Finite and Algorithmic Model Theory

Lecture 4 (Dresden 02.11.22, Long version)

Lecturer: Bartosz "Bart" Bednarczyk

TECHNISCHE UNIVERSITÄT DRESDEN & UNIWERSYTET WROCŁAWSKI

Goal: Provide a game-theoretic framework for proving FO-inexpressivity (also in the finite!).

1. Quantifier rank of FO sentences.

- 1. Quantifier rank of FO sentences.
- 2. Quantifier rank ≠ #variable.

- 1. Quantifier rank of FO sentences.
- **2.** Quantifier rank ≠ #variable.
- 3. Definition of Ehrenfeucht-Fraissé games

- 1. Quantifier rank of FO sentences.
- **2.** Quantifier rank ≈ #variable.
- 3. Definition of Ehrenfeucht-Fraïssé games (proof omitted)

- 1. Quantifier rank of FO sentences.
- 2. Quantifier rank ≠ #variable.
- 3. Definition of Ehrenfeucht-Fraïssé games (proof omitted)
- **4.** Showcase 1: Games on sets

- 1. Quantifier rank of FO sentences.
- 2. Quantifier rank ≉ #variable.
- 3. Definition of Ehrenfeucht-Fraïssé games (proof omitted)
- **4.** Showcase 1: Games on sets (FO[\emptyset]-nondefinability of "even" strikes back)

- 1. Quantifier rank of FO sentences.
- 2. Quantifier rank ≉ #variable.
- 3. Definition of Ehrenfeucht-Fraïssé games (proof omitted)
- **4.** Showcase 1: Games on sets (FO[\emptyset]-nondefinability of "even" strikes back)
- **5.** Showcase 2: Games on linear orders

- 1. Quantifier rank of FO sentences.
- 2. Quantifier rank ≉ #variable.
- 3. Definition of Ehrenfeucht-Fraïssé games (proof omitted)
- **4.** Showcase 1: Games on sets (FO[\emptyset]-nondefinability of "even" strikes back)
- **5.** Showcase 2: Games on linear orders ("even" is not $FO[\{<\}]$ -definable)

- 1. Quantifier rank of FO sentences.
- 2. Quantifier rank ≉ #variable.
- 3. Definition of Ehrenfeucht-Fraïssé games (proof omitted)
- **4.** Showcase 1: Games on sets (FO[\emptyset]-nondefinability of "even" strikes back)
- **5.** Showcase 2: Games on linear orders ("even" is not $FO[\{<\}]$ -definable)
- **6.** Logical reductions,

- 1. Quantifier rank of FO sentences.
- 2. Quantifier rank ≉ #variable.
- 3. Definition of Ehrenfeucht-Fraïssé games (proof omitted)
- **4.** Showcase 1: Games on sets (FO[\emptyset]-nondefinability of "even" strikes back)
- **5.** Showcase 2: Games on linear orders ("even" is not $FO[\{<\}]$ -definable)
- **6.** Logical reductions, e.g. "even" $\notin FO[\{<\}] \Longrightarrow$ "connectivity" $\notin FO[\{E\}]$

Goal: Provide a game-theoretic framework for proving FO-inexpressivity (also in the finite!).

- 1. Quantifier rank of FO sentences.
- 2. Quantifier rank ≠ #variable.
- 3. Definition of Ehrenfeucht-Fraïssé games (proof omitted)
- **4.** Showcase 1: Games on sets (FO[\emptyset]-nondefinability of "even" strikes back)
- **5.** Showcase 2: Games on linear orders ("even" is not $FO[\{<\}]$ -definable)
- **6.** Logical reductions, e.g. "even" \notin FO[$\{<\}$] \Longrightarrow "connectivity" \notin FO[$\{E\}$]

Lecture based on chapters 3.1, 3.2, 3.6 of [Libkin's FMT Book]

Goal: Provide a game-theoretic framework for proving FO-inexpressivity (also in the finite!).

- 1. Quantifier rank of FO sentences.
- 2. Quantifier rank ≠ #variable.
- 3. Definition of Ehrenfeucht-Fraïssé games (proof omitted)
- **4.** Showcase 1: Games on sets (FO[\emptyset]-nondefinability of "even" strikes back)
- **5.** Showcase 2: Games on linear orders ("even" is not $FO[\{<\}]$ -definable)
- **6.** Logical reductions, e.g. "even" $\notin FO[\{<\}] \Longrightarrow$ "connectivity" $\notin FO[\{E\}]$

Lecture based on chapters 3.1, 3.2, 3.6 of [Libkin's FMT Book]

Feel free to ask questions and interrupt me!

Don't be shy! If needed send me an email (bartosz.bednarczyk@cs.uni.wroc.pl) or approach me after the lecture!

Reminder: this is an advanced lecture. Target: people that had fun learning logic during BSc studies!

The quantifier rank $qr(\varphi)$ of φ is its depth of quantifier nesting.

• $qr(\varphi) := 0$ for atomic φ

•
$$qr(\varphi) := 0$$
 for atomic φ

$$ullet \operatorname{\mathsf{qr}}(
ag{\varphi}) := \operatorname{\mathsf{qr}}(\varphi)$$

- $qr(\varphi) := 0$ for atomic φ $qr(\neg \varphi) := qr(\varphi)$
- $qr(\varphi \oplus \varphi') := \max(qr(\varphi), qr(\varphi'))$ for $\emptyset \in \{\land, \lor, \rightarrow, \leftrightarrow\}$

- $qr(\varphi) := 0$ for atomic φ $qr(\neg \varphi) := qr(\varphi)$
- $qr(\varphi \oplus \varphi') := \max(qr(\varphi), qr(\varphi'))$ for $\varphi \in \{\land, \lor, \rightarrow, \leftrightarrow\}$
- $\operatorname{qr}(\exists x \varphi) = \operatorname{qr}(\forall x \varphi) := \operatorname{qr}(\varphi) + 1$

- $qr(\exists x \varphi) = qr(\forall x \varphi) := qr(\varphi) + 1$

The quantifier rank $qr(\varphi)$ of φ is its depth of quantifier nesting.

- $\operatorname{qr}(\varphi) := 0$ for atomic φ $\operatorname{qr}(\neg \varphi) := \operatorname{qr}(\varphi)$ $\operatorname{qr}(\varphi \oplus \varphi') := \max(\operatorname{qr}(\varphi), \operatorname{qr}(\varphi'))$ for $\oplus \in \{\land, \lor, \rightarrow, \leftrightarrow\}$
- $qr(\exists x \varphi) = qr(\forall x \varphi) := qr(\varphi) + 1$

The quantifier rank $qr(\varphi)$ of φ is its depth of quantifier nesting.

- $qr(\varphi) := 0$ for atomic φ $qr(\neg \varphi) := qr(\varphi)$
- $qr(\exists x \varphi) = qr(\forall x \varphi) := qr(\varphi) + 1$

$$qr(\exists x \forall y \forall z \ R(x,y,z)) = 3$$

The quantifier rank $qr(\varphi)$ of φ is its depth of quantifier nesting.

$$ullet$$
 qr $(arphi):=0$ for atomic $arphi$

$$\bullet \operatorname{qr}(\neg \varphi) := \operatorname{qr}(\varphi)$$

•
$$\operatorname{qr}(\varphi \oplus \varphi') := \max(\operatorname{qr}(\varphi), \operatorname{qr}(\varphi')) \text{ for } \oplus \in \{\land, \lor, \rightarrow, \leftrightarrow\}$$

$$\left\{ \begin{array}{c} \operatorname{qr}(\exists x \left[\operatorname{A}(x) \land (\forall y \operatorname{R}(y)) \lor (\exists z \top) \right]) = 2 \end{array} \right.$$

•
$$qr(\exists x \varphi) = qr(\forall x \varphi) := qr(\varphi) + 1$$

The quantifier rank $qr(\varphi)$ of φ is its depth of quantifier nesting.

- $ullet \operatorname{\sf qr}(arphi) := 0 \ \operatorname{\sf for \ atomic} \ arphi \qquad ullet \operatorname{\sf qr}(
 eg arphi) := \operatorname{\sf qr}(arphi) \ ullet$
- $\operatorname{qr}(\varphi \oplus \varphi') := \max(\operatorname{qr}(\varphi), \operatorname{qr}(\varphi')) \text{ for } \oplus \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ $= \operatorname{qr}(\exists x \left[\operatorname{A}(x) \land (\forall y \operatorname{R}(y)) \lor (\exists z \top) \right]) = 2$
- $qr(\exists x \varphi) = qr(\forall x \varphi) := qr(\varphi) + 1$

$$\operatorname{qr}(\exists x \forall y \forall z \ \mathrm{R}(x,y,z)) = 3$$

$$\operatorname{qr}(\exists x \left[\mathrm{A}(x) \wedge (\forall y \mathrm{R}(y)) \vee (\exists z \top) \right]) = 2$$
 for φ in PNF
$$\operatorname{qr}(\varphi) = \# \operatorname{quantifiers}.$$

The quantifier rank $qr(\varphi)$ of φ is its depth of quantifier nesting.

- $ullet \operatorname{\sf qr}(arphi) := 0 \ \operatorname{\sf for \ atomic} \ arphi \qquad ullet \operatorname{\sf qr}(
 eg arphi) := \operatorname{\sf qr}(arphi)$
- $\bullet \ \operatorname{\sf qr}(\varphi \oplus \varphi') := \max(\operatorname{\sf qr}(\varphi),\operatorname{\sf qr}(\varphi')) \ \operatorname{\sf for} \ \oplus \in \{\land,\lor,\to,\leftrightarrow\} \qquad \Big| \ \operatorname{\sf qr}(\exists x \left[\operatorname{A}(x)\land (\forall y\operatorname{R}(y))\lor (\exists z\top)\right]) = 2$
- $\operatorname{qr}(\exists x \varphi) = \operatorname{qr}(\forall x \varphi) := \operatorname{qr}(\varphi) + 1$

Examples: $qr(\exists x \forall y \forall z \ R(x, y, z)) = 3$

for
$$arphi$$
 in PNF $\operatorname{\sf qr}(arphi) = \#\operatorname{\sf quantifiers}.$

The quantifier rank $qr(\varphi)$ of φ is its depth of quantifier nesting.

- $ullet \operatorname{\sf qr}(arphi) := 0 \ \operatorname{\sf for \ atomic} \ arphi \qquad ullet \operatorname{\sf qr}(
 eg arphi) := \operatorname{\sf qr}(arphi) \ lacksquare$
- $\operatorname{qr}(\varphi \oplus \varphi') := \max(\operatorname{qr}(\varphi), \operatorname{qr}(\varphi')) \text{ for } \oplus \in \{\land, \lor, \rightarrow, \leftrightarrow\} \qquad \Big(\operatorname{qr}(\exists x \left[\operatorname{A}(x) \land (\forall y \operatorname{R}(y)) \lor (\exists z \top) \right]) = 2 \Big) \Big)$
- $\operatorname{gr}(\exists x \varphi) = \operatorname{gr}(\forall x \varphi) := \operatorname{gr}(\varphi) + 1$

Examples:

$$\operatorname{\mathsf{qr}}(\exists x \forall y \forall z \ \mathrm{R}(x,y,z)) = 3$$

 $\operatorname{\mathsf{qr}}(\exists x \left[\mathrm{A}(x) \wedge (\forall y \mathrm{R}(y)) \vee (\exists z \top) \right]) = 2$

for φ in PNF $qr(\varphi) = \#quantifiers$.

$$\varphi_0(x,y) := \mathrm{E}(x,y),$$

The quantifier rank $qr(\varphi)$ of φ is its depth of quantifier nesting.

- $qr(\varphi) := 0$ for atomic φ $qr(\neg \varphi) := qr(\varphi)$
- $\operatorname{qr}(\varphi \oplus \varphi') := \max(\operatorname{qr}(\varphi), \operatorname{qr}(\varphi')) \text{ for } \oplus \in \{\land, \lor, \rightarrow, \leftrightarrow\} \qquad \Big(\operatorname{qr}(\exists x \left[\operatorname{A}(x) \land (\forall y \operatorname{R}(y)) \lor (\exists z \top) \right]) = 2 \Big) \Big)$
- $\operatorname{gr}(\exists x \varphi) = \operatorname{gr}(\forall x \varphi) := \operatorname{gr}(\varphi) + 1$

Examples:

$$\operatorname{\mathsf{qr}}(\exists x \forall y \forall z \ \mathrm{R}(x,y,z)) = 3$$

 $\operatorname{\mathsf{qr}}(\exists x \left[\mathrm{A}(x) \wedge (\forall y \mathrm{R}(y)) \vee (\exists z \top) \right]) = 2$

for φ in PNF $qr(\varphi) = \#quantifiers$.

$$\varphi_0(x,y) := \mathbb{E}(x,y), \quad \varphi_{n+1}(x,y) := \exists z \ (\varphi_n(x,z) \land \varphi_n(z,y))$$

The quantifier rank $qr(\varphi)$ of φ is its depth of quantifier nesting.

- $qr(\varphi) := 0$ for atomic φ $qr(\neg \varphi) := qr(\varphi)$
- $\operatorname{qr}(\varphi \oplus \varphi') := \max(\operatorname{qr}(\varphi), \operatorname{qr}(\varphi')) \text{ for } \oplus \in \{\land, \lor, \rightarrow, \leftrightarrow\} \qquad \left[\operatorname{qr}(\exists x \left[\operatorname{A}(x) \land (\forall y \operatorname{R}(y)) \lor (\exists z \top) \right] \right) = 2$
- $\operatorname{gr}(\exists x \varphi) = \operatorname{gr}(\forall x \varphi) := \operatorname{gr}(\varphi) + 1$

Examples:

$$\operatorname{qr}(\exists x \forall y \forall z \ \mathrm{R}(x, y, z)) = 3$$

$$\operatorname{qr}(\exists x [\Lambda(x) \land (\forall y \mathrm{R}(y)) \lor (\exists z \top)]) = 3$$

for φ in PNF $\operatorname{qr}(\varphi)=\#\operatorname{quantifiers}.$

$$\varphi_0(x,y) := \mathbb{E}(x,y), \quad \varphi_{n+1}(x,y) := \exists z \ (\varphi_n(x,z) \land \varphi_n(z,y)) \quad \leadsto \ \operatorname{qr}(\varphi_n) = n \ \operatorname{but} \ \varphi_n \ \operatorname{has} \ 2^n - 1 \ \operatorname{quants}.$$

The quantifier rank $qr(\varphi)$ of φ is its depth of quantifier nesting.

- $ullet \operatorname{\sf qr}(arphi) := 0 \ \operatorname{\sf for \ atomic} \ arphi \qquad ullet \operatorname{\sf qr}(
 eg arphi) := \operatorname{\sf qr}(arphi)$
- $\operatorname{qr}(\varphi \oplus \varphi') := \max(\operatorname{qr}(\varphi), \operatorname{qr}(\varphi')) \text{ for } \oplus \in \{\land, \lor, \to, \leftrightarrow\}$ $\left(\operatorname{qr}(\exists x \left[A(x) \land (\forall y R(y)) \lor (\exists z \top) \right] \right) = 2$
- $\operatorname{gr}(\exists x \varphi) = \operatorname{gr}(\forall x \varphi) := \operatorname{gr}(\varphi) + 1$

Examples:

$$\operatorname{\mathsf{qr}}(\exists x \forall y \forall z \ \mathrm{R}(x,y,z)) = 3$$

 $\operatorname{\mathsf{qr}}(\exists x \left[\mathrm{A}(x) \wedge (\forall y \mathrm{R}(y)) \vee (\exists z \top) \right]) = 2$

for φ in PNF $qr(\varphi) = \#quantifiers$.

$$\varphi_0(x,y) := \mathbb{E}(x,y), \quad \varphi_{n+1}(x,y) := \exists z \ (\varphi_n(x,z) \land \varphi_n(z,y)) \quad \leadsto \ \operatorname{qr}(\varphi_n) = n \ \operatorname{but} \ \varphi_n \ \operatorname{has} \ 2^n - 1 \ \operatorname{quants}.$$

The quantifier rank $qr(\varphi)$ of φ is its depth of quantifier nesting.

- $ullet \operatorname{\sf qr}(arphi) := 0 \ \operatorname{\sf for \ atomic} \ arphi \qquad ullet \operatorname{\sf qr}(
 eg arphi) := \operatorname{\sf qr}(arphi) \ lacksquare$
- $\operatorname{qr}(\varphi \oplus \varphi') := \max(\operatorname{qr}(\varphi), \operatorname{qr}(\varphi')) \text{ for } \oplus \in \{\land, \lor, \to, \leftrightarrow\}$ $\left(\operatorname{qr}(\exists x \left[A(x) \land (\forall y R(y)) \lor (\exists z \top) \right] \right) = 2$
- $\operatorname{gr}(\exists x \varphi) = \operatorname{gr}(\forall x \varphi) := \operatorname{gr}(\varphi) + 1$

Examples: $qr(\exists x \forall y \forall z \ R(x, y, z)) = 3$

$$\operatorname{\mathsf{qr}}(\exists x \left[\mathrm{A}(x) \wedge (\forall y \mathrm{R}(y)) \vee (\exists z \top) \right]) = 2$$

for φ in PNF $qr(\varphi) = \#quantifiers$.

