## Finite and Algorithmic Model Theory

## Lecture 5 (Dresden 09.11.22, Short version with Errors)

Lecturer: Bartosz "Bart" Bednarczyk

Technische Universität Dresden \& Uniwersytet Wroceawski

## TECHNISCHE <br> UNIVERSITÄT DRESDEN



European Research Council
Established by the European Commission

## Today's agenda

Goal: Prove that Ehrenfeucht-Fraïssé games works + Simplification of E-F games with Hanf's locality

## 1. Recap of Ehrenfeucht-Fraïssé games.

2. Back-and-Forth Equivalence with threshold $m$. Notation: $\left(\mathfrak{A} \simeq_{m} \mathfrak{B}\right)$.
$\mathfrak{A} \simeq_{m} \mathfrak{B}$ iff Duplic $\forall$ or has winning strategy in $m$-round E-F games on $\mathfrak{A}$ and $\mathfrak{B}$.
3. Hintikka formulae, i.e. describing the $m$-isomorphism type of a $\tau$-structure $\mathfrak{A}$ with an $\mathrm{FO}_{m}[\tau]$ formula.

$$
\mathfrak{A} \simeq_{m} \mathfrak{B} \text { iff } \mathfrak{B} \models \varphi_{\text {Hintikka }}^{\mathfrak{A}, m}
$$

4. Gaifman Graphs and $r$-neighbourhoods
5. Examples of $\operatorname{Hanf}(r, t)$-equivalent structures.
6. Hanf's theorem + applications to inexpressivity in FO.
7. Proof of Hanf's theorem.


Feel free to ask questions and interrupt me!
Don't be shy! If needed send me an email (bartosz.bednarczyk@cs.uni.wroc.pl) or approach me after the lecture!
Reminder: this is an advanced lecture. Target: people that had fun learning logic during BSc studies!

## Recap of Ehrenfeucht-Fraïssé games

- Duration: m rounds.
- Playground: two $\tau$-structures $\mathfrak{A}$ and $\mathfrak{B}$.


- Two players: Spoil $\exists$ r (D $\exists \mathrm{vil} / \exists \mathrm{loise} / \exists \mathrm{ve} /$ Player I) vs Duplic $\forall$ tor ( $\forall$ ngel $/ \forall$ belard $/ \forall$ dam/Player II)


Goal of $\forall: \mathfrak{A}, \mathfrak{B}$ "look the same". Goal of $\exists$ : pinpoint the difference.

- During the $i$-th round:

1. $\exists$ selects a structure (say $\mathfrak{A})$ and picks an element (say $a_{i} \in A$ )
2. $\forall$ replies with an element $\left(\right.$ say $\left.b_{i} \in B\right)$ in the other structure (in this case $\mathfrak{B}$ )
so that $\left(a_{1} \mapsto b_{1}, \ldots, a_{i} \mapsto b_{i}\right)$ is a partial isomorphism between $\mathfrak{A}$ and $\mathfrak{B}$.

- $\exists$ wins if $\forall$ cannot reply with a suitable element. $\forall$ wins if he survives $m$ rounds.


## Theorem (Fraïssé 1954 \& Ehrenfeucht 1961)

$\forall$ has a winning strategy in m-round Ehrenfeucht-Fraïssé game on $\tau$-structures $\mathfrak{A}$ and $\mathfrak{B}$ iff $\mathfrak{A} \equiv_{m}^{\tau} \mathfrak{B}$.

## Back and Forth Equivalence (a.k.a. Bisimulations)

We define an FO-m-bisimulation between $\mathfrak{A}$ and $\mathfrak{B}$ as the relation $\mathcal{Z} \subseteq \bigcup_{i=0}^{m} A^{i} \times B^{i}$ with $(\varepsilon, \varepsilon) \in \mathcal{Z}$ fulfilling:

- (atomic harmony): $\mathfrak{A} \Gamma_{\bar{a}} \cong \mathfrak{B} \Gamma_{\bar{b}}$
- (forth): if $|\bar{a}|<m$, then for all $c \in A$, there is $d \in B$ such that $(\bar{a} c, \bar{b} d) \in \mathcal{Z}$.
- (back): if $|\bar{b}|<m$, then for all $d \in B$, there is $c \in A$ such that $(\bar{a} c, \bar{b} d) \in \mathcal{Z}$.


