Finite and Algorithmic Model Theory Lecture 5 (Dresden 09.11.22, Short version with Errors)

Lecturer: Bartosz "Bart" Bednarczyk

TECHNISCHE UNIVERSITÄT DRESDEN & UNIWERSYTET WROCŁAWSKI

European Research Council Established by the European Commission

Today's agenda

Goal: Prove that Ehrenfeucht-Fraïssé games works + Simplification of E-F games with Hanf's locality

- 1. Recap of Ehrenfeucht-Fraïssé games.
- **2.** Back-and-Forth Equivalence with threshold *m*. Notation: $(\mathfrak{A} \simeq_m \mathfrak{B})$.

 $\mathfrak{A} \simeq_m \mathfrak{B}$ iff Duplic \forall or has winning strategy in *m*-round E-F games on \mathfrak{A} and \mathfrak{B} .

3. Hintikka formulae, i.e. describing the *m*-isomorphism type of a τ -structure \mathfrak{A} with an FO_m[τ] formula.

 $\mathfrak{A} \simeq_m \mathfrak{B}$ iff $\mathfrak{B} \models \varphi^{\mathfrak{A},m}_{\mathsf{Hintikka}}$.

- **4.** Gaifman Graphs and *r*-neighbourhoods
- **5.** Examples of Hanf(r, t)-equivalent structures.
- **6.** Hanf's theorem + applications to inexpressivity in FO.
- 7. Proof of Hanf's theorem.

Lecture based on

Chapter 3.5 of [Libkin's Book]

Slides 29-33, 43-51 of [Montanari]

19:23-24:32 of lecture by [Anuj Dawar]

Slides 80-110 by [Diego Figueira]

Feel free to ask questions and interrupt me!

Don't be shy! If needed send me an email (bartosz.bednarczyk@cs.uni.wroc.pl) or approach me after the lecture! Reminder: this is an advanced lecture. Target: people that had fun learning logic during BSc studies!

Recap of Ehrenfeucht-Fraïssé games

 $\mathfrak{A} :=$

- Duration: *m* rounds.
- Playground: two τ -structures \mathfrak{A} and \mathfrak{B} .
- Two players: Spoil $\exists r (D \exists vil / \exists loise / \exists ve / Player I) vs Duplic \forall tor (<math>\forall ngel / \forall belard / \forall dam / Player II)$

- During the *i*-th round:
- **1.** \exists selects a structure (say \mathfrak{A}) and picks an element (say $a_i \in A$)
- **2.** \forall replies with an element (say $b_i \in B$) in the other structure (in this case \mathfrak{B})
 - so that $(a_1 \mapsto b_1, \ldots, a_i \mapsto b_i)$ is a partial isomorphism between \mathfrak{A} and \mathfrak{B} .
- \exists wins if \forall cannot reply with a suitable element. \forall wins if he survives *m* rounds.
- Theorem (Fraïssé 1954 & Ehrenfeucht 1961)

 \forall has a winning strategy in *m*-round Ehrenfeucht-Fraïssé game on τ -structures \mathfrak{A} and \mathfrak{B} iff $\mathfrak{A} \equiv_m^{\tau} \mathfrak{B}$.

Goal of \forall : $\mathfrak{A}, \mathfrak{B}$ "look the same". Goal of \exists : pinpoint the difference.

Back and Forth Equivalence (a.k.a. Bisimulations)

We define an FO-*m*-bisimulation between \mathfrak{A} and \mathfrak{B} as the relation $\mathcal{Z} \subseteq \bigcup_{i=0}^{m} A^{i} \times B^{i}$ with $(\varepsilon, \varepsilon) \in \mathcal{Z}$ fulfilling:

- (atomic harmony): $\mathfrak{A}_{\overline{a}} \cong \mathfrak{B}_{\overline{b}}$
- (forth): if $|\overline{a}| < m$, then for all $c \in A$, there is $d \in B$ such that $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$.
- (back): if $|\overline{b}| < m$, then for all $d \in B$, there is $c \in A$ such that $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$.

From *m*-round E-F Games to *m*-bisimulations

Take $\mathcal{Z} := \left\{ (\overline{a}_{1...i}, \overline{b}_{1...i}) \mid 1 \leq i \leq m, \text{ and } (\overline{a}, \overline{b}) \text{ is a history of the winning play of } \forall \text{ in } m \text{-round E-F game} \right\}.$

From *m*-bisimulations to *m*-round E-F Games

Play as Duplicator, employing witnesses guaranteed by (forth) and (back) conditions.