Quantifier rank can be exponentially smaller than the total number of quantifiers.

$$\varphi_0(x,y) := \mathbb{E}(x,y), \quad \varphi_{n+1}(x,y) := \exists z \ (\varphi_n(x,z) \land \varphi_n(z,y)) \quad \leadsto \ \operatorname{qr}(\varphi_n) = n \ \operatorname{but} \ \varphi_n \ \operatorname{has} \ 2^n - 1 \ \operatorname{quants}.$$

Formulae with bounded quantifier rank

The quantifier rank $qr(\varphi)$ of φ is its depth of quantifier nesting.

- $ullet \operatorname{\sf qr}(arphi) := 0 \ \operatorname{\sf for \ atomic} \ arphi \qquad \qquad ullet \operatorname{\sf qr}(
 eg arphi) := \operatorname{\sf qr}(arphi)$
- $\operatorname{qr}(\varphi \oplus \varphi') := \max(\operatorname{qr}(\varphi), \operatorname{qr}(\varphi')) \text{ for } \oplus \in \{\land, \lor, \to, \leftrightarrow\}$ $\left(\operatorname{qr}(\exists x \left[A(x) \land (\forall y R(y)) \lor (\exists z \top) \right] \right) = 2$
- $\operatorname{gr}(\exists x \varphi) = \operatorname{gr}(\forall x \varphi) := \operatorname{gr}(\varphi) + 1$

Examples:

$$qr(\exists x \forall y \forall z \ R(x, y, z)) = 3$$

for φ in PNF $qr(\varphi) = \#quantifiers$.

Quantifier rank can be exponentially smaller than the total number of quantifiers.

$$\varphi_0(x,y) := \mathbb{E}(x,y), \quad \varphi_{n+1}(x,y) := \exists z \ (\varphi_n(x,z) \land \varphi_n(z,y)) \quad \leadsto \ \operatorname{qr}(\varphi_n) = n \ \operatorname{but} \ \varphi_n \ \operatorname{has} \ 2^n - 1 \ \operatorname{quants}.$$

Formulae with bounded quantifier rank

Let τ be a *finite* signature,

The quantifier rank $qr(\varphi)$ of φ is its depth of quantifier nesting.

- $ullet \operatorname{\sf qr}(arphi) := 0 \ \operatorname{\sf for \ atomic} \ arphi \qquad ullet \operatorname{\sf qr}(
 eg arphi) := \operatorname{\sf qr}(arphi)$
- $\operatorname{qr}(\varphi \oplus \varphi') := \max(\operatorname{qr}(\varphi), \operatorname{qr}(\varphi')) \text{ for } \oplus \in \{\land, \lor, \to, \leftrightarrow\}$ $\left(\operatorname{qr}(\exists x \left[A(x) \land (\forall y R(y)) \lor (\exists z \top) \right] \right) = 2$
- $\operatorname{gr}(\exists x \varphi) = \operatorname{gr}(\forall x \varphi) := \operatorname{gr}(\varphi) + 1$

Examples:

$$\operatorname{qr}(\exists x \forall y \forall z \ \mathrm{R}(x, y, z)) = 3$$
$$\operatorname{qr}(\exists x \left[\mathrm{A}(x) \wedge (\forall y \mathrm{R}(y)) \vee (\exists z \top) \right]) = 2$$

for φ in PNF $qr(\varphi) = \#quantifiers$.

Quantifier rank can be exponentially smaller than the total number of quantifiers.

$$\varphi_0(x,y) := \mathbb{E}(x,y), \quad \varphi_{n+1}(x,y) := \exists z \ (\varphi_n(x,z) \land \varphi_n(z,y)) \quad \leadsto \ \operatorname{qr}(\varphi_n) = n \ \operatorname{but} \ \varphi_n \ \operatorname{has} \ 2^n - 1 \ \operatorname{quants}.$$

Formulae with bounded quantifier rank

Let τ be a *finite* signature, and let $m \in \mathbb{N}$.

The quantifier rank $qr(\varphi)$ of φ is its depth of quantifier nesting.

- $ullet \operatorname{\sf qr}(arphi) := 0 \ \operatorname{\sf for \ atomic} \ arphi \qquad ullet \operatorname{\sf qr}(
 eg arphi) := \operatorname{\sf qr}(arphi)$
- $\operatorname{qr}(\varphi \oplus \varphi') := \max(\operatorname{qr}(\varphi), \operatorname{qr}(\varphi')) \text{ for } \oplus \in \{\land, \lor, \to, \leftrightarrow\}$ $\left(\operatorname{qr}(\exists x \left[A(x) \land (\forall y R(y)) \lor (\exists z \top) \right] \right) = 2$
- $\operatorname{gr}(\exists x \varphi) = \operatorname{gr}(\forall x \varphi) := \operatorname{gr}(\varphi) + 1$

Examples:

$$\operatorname{qr}(\exists x \forall y \forall z \ \mathrm{R}(x, y, z)) = 3$$

$$\operatorname{qr}(\exists x [\Delta(x) \land (\forall y \mathrm{R}(y)) \lor (\exists z \top)]) = 3$$

for φ in PNF $qr(\varphi) = \#quantifiers$.

Quantifier rank can be exponentially smaller than the total number of quantifiers.

$$\varphi_0(x,y) := \mathbb{E}(x,y), \quad \varphi_{n+1}(x,y) := \exists z \ (\varphi_n(x,z) \land \varphi_n(z,y)) \quad \leadsto \ \operatorname{qr}(\varphi_n) = n \ \operatorname{but} \ \varphi_n \ \operatorname{has} \ 2^n - 1 \ \operatorname{quants}.$$

Formulae with bounded quantifier rank

Let τ be a *finite* signature, and let $m \in \mathbb{N}$. $\mathsf{FO}_m[\tau]$ is set of all FO formulae over τ with q.r. $\leq m$.

The quantifier rank $qr(\varphi)$ of φ is its depth of quantifier nesting.

- $qr(\varphi) := 0$ for atomic φ
- ullet $\operatorname{\sf qr}(
 eg arphi) := \operatorname{\sf qr}(arphi)$
- $\operatorname{qr}(\varphi \oplus \varphi') := \max(\operatorname{qr}(\varphi), \operatorname{qr}(\varphi')) \text{ for } \oplus \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ $\left[\operatorname{qr}(\exists x \left[\operatorname{A}(x) \land (\forall y \operatorname{R}(y)) \lor (\exists z \top) \right] \right) = 2$
- $\operatorname{qr}(\exists x \varphi) = \operatorname{qr}(\forall x \varphi) := \operatorname{qr}(\varphi) + 1$

Examples:

$$\operatorname{\sf qr}(\exists x orall y orall z \ \mathrm{R}(x,y,z)) = 3$$
 $\operatorname{\sf qr}(\exists x \left[\mathrm{A}(x) \wedge (orall y \mathrm{R}(y)) \vee (\exists z \top) \right]) = 2$

for φ in PNF $\operatorname{qr}(\varphi)=\#\operatorname{quantifiers}.$

Quantifier rank can be exponentially smaller than the total number of quantifiers.

$$\varphi_0(x,y) := \mathbb{E}(x,y), \quad \varphi_{n+1}(x,y) := \exists z \ (\varphi_n(x,z) \land \varphi_n(z,y)) \quad \leadsto \ \operatorname{qr}(\varphi_n) = n \ \operatorname{but} \ \varphi_n \ \operatorname{has} \ 2^n - 1 \ \operatorname{quants}.$$

Formulae with bounded quantifier rank

Let τ be a *finite* signature, and let $m \in \mathbb{N}$. $\mathsf{FO}_m[\tau]$ is set of all FO formulae over τ with q.r. $\leq m$.

Notation: $\mathfrak{A} \equiv_m^{\tau} \mathfrak{B}$

The quantifier rank $qr(\varphi)$ of φ is its depth of quantifier nesting.

- $qr(\varphi) := 0$ for atomic φ
- ullet $\operatorname{\sf qr}(
 eg arphi) := \operatorname{\sf qr}(arphi)$
- $\operatorname{qr}(\varphi \oplus \varphi') := \max(\operatorname{qr}(\varphi), \operatorname{qr}(\varphi')) \text{ for } \oplus \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ $\left[\operatorname{qr}(\exists x \left[\operatorname{A}(x) \land (\forall y \operatorname{R}(y)) \lor (\exists z \top) \right] \right) = 2$
- $\operatorname{qr}(\exists x \varphi) = \operatorname{qr}(\forall x \varphi) := \operatorname{qr}(\varphi) + 1$

Examples:

$$\operatorname{qr}(\exists x \forall y \forall z \ \mathrm{R}(x, y, z)) = 3$$
$$\operatorname{qr}(\exists x \left[\mathrm{A}(x) \wedge (\forall y \mathrm{R}(y)) \vee (\exists z \top) \right]) = 2$$

for φ in PNF $\operatorname{qr}(\varphi)=\#\operatorname{quantifiers}.$

Quantifier rank can be exponentially smaller than the total number of quantifiers.

$$\varphi_0(x,y) := \mathrm{E}(x,y), \quad \varphi_{n+1}(x,y) := \exists z \ (\varphi_n(x,z) \land \varphi_n(z,y)) \quad \leadsto \ \mathsf{qr}(\varphi_n) = n \ \mathsf{but} \ \varphi_n \ \mathsf{has} \ 2^n - 1 \ \mathsf{quants}.$$

Formulae with bounded quantifier rank

Let τ be a *finite* signature, and let $m \in \mathbb{N}$. $\mathsf{FO}_m[\tau]$ is set of all FO formulae over τ with q.r. $\leq m$.

Notation: $\mathfrak{A} \equiv_m^{\tau} \mathfrak{B}$ iff \mathfrak{A} and \mathfrak{B} satisfy precisely the same $\mathsf{FO}_m[\tau]$ sentences

The quantifier rank $qr(\varphi)$ of φ is its depth of quantifier nesting.

- $qr(\varphi) := 0$ for atomic φ
- ullet $\operatorname{\sf qr}(
 eg arphi) := \operatorname{\sf qr}(arphi)$
- $\operatorname{qr}(\varphi \oplus \varphi') := \max(\operatorname{qr}(\varphi), \operatorname{qr}(\varphi')) \text{ for } \oplus \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ $\left[\operatorname{qr}(\exists x \left[\operatorname{A}(x) \land (\forall y \operatorname{R}(y)) \lor (\exists z \top) \right] \right) = 2$
- $\operatorname{qr}(\exists x \varphi) = \operatorname{qr}(\forall x \varphi) := \operatorname{qr}(\varphi) + 1$

Examples:

$$\operatorname{\sf qr}(\exists x orall y orall z \ \operatorname{R}(x,y,z)) = 3$$
 $\operatorname{\sf qr}(\exists x \left[\operatorname{A}(x) \wedge (orall y \operatorname{R}(y)) \vee (\exists z op)
ight]) = 2$

for φ in PNF $qr(\varphi) = \#quantifiers$.

Quantifier rank can be exponentially smaller than the total number of quantifiers.

$$\varphi_0(x,y) := \mathbb{E}(x,y), \quad \varphi_{n+1}(x,y) := \exists z \ (\varphi_n(x,z) \land \varphi_n(z,y)) \quad \leadsto \ \operatorname{qr}(\varphi_n) = n \ \operatorname{but} \ \varphi_n \ \operatorname{has} \ 2^n - 1 \ \operatorname{quants}.$$

Formulae with bounded quantifier rank

Let τ be a *finite* signature, and let $m \in \mathbb{N}$. $\mathsf{FO}_m[\tau]$ is set of all FO formulae over τ with q.r. $\leq m$.

Notation: $\mathfrak{A} \equiv_m^{\tau} \mathfrak{B}$ iff \mathfrak{A} and \mathfrak{B} satisfy precisely the same $\mathsf{FO}_m[\tau]$ sentences (τ often omitted).

The quantifier rank $qr(\varphi)$ of φ is its depth of quantifier nesting.

- $qr(\varphi) := 0$ for atomic φ
- $ullet \operatorname{\mathsf{qr}}(
 ag{\varphi}) := \operatorname{\mathsf{qr}}(\varphi)$
- $\bullet \ \operatorname{qr}(\varphi \oplus \varphi') := \max(\operatorname{qr}(\varphi),\operatorname{qr}(\varphi')) \ \operatorname{for} \ \oplus \in \{\land,\lor,\to,\leftrightarrow\}$
- $\operatorname{qr}(\exists x \varphi) = \operatorname{qr}(\forall x \varphi) := \operatorname{qr}(\varphi) + 1$

Examples:

$$\operatorname{qr}(\exists x \forall y \forall z \ \mathrm{R}(x, y, z)) = 3$$
$$\operatorname{qr}(\exists x \left[\mathrm{A}(x) \wedge (\forall y \mathrm{R}(y)) \vee (\exists z \top) \right]) = 2$$

for φ in PNF $qr(\varphi) = \#quantifiers$.

Quantifier rank can be exponentially smaller than the total number of quantifiers.

$$\varphi_0(x,y) := \mathrm{E}(x,y), \quad \varphi_{n+1}(x,y) := \exists z \ (\varphi_n(x,z) \land \varphi_n(z,y)) \quad \leadsto \ \mathsf{qr}(\varphi_n) = n \ \mathsf{but} \ \varphi_n \ \mathsf{has} \ 2^n - 1 \ \mathsf{quants}.$$

Formulae with bounded quantifier rank

Let τ be a *finite* signature, and let $m \in \mathbb{N}$. $\mathsf{FO}_m[\tau]$ is set of all FO formulae over τ with q.r. $\leq m$.

Notation: $\mathfrak{A} \equiv_m^{\tau} \mathfrak{B}$ iff \mathfrak{A} and \mathfrak{B} satisfy precisely the same $\mathsf{FO}_m[\tau]$ sentences (τ often omitted).

Lemma (Finiteness of $FO_m[\tau]$ with $\leq k$ free variables)

The set of all $FO_m[\tau]$ formulae with at most k free variables is finite up to logical equivalence.

The quantifier rank $qr(\varphi)$ of φ is its depth of quantifier nesting.

- $qr(\varphi) := 0$ for atomic φ
- ullet $\operatorname{\mathsf{qr}}(
 eg arphi) := \operatorname{\mathsf{qr}}(arphi)$
- $\bullet \ \operatorname{qr}(\varphi \oplus \varphi') := \max(\operatorname{qr}(\varphi),\operatorname{qr}(\varphi')) \ \operatorname{for} \ \oplus \in \{\land,\lor,\to,\leftrightarrow\}$
- $\operatorname{qr}(\exists x \varphi) = \operatorname{qr}(\forall x \varphi) := \operatorname{qr}(\varphi) + 1$

Examples:

$$qr(\exists x \forall y \forall z \ R(x,y,z)) = 3$$

$$\operatorname{qr}(\exists x \left[A(x) \wedge (\forall y R(y)) \vee (\exists z \top) \right]) = 2$$

for φ in PNF $\operatorname{qr}(\varphi) = \#\operatorname{quantifiers}$.

Quantifier rank can be exponentially smaller than the total number of quantifiers.

$$\varphi_0(x,y) := \mathbb{E}(x,y), \quad \varphi_{n+1}(x,y) := \exists z \ (\varphi_n(x,z) \land \varphi_n(z,y)) \quad \leadsto \ \operatorname{qr}(\varphi_n) = n \ \operatorname{but} \ \varphi_n \ \operatorname{has} \ 2^n - 1 \ \operatorname{quants}.$$

Formulae with bounded quantifier rank

Let τ be a *finite* signature, and let $m \in \mathbb{N}$. $\mathsf{FO}_m[\tau]$ is set of all FO formulae over τ with q.r. $\leq m$.

Notation: $\mathfrak{A} \equiv_m^{\tau} \mathfrak{B}$ iff \mathfrak{A} and \mathfrak{B} satisfy precisely the same $\mathsf{FO}_m[\tau]$ sentences (τ often omitted).

Lemma (Finiteness of $FO_m[\tau]$ with $\leq k$ free variables)

The set of all $FO_m[\tau]$ formulae with at most k free variables is finite up to logical equivalence.

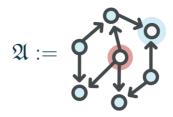
Proof

Idea: characterise $FO_0[\tau]$ with a "truth table" of equality between constants/variables + induction!

• Duration: *m* rounds.

• Duration: *m* rounds.

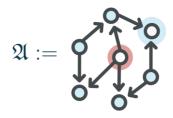
ullet Playground: two au-structures ${\mathfrak A}$ and ${\mathfrak B}$.



• Duration: *m* rounds.

ullet Playground: two au-structures ${\mathfrak A}$ and ${\mathfrak B}$.

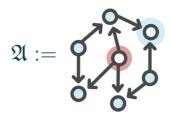
Two players: Spoil∃r

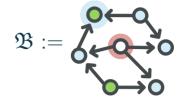


• Duration: *m* rounds.

ullet Playground: two au-structures ${\mathfrak A}$ and ${\mathfrak B}$.

• I layground. two /-structures & and &.

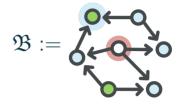




• Duration: *m* rounds.

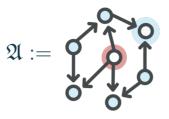
• Playground: two τ -structures $\mathfrak A$ and $\mathfrak B$.

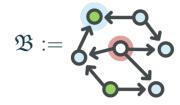
• Two players: Spoil∃r (D∃vil/∃loise/∃ve/Player I) vs Duplic∀tor



• Duration: *m* rounds.