## From m-round E-F Games to m-bisimulations

Take $\mathcal{Z}:=\left\{\left(\bar{a}_{1 \ldots i}, \bar{b}_{1 \ldots i}\right) \mid 1 \leq i \leq m\right.$, and $(\bar{a}, \bar{b})$ is a history of the winning play of $\forall$ in $m$-round E-F game $\}$.

## From m-bisimulations to m-round E-F Games

Play as Duplicator, employing witnesses guaranteed by (forth) and (back) conditions.

## Bisimulation as a more general concept

- One can define bisimulations $\simeq_{\omega}^{L}$ (for $\omega$ rounds) for any logic L, e.g. Modal/Descr./Temporal logics.
- An abstract categorical and comonadic approaches: [Joyal et al.'1994] and [Abramsky'2022].
- Van-Benthem Theorems for $\mathrm{L} \subseteq$ FO: $\varphi$ is preserved under $\simeq_{\omega}^{\mathrm{L}}$ iff $\varphi$ is equiv. to some $\psi \in \mathcal{L}$.


## $m$-Hintikka formulae

## Goal: describe the $m$-isomorphism type of a $\tau$-structure $\mathfrak{A}$ with an $\mathrm{FO}_{m}[\tau]$ formula.

Fix a structure $\mathfrak{A}$, a $k$-tuple $\bar{a}$ from $A$, and a $k$-tuple of variables $\bar{x}$. Define $\varphi_{(2, \bar{a})}^{k}(\bar{x})$ inductively as

- (Base): $\varphi_{(\mathfrak{A}, \overline{\bar{a}})}^{0}(\bar{x}):=\underbrace{\operatorname{atomic} \lambda(\bar{x}), \mathfrak{R}| |=\lambda(\bar{a}) \lambda(\bar{x})} \wedge \underbrace{}_{\operatorname{atomic} \lambda(\bar{x}), \mathfrak{A} \mid \nmid \lambda(\bar{a})} \neg \lambda(\bar{x})$ atomic harmony
- (Step): $\varphi_{(\mathfrak{A}, \bar{a})}^{k}(\bar{x}):=\underbrace{\bigwedge_{c \in A} \exists x_{k} \varphi_{(\mathfrak{A}, \bar{a} c)}^{k-1}\left(\bar{x}, x_{k}\right)}_{\text {forth: responses for challenges in } \mathfrak{A}} \wedge \underbrace{\forall x_{k} \bigvee_{c \in A} \varphi_{(\mathfrak{A}, \bar{a} c)}^{k-1}\left(\bar{x}, x_{k}\right)}_{\text {back: responses for challenges in } \mathfrak{B}}$

