponential time in a strict sense - many super-polynomial functions exist ...
- The problem might never be solved

Status of P vs. NP

Current status in research:

- Results of a poll among 152 experts [Gasarch 2012]:
- P = NP: 126 (83\%)
- P = NP: 12 (9\%)
- Don't know or don't care: 7 (4\%)
- Independent: 5 (3\%)
- And 1 person (0.6\%) answered: "I don't want it to be equal."
- Experts have guessed wrongly in other major questions before
- Over 100 "proofs" show $\mathrm{P}=\mathrm{NP}$ to be true/false/both/neither: https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

A Simple Proof for $\mathrm{P}=\mathrm{NP}$

$$
\begin{array}{rrl}
\text { Clearly } & \mathbf{L} \in P & \text { implies } \\
\text { therefore } & \mathbf{L} \in N P \\
\text { hence } & \mathbf{L} \in \operatorname{NP} \text { coNP implies } & \mathbf{L} \notin P \\
\text { that is } & \operatorname{coNP} \subseteq \text { coP } & \mathbf{L} \in \operatorname{coP} \\
\text { using coP }=P & \operatorname{coNP} \subseteq P & \\
\text { and hence } & N P \subseteq P \\
\text { so by } P \subseteq N P & N P=P
\end{array}
$$

q.e.d.?

Summary and Outlook

NP can be defined using polynomial-time verifiers or polynomial-time nondeterministic Turing machines

Many problems are easily seen to be in NP
NTM acceptance is not symmetric: coNP as complement class, which is assumed to be unequal to NP

What's next?

- NP hardness and completeness
- More examples of problems
- Space complexities

[^0]: ${ }^{1}$ https://complexityzoo.uwaterloo.ca/Complexity_Zoo:N\#np