• Playground: two τ -structures $\mathfrak A$ and $\mathfrak B$.

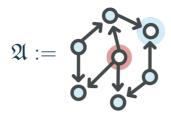


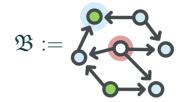


• Two players: Spoil \exists r (D \exists vil/ \exists loise/ \exists ve/Player I) vs Duplic \forall tor (\forall ngel/ \forall belard/ \forall dam/Player II)

• Duration: *m* rounds.

• Playground: two τ -structures $\mathfrak A$ and $\mathfrak B$.

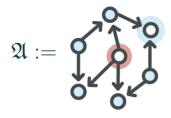


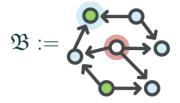


• Two players: Spoil \exists r (D \exists vil/ \exists loise/ \exists ve/Player I) vs Duplic \forall tor (\forall ngel/ \forall belard/ \forall dam/Player II)

• Duration: *m* rounds.

• Playground: two τ -structures $\mathfrak A$ and $\mathfrak B$.





• Two players: Spoil \exists r (D \exists vil/ \exists loise/ \exists ve/Player I) vs Duplic \forall tor (\forall ngel/ \forall belard/ \forall dam/Player II)

Goal of \forall : $\mathfrak{A},\mathfrak{B}$ "look the same".

• Duration: *m* rounds.

 $\mathfrak{A} :=$

ullet Playground: two au-structures ${\mathfrak A}$ and ${\mathfrak B}$.

• Two players: Spoil \exists r (D \exists vil/ \exists loise/ \exists ve/Player I) vs Duplic \forall tor (\forall ngel/ \forall belard/ \forall dam/Player II)

Goal of \forall : $\mathfrak{A}, \mathfrak{B}$ "look the same".

Goal of \exists : pinpoint the difference.

• Duration: *m* rounds.

 $\mathfrak{A} :=$

• Playground: two τ -structures $\mathfrak A$ and $\mathfrak B$.

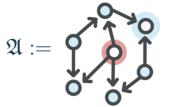
• Two players: Spoil \exists r (D \exists vil/ \exists loise/ \exists ve/Player I) vs Duplic \forall tor (\forall ngel/ \forall belard/ \forall dam/Player II)

Goal of \forall : $\mathfrak{A}, \mathfrak{B}$ "look the same".

Goal of \exists : pinpoint the difference.

• During the *i*-th round:

• Duration: *m* rounds.



• Playground: two τ -structures $\mathfrak A$ and $\mathfrak B$.

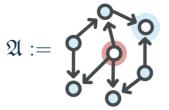
• Two players: Spoil \exists r (D \exists vil/ \exists loise/ \exists ve/Player I) vs Duplic \forall tor (\forall ngel/ \forall belard/ \forall dam/Player II)

Goal of \forall : $\mathfrak{A}, \mathfrak{B}$ "look the same".

Goal of \exists : pinpoint the difference.

- During the *i*-th round:
- **1.** \exists selects a structure (say \mathfrak{A}) and picks an element (say $a_i \in A$)

• Duration: *m* rounds.



• Playground: two τ -structures $\mathfrak A$ and $\mathfrak B$.

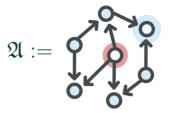
• Two players: Spoil \exists r (D \exists vil/ \exists loise/ \exists ve/Player I) vs Duplic \forall tor (\forall ngel/ \forall belard/ \forall dam/Player II)

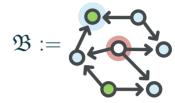
Goal of \forall : $\mathfrak{A}, \mathfrak{B}$ "look the same".

Goal of \exists : pinpoint the difference.

- During the *i*-th round:
- **1.** \exists selects a structure (say \mathfrak{A}) and picks an element (say $a_i \in A$)
- **2.** \forall replies with an element (say $b_i \in B$) in the other structure (in this case \mathfrak{B})

• Duration: *m* rounds.





• Playground: two τ -structures $\mathfrak A$ and $\mathfrak B$.

• Two players: Spoil \exists r (D \exists vil/ \exists loise/ \exists ve/Player I) vs Duplic \forall tor (\forall ngel/ \forall belard/ \forall dam/Player II)

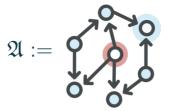
Goal of \forall : $\mathfrak{A}, \mathfrak{B}$ "look the same".

Goal of \exists : pinpoint the difference.

- During the *i*-th round:
- **1.** \exists selects a structure (say \mathfrak{A}) and picks an element (say $a_i \in A$)
- **2.** \forall replies with an element (say $b_i \in B$) in the other structure (in this case \mathfrak{B})

so that $(a_1 \mapsto b_1, \dots, a_i \mapsto b_i)$ is a partial isomorphism between $\mathfrak A$ and $\mathfrak B$.

• Duration: *m* rounds.



• Playground: two τ -structures $\mathfrak A$ and $\mathfrak B$.

• Two players: Spoil \exists r (D \exists vil/ \exists loise/ \exists ve/Player I) vs Duplic \forall tor (\forall ngel/ \forall belard/ \forall dam/Player II)

Goal of \forall : $\mathfrak{A}, \mathfrak{B}$ "look the same".

Goal of \exists : pinpoint the difference.

- During the *i*-th round:
- **1.** \exists selects a structure (say \mathfrak{A}) and picks an element (say $a_i \in A$)
- **2.** \forall replies with an element (say $b_i \in B$) in the other structure (in this case \mathfrak{B}) so that $(a_1 \mapsto b_1, \dots, a_i \mapsto b_i)$ is a partial isomorphism between \mathfrak{A} and \mathfrak{B} .
- ullet wins if \forall cannot reply with a suitable element.

• Duration: *m* rounds.



• Playground: two τ -structures $\mathfrak A$ and $\mathfrak B$.

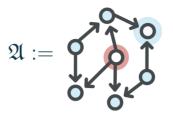
• Two players: Spoil \exists r (D \exists vil/ \exists loise/ \exists ve/Player I) vs Duplic \forall tor (\forall ngel/ \forall belard/ \forall dam/Player II)

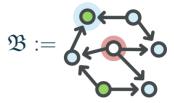
Goal of \forall : $\mathfrak{A}, \mathfrak{B}$ "look the same".

Goal of \exists : pinpoint the difference.

- During the *i*-th round:
- **1.** \exists selects a structure (say \mathfrak{A}) and picks an element (say $a_i \in A$)
- **2.** \forall replies with an element (say $b_i \in B$) in the other structure (in this case \mathfrak{B}) so that $(a_1 \mapsto b_1, \dots, a_i \mapsto b_i)$ is a partial isomorphism between \mathfrak{A} and \mathfrak{B} .
- \exists wins if \forall cannot reply with a suitable element. \forall wins if he survives m rounds.

• Duration: *m* rounds.





- Playground: two τ -structures $\mathfrak A$ and $\mathfrak B$.
- Two players: Spoil \exists r (D \exists vil/ \exists loise/ \exists ve/Player I) vs Duplic \forall tor (\forall ngel/ \forall belard/ \forall dam/Player II)

Goal of \forall : $\mathfrak{A}, \mathfrak{B}$ "look the same".

Goal of \exists : pinpoint the difference.

- During the *i*-th round:
- **1.** \exists selects a structure (say \mathfrak{A}) and picks an element (say $a_i \in A$)
- **2.** \forall replies with an element (say $b_i \in B$) in the other structure (in this case \mathfrak{B}) so that $(a_1 \mapsto b_1, \dots, a_i \mapsto b_i)$ is a partial isomorphism between $\mathfrak A$ and $\mathfrak B$.
- \exists wins if \forall cannot reply with a suitable element. \forall wins if he survives m rounds.

Theorem (Fraïssé 1950 & Ehrenfeucht 1961)

 \forall has a winning strategy in *m*-round Ehrenfeucht-Fraïssé game on τ -structures $\mathfrak A$ and $\mathfrak B$ iff $\mathfrak A \equiv_m^\tau \mathfrak B$.

Consider an 3-round play of E-F game on sets $\mathfrak{A}:=\{1,2,3\}$, $\mathfrak{B}:=\{a,b,c,d\}$.

 $\mathfrak{A} :=$

Consider an 3-round play of E-F game on sets $\mathfrak{A} := \{1, 2, 3\}$, $\mathfrak{B} := \{a, b, c, d\}$.

 $\mathfrak{A} :=$

2

3

 $\mapsto d$,

B :=

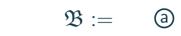
(a)

6

(C)

Consider an 3-round play of E-F game on sets $\mathfrak{A}:=\{1,2,3\}$, $\mathfrak{B}:=\{a,b,c,d\}$.

 $1 \mapsto d$,



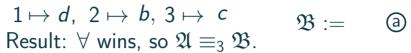
Consider an 3-round play of E-F game on sets $\mathfrak{A}:=\{1,2,3\}$, $\mathfrak{B}:=\{a,b,c,d\}$.

 $\mathfrak{A} :=$

 $1\mapsto d,\ 2\mapsto b,\ 3\mapsto c$ Result: \forall wins, so $\mathfrak{A}\equiv_3\mathfrak{B}$. $\mathfrak{B}:=$

Consider an 3-round play of E-F game on sets $\mathfrak{A}:=\{1,2,3\}$, $\mathfrak{B}:=\{a,b,c,d\}$.

$$\mathfrak{A} :=$$



$$1 \mapsto d, \ 2 \mapsto b, \ 3 \mapsto d$$

$$\mathfrak{B} :=$$

Following the strategy "always reply with a fresh element", \forall wins any m-round game on sets of size $\geq m$.

Consider an 3-round play of E-F game on sets $\mathfrak{A}:=\{1,2,3\}$, $\mathfrak{B}:=\{a,b,c,d\}$.

$$\mathfrak{A} :=$$

$$1 \mapsto d$$
, $2 \mapsto b$, $3 \mapsto c$

 $1\mapsto d,\ 2\mapsto b,\ 3\mapsto c$ Result: \forall wins, so $\mathfrak{A}\equiv_3\mathfrak{B}$. $\mathfrak{B}:=$ ⓐ

$$\mathfrak{B} :=$$

Following the strategy "always reply with a fresh element", \forall wins any m-round game on sets of size > m.

Lemma (Even is not expressible in $FO[\emptyset]$)

Consider an 3-round play of E-F game on sets $\mathfrak{A}:=\{1,2,3\}$, $\mathfrak{B}:=\{a,b,c,d\}$.

$$\mathfrak{A} :=$$

$$1 \mapsto d, \ 2 \mapsto b, \ 3 \mapsto d$$

$$1\mapsto d,\ 2\mapsto b,\ 3\mapsto c$$
 Result: \forall wins, so $\mathfrak{A}\equiv_3\mathfrak{B}$.

$$\mathfrak{B}:=$$

Following the strategy "always reply with a fresh element", \forall wins any m-round game on sets of size > m.

Lemma (Even is not expressible in $FO[\emptyset]$)

Proof

Consider an 3-round play of E-F game on sets $\mathfrak{A} := \{1, 2, 3\}$, $\mathfrak{B} := \{a, b, c, d\}$.

 $1\mapsto d,\ 2\mapsto b,\ 3\mapsto c$ Result: \forall wins, so $\mathfrak{A}\equiv_3\mathfrak{B}$. $\mathfrak{B}:=$ ⓐ

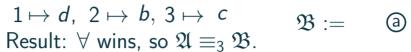
Following the strategy "always reply with a fresh element", \forall wins any m-round game on sets of size > m.

Lemma (Even is not expressible in $FO[\emptyset]$)

Proof

ad absurdum φ exists

Consider an 3-round play of E-F game on sets $\mathfrak{A} := \{1, 2, 3\}$, $\mathfrak{B} := \{a, b, c, d\}$.



Following the strategy "always reply with a fresh element", \forall wins any m-round game on sets of size > m.

Lemma (Even is not expressible in $FO[\emptyset]$)

Proof Assume that such a φ exists.

ad absurdum φ exists

Consider an 3-round play of E-F game on sets $\mathfrak{A}:=\{1,2,3\}$, $\mathfrak{B}:=\{a,b,c,d\}$.

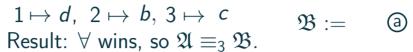
 $1\mapsto d,\ 2\mapsto b,\ 3\mapsto c$ Result: \forall wins, so $\mathfrak{A}\equiv_3\mathfrak{B}$. $\mathfrak{B}:=$ ⓐ

Following the strategy "always reply with a fresh element", \forall wins any m-round game on sets of size > m.

Lemma (Even is not expressible in $FO[\emptyset]$)

Proof Assume that such a φ exists.

Consider an 3-round play of E-F game on sets $\mathfrak{A}:=\{1,2,3\}$, $\mathfrak{B}:=\{a,b,c,d\}$.



$$1 \mapsto d, \ 2 \mapsto b, \ 3 \mapsto c$$

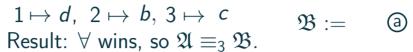
$$\mathfrak{B}$$

Following the strategy "always reply with a fresh element", \forall wins any m-round game on sets of size > m.

Lemma (Even is not expressible in $FO[\emptyset]$)

Proof Assume that such a φ exists. Let $m := \operatorname{qr}(\varphi)$.

Consider an 3-round play of E-F game on sets $\mathfrak{A}:=\{1,2,3\}$, $\mathfrak{B}:=\{a,b,c,d\}$.



$$1 \mapsto d, \ 2 \mapsto b, \ 3 \mapsto c$$

$$\mathfrak{B} :=$$

Following the strategy "always reply with a fresh element", \forall wins any m-round game on sets of size > m.

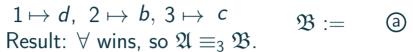
Lemma (Even is not expressible in $FO[\emptyset]$)

Proof Assume that such a φ exists. Let $m := qr(\varphi)$.

ad absurdum φ exists

q.r. of φ craft τ -structures $\mathfrak{A} \models \varphi$, $\mathfrak{B} \not\models \varphi$

Consider an 3-round play of E-F game on sets $\mathfrak{A}:=\{1,2,3\}$, $\mathfrak{B}:=\{a,b,c,d\}$.



Following the strategy "always reply with a fresh element", \forall wins any m-round game on sets of size > m.

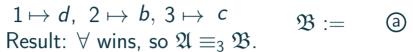
Lemma (Even is not expressible in $FO[\emptyset]$)

Proof Assume that such a φ exists. Let $m := \operatorname{qr}(\varphi)$. Let \mathfrak{A} (resp. \mathfrak{B}) be an 2m (resp. 2m+1) element set.

ad absurdum φ exists

q.r. of φ craft τ -structures $\mathfrak{A} \models \varphi$, $\mathfrak{B} \not\models \varphi$

Consider an 3-round play of E-F game on sets $\mathfrak{A} := \{1, 2, 3\}$, $\mathfrak{B} := \{a, b, c, d\}$.



$$1 \mapsto d, \ 2 \mapsto b, \ 3 \mapsto c$$

$$\mathfrak{B}:=$$

Following the strategy "always reply with a fresh element", \forall wins any m-round game on sets of size > m.

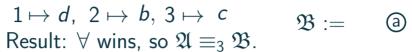
Lemma (Even is not expressible in $FO[\emptyset]$)

Proof Assume that such a φ exists. Let $m := \operatorname{qr}(\varphi)$. Let \mathfrak{A} (resp. \mathfrak{B}) be an 2m (resp. 2m+1) element set. By definition, we clearly have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$.

ad absurdum φ exists

q.r. of φ craft τ -structures $\mathfrak{A} \models \varphi$, $\mathfrak{B} \not\models \varphi$

Consider an 3-round play of E-F game on sets $\mathfrak{A} := \{1, 2, 3\}$, $\mathfrak{B} := \{a, b, c, d\}$.



$$1 \mapsto d, \ 2 \mapsto b, \ 3 \mapsto c$$

Following the strategy "always reply with a fresh element", \forall wins any m-round game on sets of size > m.

Lemma (Even is not expressible in $FO[\emptyset]$)

Proof Assume that such a φ exists. Let $m := \operatorname{qr}(\varphi)$. Let \mathfrak{A} (resp. \mathfrak{B}) be an 2m (resp. 2m+1) element set. By definition, we clearly have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$.

ad absurdum φ exists

q.r. of φ

Consider an 3-round play of E-F game on sets $\mathfrak{A} := \{1, 2, 3\}$, $\mathfrak{B} := \{a, b, c, d\}$.

$$1\mapsto d,\ 2\mapsto b,\ 3\mapsto c$$
 Result: \forall wins, so $\mathfrak{A}\equiv_3\mathfrak{B}$. $\mathfrak{B}:=$

Following the strategy "always reply with a fresh element", \forall wins any m-round game on sets of size > m.

Lemma (Even is not expressible in $FO[\emptyset]$)

Proof Assume that such a φ exists. Let $m := \operatorname{qr}(\varphi)$. Let \mathfrak{A} (resp. \mathfrak{B}) be an 2m (resp. 2m+1) element set.

By definition, we clearly have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$.

As we already noticed \forall has the winning strategy in any *m*-round E-F game.

ad absurdum φ exists

Consider an 3-round play of E-F game on sets $\mathfrak{A} := \{1, 2, 3\}$, $\mathfrak{B} := \{a, b, c, d\}$.

$$1\mapsto d,\ 2\mapsto b,\ 3\mapsto c$$
 Result: \forall wins, so $\mathfrak{A}\equiv_3\mathfrak{B}$. $\mathfrak{B}:=$ ⓐ

Following the strategy "always reply with a fresh element", \forall wins any m-round game on sets of size > m.