Call $\varphi_{(2, \varepsilon)}^{m}$ the $m$-Hintikka formula. Goal: $\mathfrak{B} \models \varphi_{(2, \varepsilon)}^{m}$ iff there is an $m$-bisimulation $\mathcal{Z}$ between $\mathfrak{A}$ and $\mathfrak{B}$.
Proof $(\Leftarrow)$ [We leave $(\Rightarrow)$ as an exercise.]
Induction over $k$. Assumption: For any $(\bar{a}, \bar{b}) \in \mathcal{Z}$ with $|\bar{a}|=|\bar{b}|=m-k$ we have $\mathfrak{B} \models \varphi_{(\mathfrak{A}, \overline{\bar{a}})}^{i}(\bar{b})$.
For $k=0$ we are done by (atomic harmony). For $k>0$, take $(\bar{a}, \bar{b}) \in \mathcal{Z}$ with $|\bar{a}|=|\bar{b}|=m-k-1$.
Take any $c \in A$. By (forth) there is $d \in B$ so that $(\bar{a} c, \bar{b} d) \in \mathcal{Z}$. By ind. ass. $\mathfrak{B} \models \varphi_{(\mathfrak{R}, \bar{a} c)}^{i}(\bar{b} d)$.
Thus $\mathfrak{B} \models \exists x_{i} \varphi \frac{k}{\bar{a} c}\left(\bar{b}, x_{i}\right)$. By the choice of $c$, we conclude $\mathfrak{B} \models \bigwedge_{c \in A} \exists x_{i} \varphi \frac{k}{\bar{a} c}\left(\bar{b}, x_{i}\right)$.
By reasoning similarly and employing (back), we conclude the satisfaction of the RHS of $\varphi_{\overline{a c}}^{k}(\bar{b})$.

## Main theorem about Ehrenfeucht-Fraïssé games

Lemma: For any $\tau$-structures $\mathfrak{A}, \mathfrak{B}$ and $m \in \mathbb{N}$, the following are equivalent:

1. Duplic $\forall$ tor has the winning strategy in any $m$-round Ehrenfeucht-Fraïssé game played on $\mathfrak{A}$ and $\mathfrak{B}$.
2. There exists an $m$-bisimulation between $\mathfrak{A}$ and $\mathfrak{B}$.
3. $\mathfrak{B}$ satisfies the $m$-Hintikka formulae constructed from $\mathfrak{A}$.
4. $\mathfrak{A}$ and $\mathfrak{B}$ agree on all $\mathrm{FO}_{m}[\tau]$ sentences.

We've already seen that $\mathbf{( 1 )} \Leftrightarrow \mathbf{( 2 )}$ and $\mathbf{( 2 )} \Leftrightarrow(3)$. Clearly $(4) \Rightarrow(3)$, thus it suffices to show $(2) \Rightarrow$ (4). Proof $[(2) \Rightarrow(4)$ by induction] Let $\mathcal{Z}$ be an $m$-bisimulation. The case $m=0 \rightsquigarrow$ (atomic harmony).
Note that every $\mathrm{FO}_{m}[\tau]$ formula is a boolean combination of formulae of the form $\exists x \psi$.
So it suffices to show the lemma for $\exists x \psi$ with $\operatorname{qr}(\varphi) \leq m-1$. Let $\mathfrak{A} \models \exists x \psi$. (Case with $\mathfrak{B}$ is symmetric).
Take $a \in A$ such that $\mathfrak{A} \models \psi(a)$. By (forth) we get $b \in B$ for which $(a, b) \in \mathcal{Z}$.
By ind. ass. $b$ in $\mathfrak{B}$ satisfies the same $\operatorname{qr}(m-1)$-sentences as $a$ in $\mathfrak{A}$. So $\mathfrak{B} \models \psi(b)$. Thus $\mathfrak{B} \models \exists x \psi$. induction atomic harmony Simplify $\mathrm{FO}_{m}[\tau]$ reduce intro witness forth ind. ass. conclude -


We will now go through slides 78-110 from ESSLI 2016 by [Diego Figueira].

## Another technique: Locality

## Idea: First order logic can only express "local" properties

Local $=$ properties of nodes which are close to one another


## Hanf locality

Definition. The Gaifman graph of a structure $S=\left(V, R_{1}, \ldots, R_{\mathrm{m}}\right)$ is the undirected graph

$$
\mathrm{G}_{S}=(V, E) \text { where } E=\left\{(u, v) \mid \exists(\ldots, u, \ldots, v, \ldots) \in R_{i} \text { for some } i\right\}
$$

| Agent | Name | Drives |  | Country |
| :---: | :---: | :---: | :---: | :---: |
| 007 | James Bond | The Gaifman graph of a graph $G$ is the underlying Cadıu undirected graph. |  | UK |
| 200 | Mr Smith |  |  | USA |
| 201 | Mrs Smith | Mercedes | Mercedes | Germany |
| 3 | Jason Bourne | BMW | BMW | Germany |