Lemma (Even is not expressible in $FO[\emptyset]$)

Proof Assume that such a φ exists. Let $m := \operatorname{qr}(\varphi)$. Let \mathfrak{A} (resp. \mathfrak{B}) be an 2m (resp. 2m+1) element set.

By definition, we clearly have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$.

As we already noticed \forall has the winning strategy in any *m*-round E-F game.

ad absurdum φ exists

Consider an 3-round play of E-F game on sets $\mathfrak{A} := \{1, 2, 3\}$, $\mathfrak{B} := \{a, b, c, d\}$.

 $1\mapsto d,\ 2\mapsto b,\ 3\mapsto c$ Result: \forall wins, so $\mathfrak{A}\equiv_3\mathfrak{B}$. $\mathfrak{B}:=$ ⓐ

Following the strategy "always reply with a fresh element", \forall wins any m-round game on sets of size > m.

Lemma (Even is not expressible in $FO[\emptyset]$)

Proof Assume that such a φ exists. Let $m := \operatorname{qr}(\varphi)$. Let \mathfrak{A} (resp. \mathfrak{B}) be an 2m (resp. 2m+1) element set. By definition, we clearly have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$.

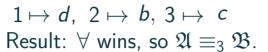
As we already noticed \forall has the winning strategy in any m-round E-F game. Thus $\mathfrak{A} \equiv_m \mathfrak{B}$ holds.

ad absurdum φ exists

q.r. of φ

Consider an 3-round play of E-F game on sets $\mathfrak{A} := \{1, 2, 3\}$, $\mathfrak{B} := \{a, b, c, d\}$.

$$\mathfrak{A} :=$$



$$\mathfrak{B}:=$$
 ⓐ

Following the strategy "always reply with a fresh element", \forall wins any m-round game on sets of size > m.

Lemma (Even is not expressible in $FO[\emptyset]$)

Proof Assume that such a φ exists. Let $m := \operatorname{qr}(\varphi)$. Let \mathfrak{A} (resp. \mathfrak{B}) be an 2m (resp. 2m+1) element set.

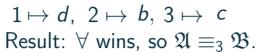
By definition, we clearly have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$.

As we already noticed \forall has the winning strategy in any m-round E-F game. Thus $\mathfrak{A} \equiv_m \mathfrak{B}$ holds.

ad absurdum φ exists

Consider an 3-round play of E-F game on sets $\mathfrak{A} := \{1, 2, 3\}$, $\mathfrak{B} := \{a, b, c, d\}$.

$$\mathfrak{A} :=$$



$$\mathfrak{B}:=$$

Following the strategy "always reply with a fresh element", \forall wins any m-round game on sets of size > m.

Lemma (Even is not expressible in $FO[\emptyset]$)

Proof Assume that such a φ exists. Let $m := \operatorname{qr}(\varphi)$. Let \mathfrak{A} (resp. \mathfrak{B}) be an 2m (resp. 2m+1) element set.

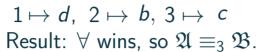
By definition, we clearly have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$.

As we already noticed \forall has the winning strategy in any m-round E-F game. Thus $\mathfrak{A} \equiv_m \mathfrak{B}$ holds.

By collecting the inferred information, we conclude $\mathfrak{B} \models \varphi$. A contradiction!

Consider an 3-round play of E-F game on sets $\mathfrak{A} := \{1, 2, 3\}$, $\mathfrak{B} := \{a, b, c, d\}$.

$$\mathfrak{A} :=$$



 $\mathfrak{B}:=$

Following the strategy "always reply with a fresh element", \forall wins any m-round game on sets of size > m.

Lemma (Even is not expressible in $FO[\emptyset]$)

Proof Assume that such a φ exists. Let $m := \operatorname{qr}(\varphi)$. Let \mathfrak{A} (resp. \mathfrak{B}) be an 2m (resp. 2m+1) element set.

By definition, we clearly have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$.

As we already noticed \forall has the winning strategy in any m-round E-F game. Thus $\mathfrak{A} \equiv_m \mathfrak{B}$ holds.

By collecting the inferred information, we conclude $\mathfrak{B} \models \varphi$. A contradiction!

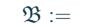
ad absurdum φ exists

craft τ -structures $\mathfrak{A} \models \varphi$, $\mathfrak{B} \not\models \varphi$ play $qr(\varphi)$ -round game E-F theorem contradiction!

Consider an 3-round play of E-F game on sets $\mathfrak{A} := \{1, 2, 3\}$, $\mathfrak{B} := \{a, b, c, d\}$.

$$\mathfrak{A} :=$$

$$1 \mapsto d$$
, $2 \mapsto b$, $3 \mapsto c$
Result: \forall wins, so $\mathfrak{A} \equiv_3 \mathfrak{B}$.



Following the strategy "always reply with a fresh element", \forall wins any m-round game on sets of size > m.

Lemma (Even is not expressible in $FO[\emptyset]$)

Proof Assume that such a φ exists. Let $m := \operatorname{qr}(\varphi)$. Let \mathfrak{A} (resp. \mathfrak{B}) be an 2m (resp. 2m+1) element set.

By definition, we clearly have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$.

As we already noticed \forall has the winning strategy in any m-round E-F game. Thus $\mathfrak{A} \equiv_m \mathfrak{B}$ holds.

By collecting the inferred information, we conclude $\mathfrak{B} \models \varphi$. A contradiction!

General proof scheme for showing that \mathcal{P} is not $FO[\tau]$ -definable with Ehrenfeucht-Fraïssé games

ad absurdum φ exists

q.r. of φ

Consider an 3-round play of E-F game on sets $\mathfrak{A} := \{1, 2, 3\}$, $\mathfrak{B} := \{a, b, c, d\}$.

$$\mathfrak{A} :=$$

$$1 \mapsto d$$
, $2 \mapsto b$, $3 \mapsto c$
Result: \forall wins, so $\mathfrak{A} \equiv_3 \mathfrak{B}$.



Following the strategy "always reply with a fresh element", \forall wins any m-round game on sets of size > m.

Lemma (Even is not expressible in $FO[\emptyset]$)

Proof Assume that such a φ exists. Let $m := \operatorname{qr}(\varphi)$. Let \mathfrak{A} (resp. \mathfrak{B}) be an 2m (resp. 2m+1) element set.

By definition, we clearly have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$.

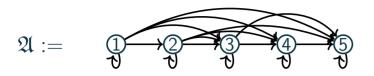
As we already noticed \forall has the winning strategy in any m-round E-F game. Thus $\mathfrak{A} \equiv_m \mathfrak{B}$ holds.

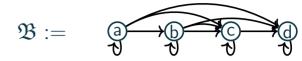
By collecting the inferred information, we conclude $\mathfrak{B} \models \varphi$. A contradiction!

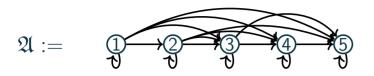
General proof scheme for showing that \mathcal{P} is not $FO[\tau]$ -definable with Ehrenfeucht-Fraïssé games

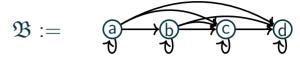
ad absurdum φ exists

q.r. of arphi



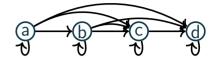




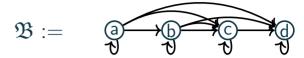


• Who has the winning strategy in 2 rounds?

 $\mathfrak{B} :=$

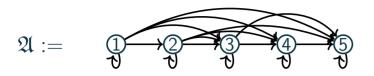


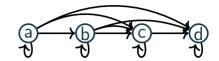
• Who has the winning strategy in 2 rounds?



• Who has the winning strategy in 2 rounds?

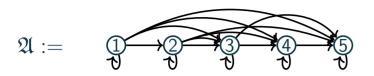
• In 3 rounds? more?

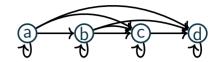




• Who has the winning strategy in 2 rounds?

• In 3 rounds? more?

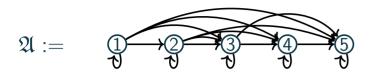


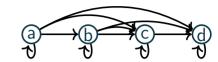


• Who has the winning strategy in 2 rounds?

• In 3 rounds? more?

Lemma (Even is not expressible in $FO[\{\leq\}]$)



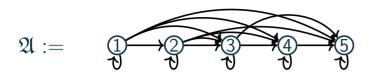


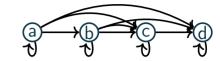
• Who has the winning strategy in 2 rounds?

• In 3 rounds? more?

Lemma (Even is not expressible in $FO[\{\leq\}]$)

Proof



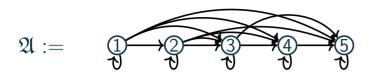


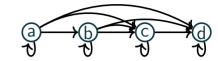
• Who has the winning strategy in 2 rounds?

• In 3 rounds? more?

Lemma (Even is not expressible in $FO[\{\leq\}]$)

Proof



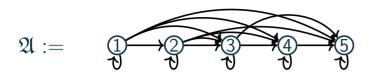


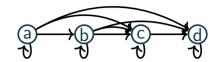
• Who has the winning strategy in 2 rounds?

• In 3 rounds? more?

Lemma (Even is not expressible in $FO[\{\leq\}]$)

Proof Suppose that φ exists.



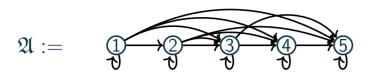


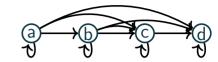
• Who has the winning strategy in 2 rounds?

• In 3 rounds? more?

Lemma (Even is not expressible in $FO[\{\leq\}]$)

Proof Suppose that φ exists.



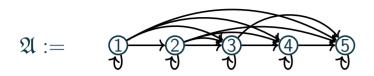


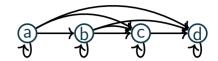
• Who has the winning strategy in 2 rounds?

• In 3 rounds? more?

Lemma (Even is not expressible in $FO[\{\leq\}]$)

Proof Suppose that φ exists. Let $m := qr(\varphi)$.





• Who has the winning strategy in 2 rounds?

• In 3 rounds? more?

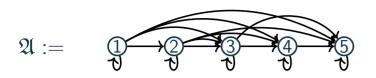
Lemma (Even is not expressible in $FO[\{\leq\}]$)

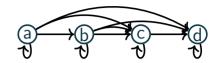
Proof Suppose that φ exists. Let $m := qr(\varphi)$.

ad absurdum φ exists

q.r. of φ

craft τ -structures $\mathfrak{A} \models \varphi$, $\mathfrak{B} \not\models \varphi$





• Who has the winning strategy in 2 rounds?

• In 3 rounds? more?

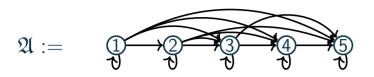
Lemma (Even is not expressible in $FO[\{\leq\}]$)

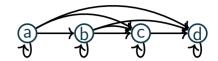
Proof Suppose that φ exists. Let $m := qr(\varphi)$. Let \mathfrak{A} (resp. \mathfrak{B}) be linear orders of size 2^m (resp. 2^m+1).

ad absurdum φ exists

q.r. of φ

craft τ -structures $\mathfrak{A} \models \varphi$, $\mathfrak{B} \not\models \varphi$





• Who has the winning strategy in 2 rounds?

• In 3 rounds? more?

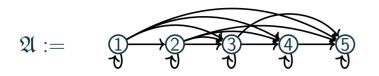
Lemma (Even is not expressible in $FO[\{\leq\}]$)

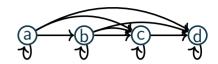
Proof Suppose that φ exists. Let $m := \operatorname{qr}(\varphi)$. Let \mathfrak{A} (resp. \mathfrak{B}) be linear orders of size 2^m (resp. 2^m+1). By definition, we clearly have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$.

ad absurdum φ exists

q.r. of φ

craft τ -structures $\mathfrak{A} \models \varphi$, $\mathfrak{B} \not\models \varphi$





• Who has the winning strategy in 2 rounds?

• In 3 rounds? more?

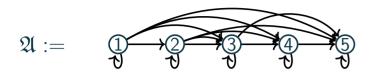
Lemma (Even is not expressible in $FO[\{\leq\}]$)

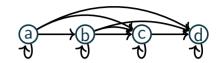
Proof Suppose that φ exists. Let $m := \operatorname{qr}(\varphi)$. Let \mathfrak{A} (resp. \mathfrak{B}) be linear orders of size 2^m (resp. 2^m+1). By definition, we clearly have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$.

ad absurdum φ exists

q.r. of φ

- 7





• Who has the winning strategy in 2 rounds?

• In 3 rounds? more?

Lemma (Even is not expressible in $FO[\{\leq\}]$)

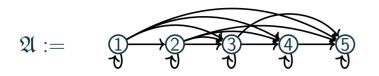
Proof Suppose that φ exists. Let $m := qr(\varphi)$. Let \mathfrak{A} (resp. \mathfrak{B}) be linear orders of size 2^m (resp. 2^m+1).

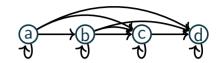
By definition, we clearly have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$.

What remains to be done is to show that

ad absurdum φ exists

q.r. of φ





• Who has the winning strategy in 2 rounds?

• In 3 rounds? more?

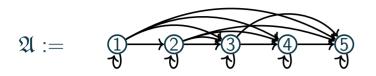
Lemma (Even is not expressible in $FO[\{\leq\}]$)

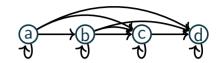
Proof Suppose that φ exists. Let $m := qr(\varphi)$. Let \mathfrak{A} (resp. \mathfrak{B}) be linear orders of size 2^m (resp. 2^m+1). By definition, we clearly have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$.

What remains to be done is to show that \forall has the winning strategy in any m-round E-F game.

ad absurdum φ exists

q.r. of φ





• Who has the winning strategy in 2 rounds?

• In 3 rounds? more?

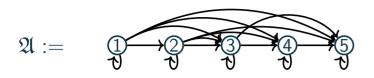
Lemma (Even is not expressible in $FO[\{\leq\}]$)

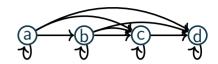
Proof Suppose that φ exists. Let $m := qr(\varphi)$. Let \mathfrak{A} (resp. \mathfrak{B}) be linear orders of size 2^m (resp. 2^m+1). By definition, we clearly have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$.

What remains to be done is to show that \forall has the winning strategy in any m-round E-F game.

ad absurdum φ exists

q.r. of φ





• Who has the winning strategy in 2 rounds?

• In 3 rounds? more?

Lemma (Even is not expressible in $FO[\{\leq\}]$)

Proof Suppose that φ exists. Let $m := qr(\varphi)$. Let \mathfrak{A} (resp. \mathfrak{B}) be linear orders of size 2^m (resp. 2^m+1).

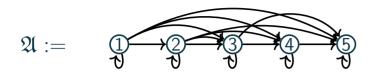
By definition, we clearly have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$.

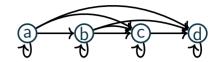
What remains to be done is to show that \forall has the winning strategy in any m-round E-F game.

Thus $\mathfrak{A} \equiv_m \mathfrak{B}$ holds.

ad absurdum φ exists

q.r. of φ





• Who has the winning strategy in 2 rounds?

• In 3 rounds? more?

Lemma (Even is not expressible in $FO[\{\leq\}]$)

Proof Suppose that φ exists. Let $m := qr(\varphi)$. Let \mathfrak{A} (resp. \mathfrak{B}) be linear orders of size 2^m (resp. 2^m+1).

By definition, we clearly have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$.

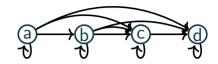
What remains to be done is to show that \forall has the winning strategy in any m-round E-F game.

Thus $\mathfrak{A} \equiv_m \mathfrak{B}$ holds.

ad absurdum φ exists

q.r. of φ

craft τ -structures $\mathfrak{A} \models \varphi$, $\mathfrak{B} \not\models \varphi$ play $qr(\varphi)$ -round game E-F theorem contradiction!



• Who has the winning strategy in 2 rounds?

• In 3 rounds? more?

Lemma (Even is not expressible in $FO[\{\leq\}]$)

Proof Suppose that φ exists. Let $m := qr(\varphi)$. Let \mathfrak{A} (resp. \mathfrak{B}) be linear orders of size 2^m (resp. 2^m+1).

By definition, we clearly have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$.

What remains to be done is to show that \forall has the winning strategy in any m-round E-F game.

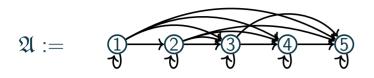
Thus $\mathfrak{A} \equiv_m \mathfrak{B}$ holds. By collecting the inferred information, we conclude $\mathfrak{B} \models \varphi$.

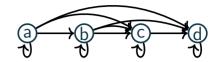
ad absurdum φ exists

q.r. of φ

craft τ -structures $\mathfrak{A} \models \varphi$, $\mathfrak{B} \not\models \varphi$ play $qr(\varphi)$ -round game E-F theorem contradiction!

Playing Ehrenfeucht-Fraissé games on linear orders





• Who has the winning strategy in 2 rounds?

• In 3 rounds? more?

Lemma (Even is not expressible in FO[{<}])

Proof Suppose that φ exists. Let $m := qr(\varphi)$. Let \mathfrak{A} (resp. \mathfrak{B}) be linear orders of size 2^m (resp. 2^m+1). By definition, we clearly have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$.

What remains to be done is to show that \forall has the winning strategy in any m-round E-F game.

Thus $\mathfrak{A} \equiv_m \mathfrak{B}$ holds. By collecting the inferred information, we conclude $\mathfrak{B} \models \varphi$. A contradiction!

ad absurdum φ exists

q.r. of φ

craft τ -structures $\mathfrak{A} \models \varphi$, $\mathfrak{B} \not\models \varphi$ play $qr(\varphi)$ -round game E-F theorem contradiction!

infer $\mathfrak{B} \models \varphi$

Lemma (Sufficiently large linear orders look similar)

Any linearly ordered^a $\{\leq\}$ -structures $\mathfrak{A},\mathfrak{B}$ of cardinality $\geq 2^m$ satisfy $\mathfrak{A}\equiv_m^{\{\leq\}}\mathfrak{B}$.

 $^{{}^}a$ We assume that $\mathfrak{A},\mathfrak{B}$ interpret \leq as a linear order over the domain

Lemma (Sufficiently large linear orders look similar)

Any linearly ordered^a $\{\leq\}$ -structures $\mathfrak{A},\mathfrak{B}$ of cardinality $\geq 2^m$ satisfy $\mathfrak{A}\equiv_m^{\{\leq\}}\mathfrak{B}$.

 $[^]a$ We assume that $\mathfrak{A},\mathfrak{B}$ interpret \leq as a linear order over the domain

Lemma (Sufficiently large linear orders look similar)

Any linearly ordered^a $\{\leq\}$ -structures $\mathfrak{A},\mathfrak{B}$ of cardinality $\geq 2^m$ satisfy $\mathfrak{A}\equiv_m^{\{\leq\}}\mathfrak{B}$.

• Let
$$\overline{a} := (a_{-1}, a_0, \dots, a_i)$$
 and $\overline{b} := (b_{-1}, b_0, \dots, b_i)$

 $[^]a$ We assume that $\mathfrak{A},\mathfrak{B}$ interpret \leq as a linear order over the domain

Lemma (Sufficiently large linear orders look similar)

Any linearly ordered $\{\leq\}$ -structures $\mathfrak{A},\mathfrak{B}$ of cardinality $\geq 2^m$ satisfy $\mathfrak{A}\equiv_m^{\{\leq\}}\mathfrak{B}$.

• Let $\overline{a} := (a_{-1}, a_0, \dots, a_i)$ and $\overline{b} := (b_{-1}, b_0, \dots, b_i)$ be the history of the play after *i*-rounds.

 $[^]a$ We assume that $\mathfrak{A},\mathfrak{B}$ interpret \leq as a linear order over the domain

Lemma (Sufficiently large linear orders look similar)

Any linearly ordered $\{\leq\}$ -structures $\mathfrak{A},\mathfrak{B}$ of cardinality $\geq 2^m$ satisfy $\mathfrak{A}\equiv^{\{\leq\}}_m\mathfrak{B}$.

- Let $\overline{a} := (a_{-1}, a_0, \dots, a_i)$ and $\overline{b} := (b_{-1}, b_0, \dots, b_i)$ be the history of the play after *i*-rounds.
- Dummy (-1)-th and 0-th rounds of the game:

^aWe assume that $\mathfrak{A},\mathfrak{B}$ interpret < as a linear order over the domain

Lemma (Sufficiently large linear orders look similar)

Any linearly ordered $\{\leq\}$ -structures $\mathfrak{A},\mathfrak{B}$ of cardinality $\geq 2^m$ satisfy $\mathfrak{A}\equiv^{\{\leq\}}_m\mathfrak{B}$.

- Let $\overline{a} := (a_{-1}, a_0, \dots, a_i)$ and $\overline{b} := (b_{-1}, b_0, \dots, b_i)$ be the history of the play after *i*-rounds.
- Dummy (-1)-th and 0-th rounds of the game: select min/max elements of $\mathfrak{A}, \mathfrak{B}$.

^aWe assume that $\mathfrak{A},\mathfrak{B}$ interpret < as a linear order over the domain

Lemma (Sufficiently large linear orders look similar)

Any linearly ordered $\{\leq\}$ -structures $\mathfrak{A},\mathfrak{B}$ of cardinality $\geq 2^m$ satisfy $\mathfrak{A}\equiv_m^{\{\leq\}}\mathfrak{B}$.

- Let $\overline{a}:=(a_{-1},a_0,\ldots,a_i)$ and $\overline{b}:=(b_{-1},b_0,\ldots,b_i)$ be the history of the play after *i*-rounds.
- Dummy (-1)-th and 0-th rounds of the game: select min/max elements of $\mathfrak{A}, \mathfrak{B}$.

This establishes an invariant that any freshly selected element is between some previously selected ones.

 $^{^{}a}$ We assume that $\mathfrak{A},\mathfrak{B}$ interpret < as a linear order over the domain

Lemma (Sufficiently large linear orders look similar)

Any linearly ordered $\{\leq\}$ -structures $\mathfrak{A},\mathfrak{B}$ of cardinality $\geq 2^m$ satisfy $\mathfrak{A}\equiv^{\{\leq\}}_m\mathfrak{B}$.

- Let $\overline{a}:=(a_{-1},a_0,\ldots,a_i)$ and $\overline{b}:=(b_{-1},b_0,\ldots,b_i)$ be the history of the play after *i*-rounds.
- Dummy (-1)-th and 0-th rounds of the game: select min/max elements of $\mathfrak{A}, \mathfrak{B}$.

• We play as \forall : we want to guarantee that after the *i*-th round we have for all $I, k \leq i$:

^aWe assume that $\mathfrak{A},\mathfrak{B}$ interpret < as a linear order over the domain

Lemma (Sufficiently large linear orders look similar)

Any linearly ordered^a $\{\leq\}$ -structures $\mathfrak{A},\mathfrak{B}$ of cardinality $\geq 2^m$ satisfy $\mathfrak{A}\equiv_m^{\{\leq\}}\mathfrak{B}$.

- Let $\overline{a}:=(a_{-1},a_0,\ldots,a_i)$ and $\overline{b}:=(b_{-1},b_0,\ldots,b_i)$ be the history of the play after *i*-rounds.
- Dummy (-1)-th and 0-th rounds of the game: select min/max elements of $\mathfrak{A}, \mathfrak{B}$.

• We play as \forall : we want to guarantee that after the *i*-th round we have for all $I, k \leq i$:

1.
$$a_k \leq^{\mathfrak{A}} a_l$$
 iff $b_k \leq^{\mathfrak{B}} b_l$

 $^{{}^{}a}$ We assume that $\mathfrak{A},\mathfrak{B}$ interpret < as a linear order over the domain

Lemma (Sufficiently large linear orders look similar)

Any linearly ordered $\{\leq\}$ -structures $\mathfrak{A},\mathfrak{B}$ of cardinality $\geq 2^m$ satisfy $\mathfrak{A} \equiv_m^{\{\leq\}} \mathfrak{B}$.

- Let $\overline{a} := (a_{-1}, a_0, \dots, a_i)$ and $\overline{b} := (b_{-1}, b_0, \dots, b_i)$ be the history of the play after *i*-rounds.
- Dummy (-1)-th and 0-th rounds of the game: select min/max elements of $\mathfrak{A}, \mathfrak{B}$.

- We play as \forall : we want to guarantee that after the *i*-th round we have for all $I, k \leq i$:
- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).

^aWe assume that $\mathfrak{A},\mathfrak{B}$ interpret < as a linear order over the domain

Lemma (Sufficiently large linear orders look similar)

Any linearly ordered $\{\leq\}$ -structures $\mathfrak{A},\mathfrak{B}$ of cardinality $\geq 2^m$ satisfy $\mathfrak{A}\equiv_m^{\{\leq\}}\mathfrak{B}$.

- Let $\overline{a} := (a_{-1}, a_0, \dots, a_i)$ and $\overline{b} := (b_{-1}, b_0, \dots, b_i)$ be the history of the play after *i*-rounds.
- Dummy (-1)-th and 0-th rounds of the game: select min/max elements of $\mathfrak{A}, \mathfrak{B}$.

- We play as \forall : we want to guarantee that after the *i*-th round we have for all $I, k \leq i$:
- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \geq 2^{m-i}$ then dist $(b_k, b_l) \geq 2^{m-i}$

 $^{^{}a}$ We assume that $\mathfrak{A},\mathfrak{B}$ interpret < as a linear order over the domain

Lemma (Sufficiently large linear orders look similar)

Any linearly ordered $\{\leq\}$ -structures $\mathfrak{A},\mathfrak{B}$ of cardinality $\geq 2^m$ satisfy $\mathfrak{A}\equiv_m^{\{\leq\}}\mathfrak{B}$.

- Let $\overline{a} := (a_{-1}, a_0, \dots, a_i)$ and $\overline{b} := (b_{-1}, b_0, \dots, b_i)$ be the history of the play after *i*-rounds.
- Dummy (-1)-th and 0-th rounds of the game: select min/max elements of $\mathfrak{A}, \mathfrak{B}$.

- We play as \forall : we want to guarantee that after the *i*-th round we have for all $I, k \leq i$:
- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").

^aWe assume that $\mathfrak{A},\mathfrak{B}$ interpret < as a linear order over the domain

Lemma (Sufficiently large linear orders look similar)

Any linearly ordered $\{\leq\}$ -structures $\mathfrak{A},\mathfrak{B}$ of cardinality $\geq 2^m$ satisfy $\mathfrak{A} \equiv_m^{\{\leq\}} \mathfrak{B}$.

- Let $\overline{a} := (a_{-1}, a_0, \dots, a_i)$ and $\overline{b} := (b_{-1}, b_0, \dots, b_i)$ be the history of the play after *i*-rounds.
- Dummy (-1)-th and 0-th rounds of the game: select min/max elements of $\mathfrak{A}, \mathfrak{B}$.

- We play as \forall : we want to guarantee that after the *i*-th round we have for all $I, k \leq i$:
- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If dist $(a_k, a_l) < 2^{m-i}$ then dist $(a_k, a_l) = \text{dist}(b_k, b_l)$

^aWe assume that $\mathfrak{A},\mathfrak{B}$ interpret < as a linear order over the domain

Lemma (Sufficiently large linear orders look similar)

Any linearly ordered $\{\leq\}$ -structures $\mathfrak{A},\mathfrak{B}$ of cardinality $\geq 2^m$ satisfy $\mathfrak{A} \equiv_m^{\{\leq\}} \mathfrak{B}$.

- Let $\overline{a} := (a_{-1}, a_0, \dots, a_i)$ and $\overline{b} := (b_{-1}, b_0, \dots, b_i)$ be the history of the play after *i*-rounds.
- Dummy (-1)-th and 0-th rounds of the game: select min/max elements of $\mathfrak{A}, \mathfrak{B}$.

- We play as \forall : we want to guarantee that after the *i*-th round we have for all $I, k \leq i$:
- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

 $^{{}^}a \text{We}$ assume that $\mathfrak{A},\mathfrak{B}$ interpret < as a linear order over the domain

Lemma (Sufficiently large linear orders look similar)

Any linearly ordered $\{\leq\}$ -structures $\mathfrak{A},\mathfrak{B}$ of cardinality $\geq 2^m$ satisfy $\mathfrak{A}\equiv^{\{\leq\}}_m\mathfrak{B}$.

- Let $\overline{a} := (a_{-1}, a_0, \dots, a_i)$ and $\overline{b} := (b_{-1}, b_0, \dots, b_i)$ be the history of the play after *i*-rounds.
- Dummy (-1)-th and 0-th rounds of the game: select min/max elements of $\mathfrak{A}, \mathfrak{B}$.

- We play as \forall : we want to guarantee that after the *i*-th round we have for all $I, k \leq i$:
- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

 $^{{}^}a \text{We}$ assume that $\mathfrak{A},\mathfrak{B}$ interpret < as a linear order over the domain

Lemma (Sufficiently large linear orders look similar)

Any linearly ordered $\{\leq\}$ -structures $\mathfrak{A},\mathfrak{B}$ of cardinality $\geq 2^m$ satisfy $\mathfrak{A}\equiv^{\{\leq\}}_m\mathfrak{B}$.

- Let $\overline{a} := (a_{-1}, a_0, \dots, a_i)$ and $\overline{b} := (b_{-1}, b_0, \dots, b_i)$ be the history of the play after *i*-rounds.
- Dummy (-1)-th and 0-th rounds of the game: select min/max elements of $\mathfrak{A}, \mathfrak{B}$.

- We play as \forall : we want to guarantee that after the *i*-th round we have for all $I, k \leq i$:
- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If $dist(a_k, a_l) \ge 2^{m-i}$ then $dist(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

∀ should preserve these conditions

 $^{{}^}a$ We assume that $\mathfrak{A},\mathfrak{B}$ interpret \leq as a linear order over the domain

Lemma (Sufficiently large linear orders look similar)

Any linearly ordered $\{\leq\}$ -structures $\mathfrak{A},\mathfrak{B}$ of cardinality $\geq 2^m$ satisfy $\mathfrak{A}\equiv^{\{\leq\}}_m\mathfrak{B}$.

- Let $\overline{a} := (a_{-1}, a_0, \dots, a_i)$ and $\overline{b} := (b_{-1}, b_0, \dots, b_i)$ be the history of the play after *i*-rounds.
- Dummy (-1)-th and 0-th rounds of the game: select min/max elements of $\mathfrak{A}, \mathfrak{B}$.

- We play as \forall : we want to guarantee that after the *i*-th round we have for all $I, k \leq i$:
- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If $dist(a_k, a_l) \ge 2^{m-i}$ then $dist(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").
- Assume \exists picks $a_{i+1} \in A$.

∀ should preserve these conditions

^aWe assume that $\mathfrak{A},\mathfrak{B}$ interpret \leq as a linear order over the domain

Lemma (Sufficiently large linear orders look similar)

Any linearly ordered $\{\leq\}$ -structures $\mathfrak{A},\mathfrak{B}$ of cardinality $\geq 2^m$ satisfy $\mathfrak{A}\equiv_m^{\{\leq\}}\mathfrak{B}$.

- Let $\overline{a} := (a_{-1}, a_0, \dots, a_i)$ and $\overline{b} := (b_{-1}, b_0, \dots, b_i)$ be the history of the play after *i*-rounds.
- Dummy (-1)-th and 0-th rounds of the game: select min/max elements of $\mathfrak{A}, \mathfrak{B}$.

- We play as \forall : we want to guarantee that after the *i*-th round we have for all $I, k \leq i$:
- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").
- Assume \exists picks $a_{i+1} \in A$. Let a_i, a_k be the closest such that $a_i \leq^{\mathfrak{A}} a_{i+1} \leq^{\mathfrak{A}} a_k$.

∀ should preserve these conditions

^aWe assume that $\mathfrak{A},\mathfrak{B}$ interpret < as a linear order over the domain

Lemma (Sufficiently large linear orders look similar)

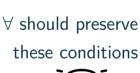
Any linearly ordered^a $\{\leq\}$ -structures $\mathfrak{A},\mathfrak{B}$ of cardinality $\geq 2^m$ satisfy $\mathfrak{A}\equiv_m^{\{\leq\}}\mathfrak{B}$.

- Let $\overline{a} := (a_{-1}, a_0, \dots, a_i)$ and $\overline{b} := (b_{-1}, b_0, \dots, b_i)$ be the history of the play after *i*-rounds.
- Dummy (-1)-th and 0-th rounds of the game: select min/max elements of $\mathfrak{A}, \mathfrak{B}$.

- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").
- Assume \exists picks $a_{i+1} \in A$. Let a_i, a_k be the closest such that $a_i \leq^{\mathfrak{A}} a_{i+1} \leq^{\mathfrak{A}} a_k$.

$$\mathfrak{A}:=$$
 $\cdots \longrightarrow \stackrel{a_l}{\longrightarrow} \cdots \longrightarrow \stackrel{a_{i+1}}{\longrightarrow} \cdots \longrightarrow \stackrel{a_k}{\longrightarrow} \cdots$

$$\mathfrak{B}:= \cdots \longrightarrow b_l \longrightarrow \cdots \longrightarrow \cdots$$



^aWe assume that $\mathfrak{A},\mathfrak{B}$ interpret < as a linear order over the domain

Lemma (Sufficiently large linear orders look similar)

Any linearly ordered^a $\{\leq\}$ -structures $\mathfrak{A},\mathfrak{B}$ of cardinality $\geq 2^m$ satisfy $\mathfrak{A}\equiv_m^{\{\leq\}}\mathfrak{B}$.

- Let $\overline{a} := (a_{-1}, a_0, \dots, a_i)$ and $\overline{b} := (b_{-1}, b_0, \dots, b_i)$ be the history of the play after *i*-rounds.
- Dummy (-1)-th and 0-th rounds of the game: select min/max elements of $\mathfrak{A}, \mathfrak{B}$.



- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

$$\mathfrak{A} := \longrightarrow \stackrel{a_l}{\longrightarrow} \cdots \longrightarrow \stackrel{a_{i+1}}{\longrightarrow} \cdots \longrightarrow \stackrel{a_k}{\longrightarrow} \cdots$$

$$\mathfrak{B}:= \cdots \longrightarrow b_l \longrightarrow \cdots \longrightarrow b_k \longrightarrow \cdots$$

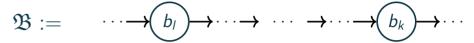
∀ should preserve

these conditions

 $^{{}^}a ext{We}$ assume that $\mathfrak{A},\mathfrak{B}$ interpret \leq as a linear order over the domain

Recall that \exists picked $a_{i+1} \in A$ and a_i, a_k are the closest such that $a_i \leq^{\mathfrak{A}} a_{i+1} \leq^{\mathfrak{A}} a_k$.

Recall that \exists picked $a_{i+1} \in A$ and a_i, a_k are the closest such that $a_i \leq^{\mathfrak{A}} a_{i+1} \leq^{\mathfrak{A}} a_k$.



Recall that \exists picked $a_{i+1} \in A$ and a_i, a_k are the closest such that $a_i \leq^{\mathfrak{A}} a_{i+1} \leq^{\mathfrak{A}} a_k$.

$$\mathfrak{A}:=$$
 $\cdots \longrightarrow (a_l) \longrightarrow \cdots \longrightarrow (a_{k+1}) \longrightarrow \cdots \longrightarrow (a_k) \longrightarrow \cdots \longrightarrow (b_l) \longrightarrow \cdots \longrightarrow (b_l) \longrightarrow \cdots \longrightarrow (b_k) \longrightarrow \cdots \longrightarrow (b_l) \longrightarrow (b_l) \longrightarrow \cdots \longrightarrow (b_l) \longrightarrow \cdots \longrightarrow (b_l) \longrightarrow \cdots \longrightarrow (b_l) \longrightarrow \cdots \longrightarrow (b_l) \longrightarrow$

Inductive assumption for all $l, k \leq i$:

- 1. $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- 3. If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play far if \exists plays far").

Recall that \exists picked $a_{i+1} \in A$ and a_i, a_k are the closest such that $a_i \leq^{\mathfrak{A}} a_{i+1} \leq^{\mathfrak{A}} a_k$.

Inductive assumption for all $l, k \leq i$:

- 1. $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- 2. If $dist(a_k, a_l) \ge 2^{m-i}$ then $dist(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far"). 3. If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

∀ should find a suitable b_{i+1}

Recall that \exists picked $a_{i+1} \in A$ and a_i, a_k are the closest such that $a_i \leq^{\mathfrak{A}} a_{i+1} \leq^{\mathfrak{A}} a_k$.

Inductive assumption for all $l, k \leq i$:

- 1. $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- 3. If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

 \forall should find a suitable b_{i+1}

Recall that \exists picked $a_{i+1} \in A$ and a_i, a_k are the closest such that $a_i \leq^{\mathfrak{A}} a_{i+1} \leq^{\mathfrak{A}} a_k$.

$$\mathfrak{B} := \cdots \longrightarrow b_l \longrightarrow \cdots \longrightarrow b_k \longrightarrow \cdots$$

Inductive assumption for all $l, k \leq i$:

- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

 \forall should find a suitable b_{i+1}

Case I: dist $(a_{l}, a_{k}) < 2^{m-i}$

$$\mathfrak{A} := \qquad \cdots \longrightarrow \stackrel{a_l}{\underbrace{a_l, a_k}} < 2^{m-i}$$

$$\mathfrak{B} := \qquad \cdots \longrightarrow \stackrel{a_{l+1}}{\underbrace{a_{l+1}}} \longrightarrow \cdots \longrightarrow \stackrel{a_{k+1}}{\underbrace{a_{l+1}}} \longrightarrow \cdots \longrightarrow \stackrel{a_{l+1}}{\underbrace{a_{l+1}}} \longrightarrow \cdots \longrightarrow \stackrel{a_{l+1}}{\underbrace$$

$$= \cdots \longrightarrow b_l \longrightarrow \cdots \longrightarrow \cdots \longrightarrow b_k \longrightarrow \cdots$$

Recall that \exists picked $a_{i+1} \in A$ and a_i, a_k are the closest such that $a_i \leq^{\mathfrak{A}} a_{i+1} \leq^{\mathfrak{A}} a_k$.

$$\mathfrak{B} := \cdots \longrightarrow b_l \longrightarrow \cdots \longrightarrow b_k \longrightarrow \cdots$$

Inductive assumption for all $l, k \leq i$:

- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

Case I: $dist(a_{l}, a_{k}) < 2^{m-i}$

$$\mathfrak{A} := \underbrace{\operatorname{dist}(a_l, a_k) < 2^{m-i}}_{\operatorname{dist}(b_l, b_k) = \operatorname{dist}(a_l, a_k)}$$

$$\mathfrak{A} := \underbrace{\operatorname{dist}(b_l, b_k) = \operatorname{dist}(a_l, a_k)}_{\operatorname{dist}(b_l, b_k) = \operatorname{dist}(a_l, a_k)}$$

Then by ind. ass. $dist(a_l, a_k) = dist(b_l, b_k)$,

Recall that \exists picked $a_{i+1} \in A$ and a_i, a_k are the closest such that $a_i \leq^{\mathfrak{A}} a_{i+1} \leq^{\mathfrak{A}} a_k$.

$$\mathfrak{A}:= \longrightarrow \overbrace{a_l} \longrightarrow \cdots \longrightarrow \overbrace{a_{i+1}} \longrightarrow \cdots \longrightarrow \overbrace{a_k} \longrightarrow \cdots$$

$$a_{i+1} \longrightarrow \cdots \longrightarrow a_k \longrightarrow \cdots \longrightarrow b_l \longrightarrow \cdots \longrightarrow b_k \longrightarrow \cdots$$

Inductive assumption for all $l, k \leq i$:

- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-l}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

 \forall should find a suitable b_{i+1}

Case I: $dist(a_{l}, a_{k}) < 2^{m-i}$

$$\mathfrak{A} := \underbrace{ \text{dist}(a_l, a_k) < 2^{m-i}}_{\text{dist}(b_l, b_k) = \text{dist}(a_l, a_k)}$$

$$\mathfrak{A} := \underbrace{ \text{by assump: } \text{dist}(b_l, b_k) = \text{dist}(a_l, a_k)}_{\text{dist}(b_l, b_k) = \text{dist}(a_l, a_k)}$$

Then by ind. ass. $dist(a_l, a_k) = dist(b_l, b_k)$, and hence $[a_l, a_k] \cong [b_l, b_k]$.

Recall that \exists picked $a_{i+1} \in A$ and a_i, a_k are the closest such that $a_i \leq^{\mathfrak{A}} a_{i+1} \leq^{\mathfrak{A}} a_k$.

$$\mathfrak{A}:=$$
 \longrightarrow $a_l\longrightarrow\cdots\longrightarrow$ $a_{l+1}\longrightarrow\cdots\longrightarrow$ $a_k\longrightarrow\cdots$

$$a_{i+1} \rightarrow \cdots \rightarrow a_k \rightarrow \cdots$$
 $\mathfrak{B} := \cdots \rightarrow b_l \rightarrow \cdots \rightarrow \cdots \rightarrow b_k \rightarrow \cdots$

Inductive assumption for all $l, k \leq i$:

- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-l}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

Case I: $dist(a_{l}, a_{k}) < 2^{m-i}$

$$\mathfrak{A} := \qquad \qquad \mathfrak{A}_{l} \xrightarrow{\operatorname{dist}(a_{l}, a_{k})} < 2^{m-i} \qquad \qquad \text{by assump: } \operatorname{dist}(b_{l}, b_{k}) = \operatorname{dist}(a_{l}, a_{k}) \\ \mathfrak{A} := \qquad \qquad \mathfrak{A}_{l} \xrightarrow{a_{l}} \xrightarrow{a_{l}} \cdots \xrightarrow{a_{l}} \cdots \xrightarrow{a_{l}} \xrightarrow{a_{l}} \cdots \xrightarrow{a_{l}} \cdots \xrightarrow{a_{l}} \xrightarrow{a_{l}} \cdots \xrightarrow{a$$

Then by ind. ass. $dist(a_l, a_k) = dist(b_l, b_k)$, and hence $[a_l, a_k] \cong [b_l, b_k]$.

Pick b_{i+1} such that

Recall that \exists picked $a_{i+1} \in A$ and a_i, a_k are the closest such that $a_i \leq^{\mathfrak{A}} a_{i+1} \leq^{\mathfrak{A}} a_k$.

$$\mathfrak{A}:=$$
 $\cdots \rightarrow \stackrel{a_l}{\longrightarrow} \cdots \rightarrow \stackrel{a_{i+1}}{\longrightarrow} \cdots \rightarrow \stackrel{a_k}{\longrightarrow} \cdots$

$$a_{i+1} \rightarrow \cdots \rightarrow a_k \rightarrow \cdots$$
 $\mathfrak{B} := \cdots \rightarrow b_l \rightarrow \cdots \rightarrow \cdots \rightarrow b_k \rightarrow \cdots$

Inductive assumption for all $l, k \leq i$:

- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-l}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

Case I: $dist(a_{l}, a_{k}) < 2^{m-i}$

$$\mathfrak{A} := \qquad \qquad \mathfrak{A}_{l} \xrightarrow{\operatorname{dist}(a_{l}, a_{k})} < 2^{m-i} \qquad \qquad \text{by assump: } \operatorname{dist}(b_{l}, b_{k}) = \operatorname{dist}(a_{l}, a_{k}) \\ \mathfrak{A} := \qquad \qquad \mathfrak{A}_{l} \xrightarrow{a_{l}+1} \xrightarrow{a_{l}+1} \xrightarrow{a_{l}+1} \xrightarrow{a_{l}+1} \cdots \xrightarrow{a_{k}+1} \xrightarrow{a_{k}+1} \cdots \xrightarrow{a_{k}+1} \xrightarrow{a_{k}+1} \cdots \xrightarrow{a_{k}+1} \xrightarrow{a_{k}+1} \cdots \xrightarrow$$

Then by ind. ass. $dist(a_l, a_k) = dist(b_l, b_k)$, and hence $[a_l, a_k] \cong [b_l, b_k]$.

Pick b_{i+1} such that $b_l \leq^{\mathfrak{B}} b_{i+1} \leq^{\mathfrak{A}} b_l$.

Recall that \exists picked $a_{i+1} \in A$ and a_i, a_k are the closest such that $a_i \leq^{\mathfrak{A}} a_{i+1} \leq^{\mathfrak{A}} a_k$.

$$\mathfrak{A} := \longrightarrow \stackrel{a_l}{\longrightarrow} \cdots \rightarrow \stackrel{a_{i+1}}{\longrightarrow} \cdots \rightarrow \stackrel{a_k}{\longrightarrow} \cdots$$

$$a_{i+1} \rightarrow \cdots \rightarrow a_k \rightarrow \cdots$$
 $\mathfrak{B} := \cdots \rightarrow b_l \rightarrow \cdots \rightarrow \cdots \rightarrow b_k \rightarrow \cdots$

Inductive assumption for all $l, k \leq i$:

- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-l}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

Case I: $dist(a_{l}, a_{k}) < 2^{m-i}$

$$\mathfrak{A} := \qquad \overset{\text{dist}(a_l, a_k) < 2^{m-i}}{\longrightarrow} \qquad \qquad \mathfrak{B} := \qquad \overset{\text{dist}(b_l, b_k) = \operatorname{dist}(a_l, a_k)}{\longrightarrow} \cdots \longrightarrow \overset{\text{dist}(b_l, b_k) = \operatorname{dist}(a_l, b_k)}{\longrightarrow} \cdots \longrightarrow \overset{\text{dist}(b_l, b_k) = \operatorname{dist}(a_l, b_k)}{\longrightarrow} \cdots \longrightarrow \overset{\text{dist}(b_l, b_k$$

Then by ind. ass. $dist(a_l, a_k) = dist(b_l, b_k)$, and hence $[a_l, a_k] \cong [b_l, b_k]$.

Pick b_{i+1} such that $b_l \leq^{\mathfrak{B}} b_{i+1} \leq^{\mathfrak{A}} b_l$. $\operatorname{dist}(a_l, a_{i+1}) = \operatorname{dist}(b_l, b_{i+1})$,

Recall that \exists picked $a_{i+1} \in A$ and a_i, a_k are the closest such that $a_i \leq^{\mathfrak{A}} a_{i+1} \leq^{\mathfrak{A}} a_k$.

$$\mathfrak{A} := \longrightarrow \stackrel{a_l}{\longrightarrow} \cdots \rightarrow \stackrel{a_{i+1}}{\longrightarrow} \cdots \rightarrow \stackrel{a_k}{\longrightarrow} \cdots$$

$$a_{i+1} \rightarrow \cdots \rightarrow a_k \rightarrow \cdots$$
 $\mathfrak{B} := \cdots \rightarrow b_l \rightarrow \cdots \rightarrow \cdots \rightarrow b_k \rightarrow \cdots$

Inductive assumption for all $l, k \leq i$:

- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

Case I: $dist(a_{l}, a_{k}) < 2^{m-i}$

$$\mathfrak{A} := \underbrace{\operatorname{dist}(a_{l}, a_{k}) < 2^{m-i}}_{\operatorname{dist}(b_{l}, b_{k}) = \operatorname{dist}(a_{l}, a_{k})}_{\operatorname{dist}(b_{l}, b_{k}) = \operatorname{dist}(a_{l}, a_{k})}$$

$$\mathfrak{A} := \underbrace{\cdots \rightarrow (a_{l}) \rightarrow \cdots \rightarrow (a_{k+1}) \rightarrow \cdots \rightarrow (a_{k}) \rightarrow$$

Then by ind. ass. $dist(a_l, a_k) = dist(b_l, b_k)$, and hence $[a_l, a_k] \cong [b_l, b_k]$.

Pick b_{i+1} such that $b_i \leq^{\mathfrak{A}} b_{i+1} \leq^{\mathfrak{A}} b_i$. dist $(a_i, a_{i+1}) = \text{dist}(b_i, b_{i+1})$, and dist $(a_k, a_{i+1}) = \text{dist}(b_k, b_{i+1})$.

Inductive assumption for all l, k < i:

- 1. $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- 2. If $dist(a_k, a_l) \ge 2^{m-i}$ then $dist(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far"). 3. If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

Inductive assumption for all l, k < i:

- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If $dist(a_k, a_l) \ge 2^{m-i}$ then $dist(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far"). **3.** If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

∀ should find a suitable b_{i+1}

Inductive assumption for all l, k < i:

- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- 2. If $dist(a_k, a_l) \ge 2^{m-i}$ then $dist(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far"). 3. If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

Case II: $dist(a_l, a_k) \ge 2^{m-i}$

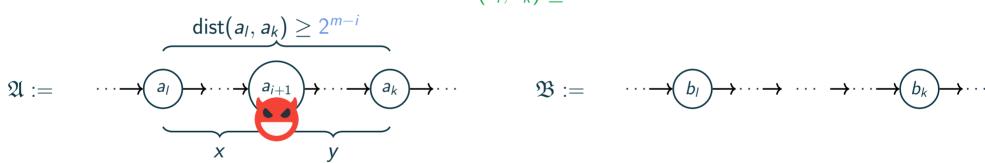
∀ should find a suitable b_{i+1}

Inductive assumption for all $l, k \leq i$:

- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

 \forall should find a suitable b_{i+1}

Case II: dist $(a_l, a_k) \ge 2^{m-i}$



Inductive assumption for all $l, k \leq i$:

- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

 \forall should find a suitable b_{i+1}

Case II: dist $(a_l, a_k) \ge 2^{m-i}$



Then by ind. ass. $dist(b_l, b_k) \ge 2^{m-i}$.

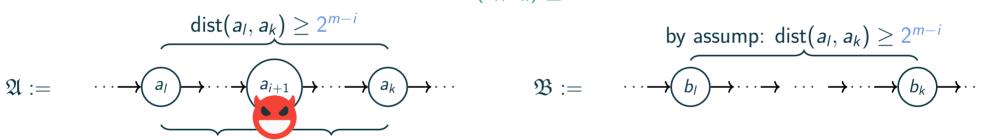
X

Inductive assumption for all $l, k \leq i$:

- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

 \forall should find a suitable b_{i+1}

Case II: dist $(a_l, a_k) \ge 2^{m-i}$



Then by ind. ass. $dist(b_l, b_k) \ge 2^{m-i}$. We have three cases.

X

Inductive assumption for all $l, k \leq i$:

- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

 \forall should find a suitable b_{i+1}

Case II: dist $(a_l, a_k) \ge 2^{m-i}$

Then by ind. ass. $dist(b_l, b_k) \ge 2^{m-i}$. We have three cases.

X

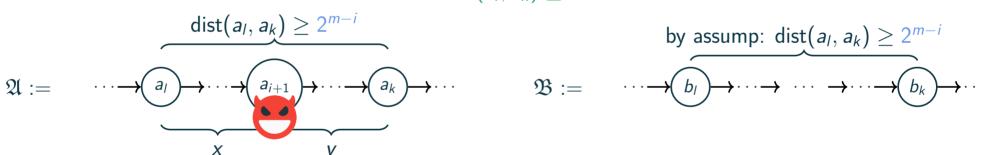
•
$$x > 2^{m-i-1}$$
 and $y > 2^{m-i-1}$

Inductive assumption for all $l, k \leq i$:

- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

 \forall should find a suitable b_{i+1}

Case II: dist $(a_l, a_k) \ge 2^{m-i}$



Then by ind. ass. $dist(b_l, b_k) \ge 2^{m-i}$. We have three cases.