## Hanf locality

- dist $(u, v)=$ distance between $u$ and $v$ in the Gaifman graph
- $S[u, r]=$ sub-structure induced by $\{v \mid \operatorname{dist}(u, v) \leq r\}=$ ball around $u$ of radius $r$

| Agent | Name | Drives |
| :---: | :---: | :---: |
| 007 | James Bond | Aston Martin |
| 200 | Mr Smith | Cadillac |
| 201 | Mrs Smith | Mercedes Ul |
| 3 | Jason Bourne | BMW |


| Car | Country |
| :---: | :---: |
| Aston Martin | UK |
| Cadillac | USA |
| $\boldsymbol{u}_{\text {Mercedes }}$ | Germany |
| BMW | Germany |



## Hanf locality

Definition. Two structures $S_{1}$ and $S_{2}$ are $\operatorname{Hanf}(r, t)$ - equivalent iff for each structure $B$, the two numbers

$$
\# u \text { s.t. } S_{1}[u, r] \cong B \quad \# v \text { s.t. } S_{2}[v, r] \cong B
$$

are either the same or both $\geq t$.

Example. $S_{1}, S_{2}$ are $\operatorname{Hanf}(1,1)$ - equivalent iff they have the same balls of radius 1


## Hanf locality

Definition. Two structures $S_{1}$ and $S_{2}$ are $\operatorname{Hanf}(\boldsymbol{r}, \boldsymbol{t})$ - equivalent iff for each structure $B$, the two numbers

$$
\# u \text { s.t. } S_{1}[u, r] \cong B \quad \# v \text { s.t. } S_{2}[v, r] \cong B
$$

are either the same or both $\geq t$.

Example. $K_{\mathrm{n}}, K_{\mathrm{n}+1}$ are not $\operatorname{Hanf}(1,1)$ - equivalent


## Hanf locality

Theorem. If $S_{1}, S_{2}$ are $\operatorname{Hanf}(\mathbf{r}, \mathbf{t})$-equivalent, with $r=3^{n}$ and $t=n$ then $S_{1}, S_{2}$ are $\mathbf{n}$-equivalent (they satisfy the same sentences with quantifier rank $n$ )

Exercise: prove that acyclicity is not FO-definable (on finite structures)



## Hanf locality

Theorem. $S_{1}, S_{2}$ are $n$-equivalent (they satisfy the same sentences with quantifier rank $n$ ) whenever $S_{1}, S_{2}$ are $\operatorname{Hanf}(r, t)$-equivalent, with $r=3^{n}$ and $t=n$.

Exercise: prove that testing whether a binary tree is complete is not FO-definable


## Hanf locality

Theorem. $S_{1}, S_{2}$ are $n$-equivalent ( they satisfy the same sentences with quantifier rank $n$ ) whenever $S_{1}, S_{2}$ are $\operatorname{Hanf}(r, t)$-equivalent, with $r=3^{n}$ and $t=n$.

## Why so BIG?

Remember $\phi_{k}(x, y)=$ "there is a path of length $2^{k}$ from x to $\mathrm{y}^{\prime \prime}$

$$
\begin{aligned}
\phi_{0}(\mathrm{x}, \mathrm{y}) & =\mathrm{E}(\mathrm{x}, \mathrm{y}), \text { and } \\
\phi_{\mathrm{k}}(\mathrm{x}, \mathrm{y}) & =\exists \mathrm{z}\left(\phi_{\mathrm{k}-1}(\mathrm{x}, \mathrm{z}) \wedge \phi_{\mathrm{k}-1}(\mathrm{z}, \mathrm{y})\right) \\
\mathrm{qr}\left(\phi_{\mathrm{k}}\right) & =\mathrm{k}
\end{aligned}
$$


$2 \cdot 2^{\mathrm{n}}+1$

$2.2^{\mathrm{n}}$
Not ( $\mathrm{n}+2$ )-equivalent yet they have the same $2^{\mathrm{n}}-1$ balls.