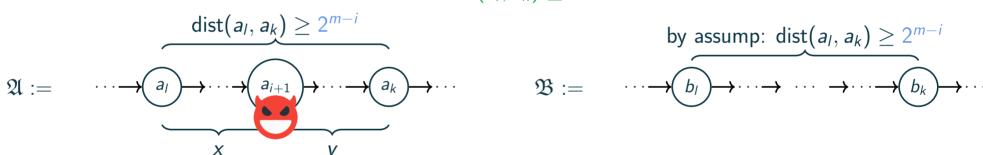
• $x \ge 2^{m-i-1}$ and $y \ge 2^{m-i-1} \rightsquigarrow \text{Take } b_{i+1}$ to the middle between b_l and b_k .

Inductive assumption for all $l, k \leq i$:

- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

 \forall should find a suitable b_{i+1}

Case II: dist $(a_l, a_k) \ge 2^{m-i}$



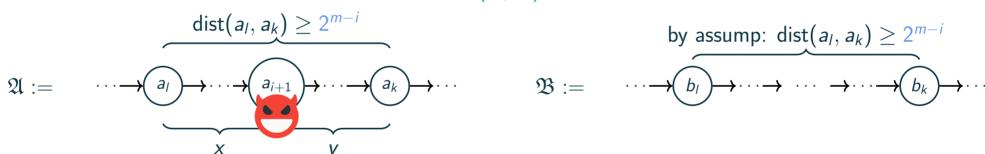
- $x \ge 2^{m-i-1}$ and $y \ge 2^{m-i-1} \rightsquigarrow \text{Take } b_{i+1}$ to the middle between b_l and b_k .
- $x < 2^{m-i-1}$ and $y > 2^{m-i-1}$

Inductive assumption for all $l, k \leq i$:

- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

 \forall should find a suitable b_{i+1}

Case II: dist $(a_l, a_k) \ge 2^{m-i}$



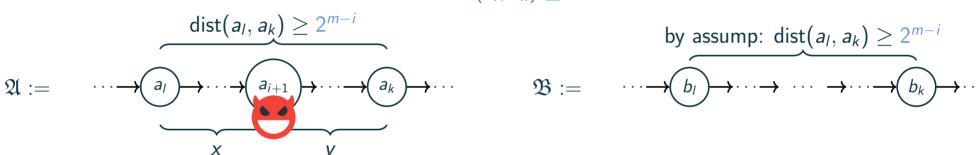
- $x \ge 2^{m-i-1}$ and $y \ge 2^{m-i-1} \rightsquigarrow \text{Take } b_{i+1}$ to the middle between b_l and b_k .
- $x < 2^{m-i-1}$ and $y \ge 2^{m-i-1} \leadsto b_{i+1}$ is the unique node to the right of b_l so that $dist(b_l, b_{i+1}) = x$.

Inductive assumption for all $l, k \leq i$:

- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

 \forall should find a suitable b_{i+1}

Case II: dist $(a_l, a_k) \ge 2^{m-i}$



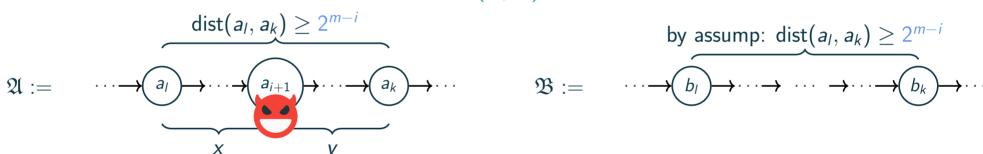
- $x \ge 2^{m-i-1}$ and $y \ge 2^{m-i-1} \rightsquigarrow \text{Take } b_{i+1}$ to the middle between b_l and b_k .
- $x < 2^{m-i-1}$ and $y \ge 2^{m-i-1} \leadsto b_{i+1}$ is the unique node to the right of b_l so that $dist(b_l, b_{i+1}) = x$.
- $x > 2^{m-i-1}$ and $v < 2^{m-i-1}$

Inductive assumption for all $l, k \leq i$:

- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

 \forall should find a suitable b_{i+1}

Case II: dist $(a_l, a_k) \ge 2^{m-i}$



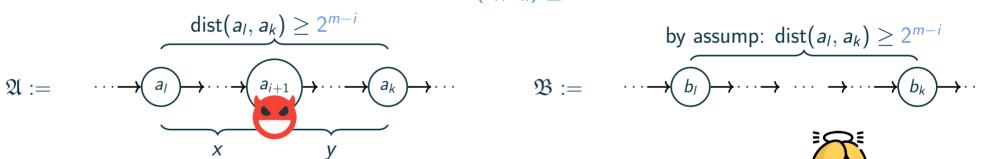
- $x \ge 2^{m-i-1}$ and $y \ge 2^{m-i-1} \rightsquigarrow \text{Take } b_{i+1}$ to the middle between b_l and b_k .
- $x < 2^{m-i-1}$ and $y \ge 2^{m-i-1} \leadsto b_{i+1}$ is the unique node to the right of b_l so that $dist(b_l, b_{i+1}) = x$.
- $x \ge 2^{m-i-1}$ and $y < 2^{m-i-1} \leadsto b_{i+1}$ is the unique node to the left of b_k so that $dist(b_{i+1}, b_k) = y$.

Inductive assumption for all $l, k \leq i$:

- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

 \forall should find a suitable b_{i+1}

Case II: dist $(a_l, a_k) \ge 2^{m-i}$



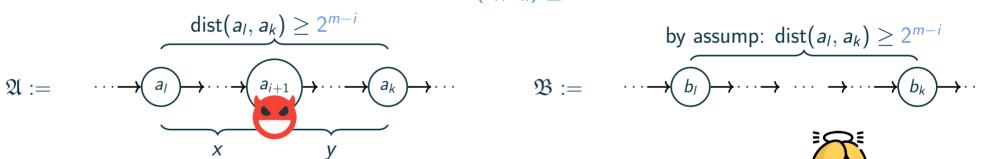
- $x \ge 2^{m-i-1}$ and $y \ge 2^{m-i-1} \rightsquigarrow \text{Take } b_{i+1}$ to the middle between b_l and b_k .
- $x < 2^{m-i-1}$ and $y \ge 2^{m-i-1} \leadsto b_{i+1}$ is the unique node to the right of b_l so that $dist(b_l, b_{i+1}) = x$.
- $x \ge 2^{m-i-1}$ and $y < 2^{m-i-1} \leadsto b_{i+1}$ is the unique node to the left of b_k so that $dist(b_{i+1}, b_k) = y$.

Inductive assumption for all $l, k \leq i$:

- **1.** $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).
- **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far").
- **3.** If $dist(a_k, a_l) < 2^{m-i}$ then $dist(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

 \forall should find a suitable b_{i+1}

Case II: dist $(a_l, a_k) \ge 2^{m-i}$



Then by ind. ass. $dist(b_l, b_k) \ge 2^{m-i}$. We have three cases.

- $x \ge 2^{m-i-1}$ and $y \ge 2^{m-i-1} \rightsquigarrow \text{Take } b_{i+1}$ to the middle between b_i and b_k .
- $x < 2^{m-i-1}$ and $y \ge 2^{m-i-1} \leadsto b_{i+1}$ is the unique node to the right of b_i so that $dist(b_i, b_{i+1}) = x$.
- $x \ge 2^{m-i-1}$ and $y < 2^{m-i-1} \leadsto b_{i+1}$ is the unique node to the left of b_k so that $dist(b_{i+1}, b_k) = y$.

 \forall wins!

There is an alternative approach to the previous proof by composing winning strategies.

There is an alternative approach to the previous proof by composing winning strategies. Key lemma:

There is an alternative approach to the previous proof by composing winning strategies. Key lemma:

Lemma (Composition lemma)

Let $\mathfrak{A},\mathfrak{B}$ be linearly-ordered, with $a\in A,b\in B$ s.t. $\mathfrak{A}^{\leq a}\equiv_m\mathfrak{B}^{\leq b}$ and $\mathfrak{A}^{\geq a}\equiv_m\mathfrak{B}^{\geq b}$. Then $\mathfrak{A}\equiv_m\mathfrak{B}$.

There is an alternative approach to the previous proof by composing winning strategies. Key lemma:

Lemma (Composition lemma)

Let $\mathfrak{A},\mathfrak{B}$ be linearly-ordered, with $a\in A,b\in B$ s.t. $\mathfrak{A}^{\leq a}\equiv_m\mathfrak{B}^{\leq b}$ and $\mathfrak{A}^{\geq a}\equiv_m\mathfrak{B}^{\geq b}$. Then $\mathfrak{A}\equiv_m\mathfrak{B}$.

We can compose strategies under:

There is an alternative approach to the previous proof by composing winning strategies. Key lemma:

Lemma (Composition lemma)

Let $\mathfrak{A},\mathfrak{B}$ be linearly-ordered, with $a\in A,b\in B$ s.t. $\mathfrak{A}^{\leq a}\equiv_m\mathfrak{B}^{\leq b}$ and $\mathfrak{A}^{\geq a}\equiv_m\mathfrak{B}^{\geq b}$. Then $\mathfrak{A}\equiv_m\mathfrak{B}$.

We can compose strategies under:

1. Disjoint unions.

There is an alternative approach to the previous proof by composing winning strategies. Key lemma:

Lemma (Composition lemma)

Let $\mathfrak{A},\mathfrak{B}$ be linearly-ordered, with $a\in A,b\in B$ s.t. $\mathfrak{A}^{\leq a}\equiv_m\mathfrak{B}^{\leq b}$ and $\mathfrak{A}^{\geq a}\equiv_m\mathfrak{B}^{\geq b}$. Then $\mathfrak{A}\equiv_m\mathfrak{B}$.

We can compose strategies under:

- 1. Disjoint unions.
- **2.** Ordered sums.

There is an alternative approach to the previous proof by composing winning strategies. Key lemma:

Lemma (Composition lemma)

Let $\mathfrak{A},\mathfrak{B}$ be linearly-ordered, with $a\in A,b\in B$ s.t. $\mathfrak{A}^{\leq a}\equiv_m\mathfrak{B}^{\leq b}$ and $\mathfrak{A}^{\geq a}\equiv_m\mathfrak{B}^{\geq b}$. Then $\mathfrak{A}\equiv_m\mathfrak{B}$.

We can compose strategies under:

- 1. Disjoint unions.
- **2.** Ordered sums.
- **3.** Products.

There is an alternative approach to the previous proof by composing winning strategies. Key lemma:

Lemma (Composition lemma)

Let $\mathfrak{A},\mathfrak{B}$ be linearly-ordered, with $a\in A,b\in B$ s.t. $\mathfrak{A}^{\leq a}\equiv_m\mathfrak{B}^{\leq b}$ and $\mathfrak{A}^{\geq a}\equiv_m\mathfrak{B}^{\geq b}$. Then $\mathfrak{A}\equiv_m\mathfrak{B}$.

We can compose strategies under:

1. Disjoint unions.

Consult a lecture by Anuj Dawar 9:50-19:20 [Youtube].

- 2. Ordered sums.
- **3.** Products.

There is an alternative approach to the previous proof by composing winning strategies. Key lemma:

Lemma (Composition lemma)

Let $\mathfrak{A},\mathfrak{B}$ be linearly-ordered, with $a\in A,b\in B$ s.t. $\mathfrak{A}^{\leq a}\equiv_m\mathfrak{B}^{\leq b}$ and $\mathfrak{A}^{\geq a}\equiv_m\mathfrak{B}^{\geq b}$. Then $\mathfrak{A}\equiv_m\mathfrak{B}$.

We can compose strategies under:

- 1. Disjoint unions. Consult a lecture by Anuj Dawar 9:50-19:20 [Youtube].
- 2. Ordered sums. as well as Thm. 3.6, Proof #2 (p. 30-31) and Ex. 3.15 from [Libkin's book].
- **3.** Products.

There is an alternative approach to the previous proof by composing winning strategies. Key lemma:

Lemma (Composition lemma)

Let $\mathfrak{A},\mathfrak{B}$ be linearly-ordered, with $a\in A,b\in B$ s.t. $\mathfrak{A}^{\leq a}\equiv_m\mathfrak{B}^{\leq b}$ and $\mathfrak{A}^{\geq a}\equiv_m\mathfrak{B}^{\geq b}$. Then $\mathfrak{A}\equiv_m\mathfrak{B}$.

We can compose strategies under:

- 1. Disjoint unions. Consult a lecture by Anuj Dawar 9:50-19:20 [Youtube].
 - 2. Ordered sums. as well as Thm. 3.6, Proof #2 (p. 30-31) and Ex. 3.15 from [Libkin's book].
 - 3. Products.

Algorithmic approach to Ehrenfeucht-Fraïssé games: Can we make E-F games computable?

There is an alternative approach to the previous proof by composing winning strategies. Key lemma:

Lemma (Composition lemma)

Let $\mathfrak{A},\mathfrak{B}$ be linearly-ordered, with $a\in A,b\in B$ s.t. $\mathfrak{A}^{\leq a}\equiv_m\mathfrak{B}^{\leq b}$ and $\mathfrak{A}^{\geq a}\equiv_m\mathfrak{B}^{\geq b}$. Then $\mathfrak{A}\equiv_m\mathfrak{B}$.

We can compose strategies under:

1. Disjoint unions.

- Consult a lecture by Anuj Dawar 9:50-19:20 [Youtube].
- 2. Ordered sums. as well as Thm. 3.6, Proof #2 (p. 30–31) and Ex. 3.15 from [Libkin's book].
- 3. Products.

Algorithmic approach to Ehrenfeucht-Fraïssé games: Can we make E-F games computable?

Input: finite τ , τ -structures $\mathfrak{A}, \mathfrak{B}$ and $m \in \mathbb{N}$.

There is an alternative approach to the previous proof by composing winning strategies. Key lemma:

Lemma (Composition lemma)

Let $\mathfrak{A},\mathfrak{B}$ be linearly-ordered, with $a\in A,b\in B$ s.t. $\mathfrak{A}^{\leq a}\equiv_m\mathfrak{B}^{\leq b}$ and $\mathfrak{A}^{\geq a}\equiv_m\mathfrak{B}^{\geq b}$. Then $\mathfrak{A}\equiv_m\mathfrak{B}$.

We can compose strategies under:

1. Disjoint unions.

- Consult a lecture by Anuj Dawar 9:50-19:20 [Youtube].
- 2. Ordered sums. as well as Thm. 3.6, Proof #2 (p. 30–31) and Ex. 3.15 from [Libkin's book].
- 3. Products.

Algorithmic approach to Ehrenfeucht-Fraïssé games: Can we make E-F games computable?

Input: finite τ , τ -structures $\mathfrak{A}, \mathfrak{B}$ and $m \in \mathbb{N}$.

Output: Has Duplication the winning strategy in m-round E-F game on $\mathfrak A$ and $\mathfrak B$?

There is an alternative approach to the previous proof by composing winning strategies. Key lemma:

Lemma (Composition lemma)

Let $\mathfrak{A},\mathfrak{B}$ be linearly-ordered, with $a\in A,b\in B$ s.t. $\mathfrak{A}^{\leq a}\equiv_m\mathfrak{B}^{\leq b}$ and $\mathfrak{A}^{\geq a}\equiv_m\mathfrak{B}^{\geq b}$. Then $\mathfrak{A}\equiv_m\mathfrak{B}$.

We can compose strategies under:

1. Disjoint unions.

- Consult a lecture by Anuj Dawar 9:50-19:20 [Youtube].
- 2. Ordered sums. as well as Thm. 3.6, Proof #2 (p. 30–31) and Ex. 3.15 from [Libkin's book].
- 3. Products.

Algorithmic approach to Ehrenfeucht-Fraïssé games: Can we make E-F games computable?

Input: finite τ , τ -structures $\mathfrak{A}, \mathfrak{B}$ and $m \in \mathbb{N}$.

Output: Has Duplication the winning strategy in m-round E-F game on $\mathfrak A$ and $\mathfrak B$?

Is this problem decidable?:



There is an alternative approach to the previous proof by composing winning strategies. Key lemma:

Lemma (Composition lemma)

Let $\mathfrak{A},\mathfrak{B}$ be linearly-ordered, with $a\in A,b\in B$ s.t. $\mathfrak{A}^{\leq a}\equiv_m\mathfrak{B}^{\leq b}$ and $\mathfrak{A}^{\geq a}\equiv_m\mathfrak{B}^{\geq b}$. Then $\mathfrak{A}\equiv_m\mathfrak{B}$.

We can compose strategies under:

1. Disjoint unions.

- Consult a lecture by Anuj Dawar 9:50-19:20 [Youtube].
- 2. Ordered sums. as well as Thm. 3.6, Proof #2 (p. 30–31) and Ex. 3.15 from [Libkin's book].
- 3. Products.

Algorithmic approach to Ehrenfeucht-Fraïssé games: Can we make E-F games computable?

Input: finite τ , τ -structures $\mathfrak{A}, \mathfrak{B}$ and $m \in \mathbb{N}$.

Output: Has Duplication the winning strategy in m-round E-F game on $\mathfrak A$ and $\mathfrak B$?

Is this problem decidable?: YES! and PSPACE-complete, c.f. [Pezzoli 1998]

There is an alternative approach to the previous proof by composing winning strategies. Key lemma:

Lemma (Composition lemma)

Let $\mathfrak{A},\mathfrak{B}$ be linearly-ordered, with $a\in A,b\in B$ s.t. $\mathfrak{A}^{\leq a}\equiv_m\mathfrak{B}^{\leq b}$ and $\mathfrak{A}^{\geq a}\equiv_m\mathfrak{B}^{\geq b}$. Then $\mathfrak{A}\equiv_m\mathfrak{B}$.

We can compose strategies under:

1. Disjoint unions.

- Consult a lecture by Anuj Dawar 9:50-19:20 [Youtube].
- 2. Ordered sums. as well as Thm. 3.6, Proof #2 (p. 30–31) and Ex. 3.15 from [Libkin's book].
- 3. Products.

Algorithmic approach to Ehrenfeucht-Fraïssé games: Can we make E-F games computable?

Input: finite τ , τ -structures $\mathfrak{A}, \mathfrak{B}$ and $m \in \mathbb{N}$.

Output: Has Duplication the winning strategy in m-round E-F game on $\mathfrak A$ and $\mathfrak B$?

Is this problem decidable?: YES! and PSPACE-complete, c.f. [Pezzoli 1998]

A lot of open problems, e.g.

There is an alternative approach to the previous proof by composing winning strategies. Key lemma:

Lemma (Composition lemma)

Let $\mathfrak{A},\mathfrak{B}$ be linearly-ordered, with $a\in A,b\in B$ s.t. $\mathfrak{A}^{\leq a}\equiv_m\mathfrak{B}^{\leq b}$ and $\mathfrak{A}^{\geq a}\equiv_m\mathfrak{B}^{\geq b}$. Then $\mathfrak{A}\equiv_m\mathfrak{B}$.

We can compose strategies under:

1. Disjoint unions.

- Consult a lecture by Anuj Dawar 9:50-19:20 [Youtube].
- 2. Ordered sums. as well as Thm. 3.6, Proof #2 (p. 30–31) and Ex. 3.15 from [Libkin's book].
- 3. Products.

Algorithmic approach to Ehrenfeucht-Fraïssé games: Can we make E-F games computable?

Input: finite τ , τ -structures $\mathfrak{A}, \mathfrak{B}$ and $m \in \mathbb{N}$.

Output: Has Duplication the winning strategy in m-round E-F game on $\mathfrak A$ and $\mathfrak B$?

Is this problem decidable?: YES! and PSPACE-complete, c.f. [Pezzoli 1998]

A lot of open problems, e.g. "how difficult is to solve the above problem when \mathfrak{A} , \mathfrak{B} are trees?"

There is an alternative approach to the previous proof by composing winning strategies. Key lemma:

Lemma (Composition lemma)

Let $\mathfrak{A},\mathfrak{B}$ be linearly-ordered, with $a\in A,b\in B$ s.t. $\mathfrak{A}^{\leq a}\equiv_m\mathfrak{B}^{\leq b}$ and $\mathfrak{A}^{\geq a}\equiv_m\mathfrak{B}^{\geq b}$. Then $\mathfrak{A}\equiv_m\mathfrak{B}$.

We can compose strategies under:

1. Disjoint unions.

- Consult a lecture by Anuj Dawar 9:50-19:20 [Youtube].
- 2. Ordered sums. as well as Thm. 3.6, Proof #2 (p. 30–31) and Ex. 3.15 from [Libkin's book].
- 3. Products.

Algorithmic approach to Ehrenfeucht-Fraïssé games: Can we make E-F games computable?

Input: finite τ , τ -structures $\mathfrak{A}, \mathfrak{B}$ and $m \in \mathbb{N}$.

Output: Has Duplication the winning strategy in m-round E-F game on $\mathfrak A$ and $\mathfrak B$?

Is this problem decidable?: YES! and PSPACE-complete, c.f. [Pezzoli 1998]

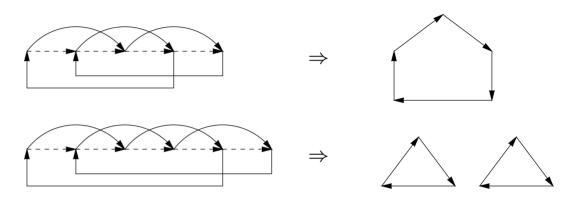
A lot of open problems, e.g. "how difficult is to solve the above problem when \mathfrak{A} , \mathfrak{B} are trees?"

Consult excellent slides by [Angelo Montanari] for more!

If $\mathcal P$ is not expressible, show that $\mathcal P'$ is not.

If \mathcal{P} is not expressible, show that \mathcal{P}' is not. Use case: "odd" $\notin \mathsf{FO}[\{\leq\}]$ implies "connectivity" $\notin \mathsf{FO}[\{\in\}]$

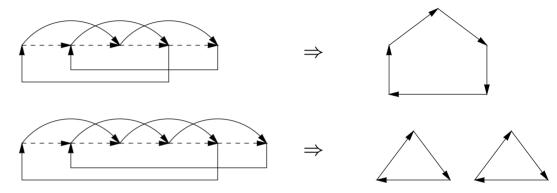
If $\mathcal P$ is not expressible, show that $\mathcal P'$ is not. Use case: "odd" $\notin \mathsf{FO}[\{\leq\}]$ implies "connectivity" $\notin \mathsf{FO}[\{\in\}]$



Reduction of parity to connectivity

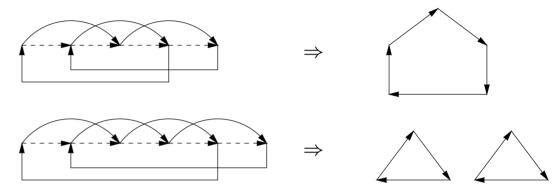
If \mathcal{P} is not expressible, show that \mathcal{P}' is not. Use case: "odd" $\notin \mathsf{FO}[\{\leq\}]$ implies "connectivity" $\notin \mathsf{FO}[\{\in\}]$

• Suppose $\varphi \in \mathsf{FO}[\{E\}]$ defines connectivity.



Reduction of parity to connectivity

- Suppose $\varphi \in \mathsf{FO}[\{E\}]$ defines connectivity.
- From \leq we can define the succ. relation:

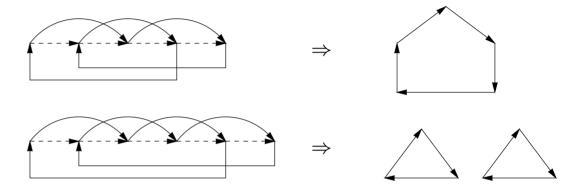


Reduction of parity to connectivity

If \mathcal{P} is not expressible, show that \mathcal{P}' is not. Use case: "odd" $\notin \mathsf{FO}[\{\leq\}]$ implies "connectivity" $\notin \mathsf{FO}[\{\in\}]$

- Suppose $\varphi \in \mathsf{FO}[\{E\}]$ defines connectivity.
- From \leq we can define the succ. relation:

$$\operatorname{succ}(x,y) := (x < y) \land \forall z \ ((z \le x) \lor (y \le z))$$



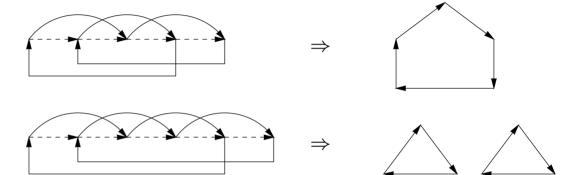
Reduction of parity to connectivity

If \mathcal{P} is not expressible, show that \mathcal{P}' is not. Use case: "odd" $\notin \mathsf{FO}[\{\leq\}]$ implies "connectivity" $\notin \mathsf{FO}[\{\in\}]$

- Suppose $\varphi \in \mathsf{FO}[\{E\}]$ defines connectivity.
- From < we can define the succ. relation:

$$\operatorname{succ}(x,y) := (x < y) \land \forall z \ ((z \le x) \lor (y \le z))$$

• Prepare $\gamma(x, y)$ that holds if

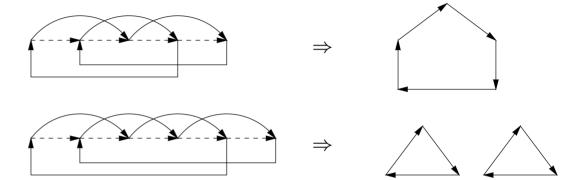


Reduction of parity to connectivity

- Suppose $\varphi \in \mathsf{FO}[\{E\}]$ defines connectivity.
- From < we can define the succ. relation:

$$\operatorname{succ}(x,y) := (x < y) \land \forall z \ ((z \le x) \lor (y \le z))$$

- Prepare $\gamma(x, y)$ that holds if
- 1. y is the succ of succ of x, or

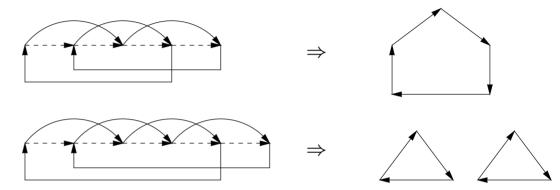


Reduction of parity to connectivity

- Suppose $\varphi \in \mathsf{FO}[\{E\}]$ defines connectivity.
- From < we can define the succ. relation:

$$\operatorname{succ}(x,y) := (x < y) \land \forall z \ ((z \le x) \lor (y \le z))$$

- Prepare $\gamma(x, y)$ that holds if
- 1. y is the succ of succ of x, or
- **2.** x is sec-to-last and y is the first w.r.t \leq , or

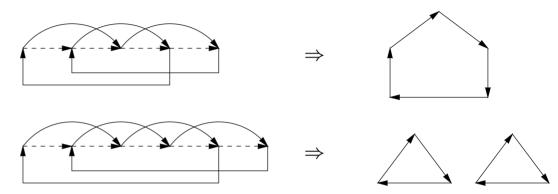


Reduction of parity to connectivity

- Suppose $\varphi \in \mathsf{FO}[\{E\}]$ defines connectivity.
- From < we can define the succ. relation:

$$\operatorname{succ}(x,y) := (x < y) \land \forall z \ ((z \le x) \lor (y \le z))$$

- Prepare $\gamma(x, y)$ that holds if
- 1. y is the succ of succ of x, or
- **2.** x is sec-to-last and y is the first w.r.t \leq , or
- **3.** x is the last one and y is the second w.r.t \leq .



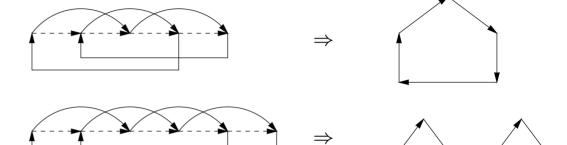
Reduction of parity to connectivity

If \mathcal{P} is not expressible, show that \mathcal{P}' is not. Use case: "odd" $\notin \mathsf{FO}[\{\leq\}]$ implies "connectivity" $\notin \mathsf{FO}[\{\in\}]$

- Suppose $\varphi \in \mathsf{FO}[\{E\}]$ defines connectivity.
- From < we can define the succ. relation:

$$\operatorname{succ}(x,y) := (x < y) \land \forall z \ ((z \le x) \lor (y \le z))$$

- Prepare $\gamma(x, y)$ that holds if
- 1. y is the succ of succ of x, or
- **2.** x is sec-to-last and y is the first w.r.t \leq , or
- **3.** x is the last one and y is the second w.r.t \leq .



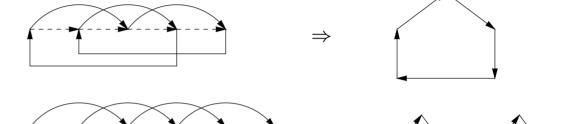
Reduction of parity to connectivity

• Note: γ defines a graph on the elements of the linear order!

- Suppose $\varphi \in \mathsf{FO}[\{E\}]$ defines connectivity.
- From < we can define the succ. relation:

$$\operatorname{succ}(x,y) := (x < y) \land \forall z \ ((z \le x) \lor (y \le z))$$

- Prepare $\gamma(x, y)$ that holds if
- 1. y is the succ of succ of x, or
- **2.** x is sec-to-last and y is the first w.r.t \leq , or
- **3.** x is the last one and y is the second w.r.t \leq .



Reduction of parity to connectivity

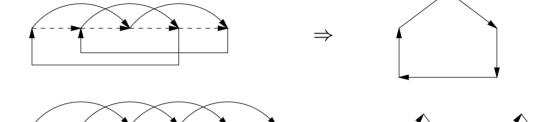
- ullet Note: γ defines a graph on the elements of the linear order!
- ullet Observation: graph defined by γ is connected iff the underlying linear order is odd.

If \mathcal{P} is not expressible, show that \mathcal{P}' is not. Use case: "odd" $\notin \mathsf{FO}[\{\leq\}]$ implies "connectivity" $\notin \mathsf{FO}[\{\in\}]$

- Suppose $\varphi \in \mathsf{FO}[\{E\}]$ defines connectivity.
- From < we can define the succ. relation:

$$\operatorname{succ}(x,y) := (x < y) \land \forall z \ ((z \le x) \lor (y \le z))$$

- Prepare $\gamma(x, y)$ that holds if
- 1. y is the succ of succ of x, or
- **2.** x is sec-to-last and y is the first w.r.t \leq , or
- **3.** x is the last one and y is the second w.r.t \leq .



Reduction of parity to connectivity

- ullet Note: γ defines a graph on the elements of the linear order!
- \bullet Observation: graph defined by γ is connected iff the underlying linear order is odd.

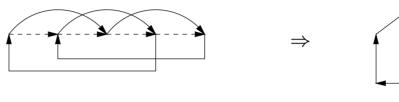
Conclusion: $\varphi[E/\gamma]$ defines "odd". A contradiction!

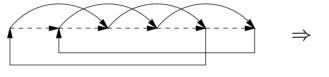
If \mathcal{P} is not expressible, show that \mathcal{P}' is not. Use case: "odd" $\notin \mathsf{FO}[\{\leq\}]$ implies "connectivity" $\notin \mathsf{FO}[\{\in\}]$

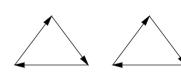
- Suppose $\varphi \in \mathsf{FO}[\{E\}]$ defines connectivity.
- From < we can define the succ. relation:

$$\operatorname{succ}(x,y) := (x < y) \land \forall z \ ((z \le x) \lor (y \le z))$$

- Prepare $\gamma(x, y)$ that holds if
- 1. y is the succ of succ of x, or
- **2.** x is sec-to-last and y is the first w.r.t \leq , or
- **3.** x is the last one and y is the second w.r.t \leq .







Reduction of parity to connectivity

- ullet Note: γ defines a graph on the elements of the linear order!
- ullet Observation: graph defined by γ is connected iff the underlying linear order is odd.

Conclusion: $\varphi[E/\gamma]$ defines "odd". A contradiction!

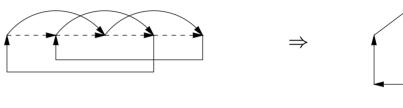
Playing Ehrenfeucht-Fraïssé games is quite difficult. Can we simplify them?

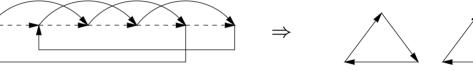
If \mathcal{P} is not expressible, show that \mathcal{P}' is not. Use case: "odd" $\notin \mathsf{FO}[\{\leq\}]$ implies "connectivity" $\notin \mathsf{FO}[\{\in\}]$

- Suppose $\varphi \in \mathsf{FO}[\{E\}]$ defines connectivity.
- From < we can define the succ. relation:

$$\operatorname{succ}(x,y) := (x < y) \land \forall z \ ((z \le x) \lor (y \le z))$$

- Prepare $\gamma(x, y)$ that holds if
- 1. y is the succ of succ of x, or
- **2.** x is sec-to-last and y is the first w.r.t \leq , or
- **3.** x is the last one and y is the second w.r.t \leq .





Reduction of parity to connectivity

- Note: γ defines a graph on the elements of the linear order!
- ullet Observation: graph defined by γ is connected iff the underlying linear order is odd.

Conclusion: $\varphi[E/\gamma]$ defines "odd". A contradiction!

Playing Ehrenfeucht-Fraïssé games is quite difficult. Can we simplify them? Yes, with a notion of locality. Next 2-3 lectures!

Copyright of used icons and pictures

- 1. Universities/DeciGUT/ERC logos downloaded from the corresponding institutional webpages.
- 2. Idea icon created by Vectors Market Flaticon flaticon.com/free-icons/idea.
- 3. Head icons created by Eucalyp Flaticon flaticon.com/free-icons/head
- **4.** Graph icons created by SBTS2018 Flaticon flaticon.com/free-icons/graph
- 5. Angel icons created by Freepik Flaticon flaticon.com/free-icons/angel
- 6. Devil icons created by Freepik and Pixel perfect Flaticon flaticon.com/free-icons/devil
- 7. VS icons created by Freepik Flaticon flaticon.com/free-icons/vs
- 8. Robot icon created by Eucalyp Flaticon flaticon.com/free-icons/robot.
- 9. Figure 3.3. from Libkin's Book homepages.inf.ed.ac.uk/libkin/fmt/fmt.pdf
- 10. Warning icon created by Freepik Flaticon flaticon.com/free-icons/warning.