## Hanf's theorem proof: Part I

If $\mathfrak{A}$ and $\mathfrak{B}$ are $\operatorname{Hanf}\left(\mathfrak{3}^{n}, n\right)$-equivalent then $\mathfrak{A} \equiv_{m} \mathfrak{B}$.

## Proof

Let $a_{1}, a_{2}, \ldots, a_{k} \in A$ and $b_{1}, b_{2}, \ldots, b_{k} \in B$ be the history of the play after $k$ rounds.
(Invariant): $\bigcup_{i=1}^{k} \mathfrak{A}\left[a_{i}, 3^{n-k}\right] \cong \bigcup_{i=1}^{k} \mathfrak{B}\left[b_{i}, 3^{n-k}\right]$


## Hanf's theorem proof: Part II

Let $a_{1}, a_{2}, \ldots, a_{k} \in A$ and $b_{1}, b_{2}, \ldots, b_{k} \in B$ be the history of the play after $k$ rounds.
(Invariant): $\bigcup_{i=1}^{k} \mathfrak{A}\left[a_{i}, 3^{n-k}\right] \cong \bigcup_{i=1}^{k} \mathfrak{B}\left[b_{i}, 3^{n-k}\right]$
Suppose that Spoiler picked $a_{k+1} \in A$ such that $\operatorname{dist}\left(a_{k+1}, a_{i}\right) \leq 2 \cdot 3^{n-k}$ holds for some $a_{i}$.


We know how to reply since $\mathfrak{A}\left[a_{k+1}, 3^{n-k-1}\right]$ is fully contained in some previously selected balls.

## Hanf's theorem proof: Part II

Let $a_{1}, a_{2}, \ldots, a_{k} \in A$ and $b_{1}, b_{2}, \ldots, b_{k} \in B$ be the history of the play after $k$ rounds.
(Invariant): $\bigcup_{i=1}^{k} \mathfrak{A}\left[a_{i}, 3^{n-k}\right] \cong \bigcup_{i=1}^{k} \mathfrak{B}\left[b_{i}, 3^{n-k}\right]$
Suppose that Spoiler picked $a_{k+1} \in A$ such that $\operatorname{dist}\left(a_{k+1}, a_{i}\right)>2 \cdot 3^{n-k}$ holds for some $a_{i}$.


We know how to reply since we have sufficiently many realisations of $\mathfrak{A}\left[a_{k+1}, 3^{n-k-1}\right]$ in $\mathfrak{B}$.

Copyright of used icons, pictures and slides

1. Universities/DeciGUT/ERC logos downloaded from the corresponding institutional webpages.
2. Idea icon created by Vectors Market - Flaticon flaticon.com/free-icons/idea.
3. Head icons created by Eucalyp - Flaticon flaticon.com/free-icons/head
4. Graph icons created by SBTS2018 - Flaticon flaticon.com/free-icons/graph
5. Angel icons created by Freepik - Flaticon flaticon.com/free-icons/angel
6. Devil icons created by Freepik and Pixel perfect - Flaticon flaticon.com/free-icons/devil
7. VS icons created by Freepik - Flaticon flaticon.com/free-icons/vs
8. Robot icon created by Eucalyp - Flaticon flaticon.com/free-icons/robot.
9. Warning icon created by Freepik - Flaticon flaticon.com/free-icons/warning.
10. Slides 78-110 from ESSLI 2016 by [Diego Figueira]
11. German and Poland maps by Vemaps.com https://vemaps.com/europe.
12. Radius icons created by Freepik - Flaticon flaticon.com/free-icons/radius.