Bisimulation as a more general concept

- One can define bisimulations $\simeq_{\omega}^{\mathsf{L}}$ (for ω rounds) for any logic L, e.g. Modal/Descr./Temporal logics.
- An abstract categorical and comonadic approaches: [Joyal et al.'1994] and [Abramsky'2022].
- Van-Benthem Theorems for L \subseteq FO: φ is preserved under $\simeq^{\mathsf{L}}_{\omega}$ iff φ is equiv. to some $\psi \in \mathcal{L}$.

m-Hintikka formulae

Goal: describe the *m*-isomorphism type of a τ -structure \mathfrak{A} with an FO_{*m*}[τ] formula.

Fix a structure \mathfrak{A} , a k-tuple \overline{a} from A, and a k-tuple of variables \overline{x} . Define $\varphi_{(\mathfrak{A},\overline{a})}^{k}(\overline{x})$ inductively as

• (Base):
$$\varphi_{(\mathfrak{A},\overline{a})}^{0}(\overline{x}) := \bigwedge_{\underline{atomic \ \lambda(\overline{x}), \ \mathfrak{A} \models \lambda(\overline{a})}} \lambda(\overline{x}) \land \bigwedge_{\underline{atomic \ \lambda(\overline{x}), \ \mathfrak{A} \models \lambda(\overline{a})}} \neg \lambda(\overline{x})$$

• (Step): $\varphi_{(\mathfrak{A},\overline{a})}^{k}(\overline{x}) := \bigwedge_{\underline{c \in A}} \exists x_{k} \ \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{\underline{c \in A}}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{\underline{c \in A}}^{k-1}(\overline{x}, x_{k}) \land \end{matrix}$
Induction over k . Assumption: For any $(\overline{a}, \overline{b}) \in \mathcal{Z}$ with $|\overline{a}| = |\overline{b}| = m - k - 1$.
For $k = 0$ we are done by (atomic harmony). For $k > 0$, take $(\overline{a}, \overline{b}) \in \mathcal{Z}$ with $|\overline{a}| = |\overline{b}| = m - k - 1$.
Take any $c \in A$. By (forth) there is $d \in B$ so that $(\overline{a}c, \overline{b}d)$

Main theorem about Ehrenfeucht-Fraïssé games

Lemma: For any τ -structures $\mathfrak{A}, \mathfrak{B}$ and $m \in \mathbb{N}$, the following are equivalent:

- **1.** Duplic \forall tor has the winning strategy in any *m*-round Ehrenfeucht-Fraissé game played on \mathfrak{A} and \mathfrak{B} .
- **2.** There exists an *m*-bisimulation between \mathfrak{A} and \mathfrak{B} .
- **3.** \mathfrak{B} satisfies the *m*-Hintikka formulae constructed from \mathfrak{A} .
- **4.** \mathfrak{A} and \mathfrak{B} agree on all $\mathrm{FO}_m[\tau]$ sentences.

We've already seen that (1) \Leftrightarrow (2) and (2) \Leftrightarrow (3). Clearly (4) \Rightarrow (3), thus it suffices to show (2) \Rightarrow (4). **Proof** [(2) \Rightarrow (4) by induction] Let \mathcal{Z} be an *m*-bisimulation. The case $m = 0 \rightsquigarrow$ (atomic harmony). Note that every $FO_m[\tau]$ formula is a boolean combination of formulae of the form $\exists x \ \psi$. So it suffices to show the lemma for $\exists x \ \psi$ with $qr(\varphi) \leq m-1$. Let $\mathfrak{A} \models \exists x \ \psi$. (Case with \mathfrak{B} is symmetric). Take $a \in A$ such that $\mathfrak{A} \models \psi(a)$. By **(forth)** we get $b \in B$ for which $(a, b) \in \mathcal{Z}$. By ind. ass. b in \mathfrak{B} satisfies the same qr(m-1)-sentences as a in \mathfrak{A} . So $\mathfrak{B} \models \psi(b)$. Thus $\mathfrak{B} \models \exists x \psi$. \Box induction atomic harmony Simplify $FO_m[\tau]$ reduce intro witness forth ind. ass. conclude -

We will now go through slides 78-110 from ESSLI 2016 by [Diego Figueira].

Idea: First order logic can only express "local" properties

Local = properties of nodes which are close to one another

Definition. The **Gaifman graph** of a structure $S = (V, R_1, ..., R_m)$ is the **undirected** graph $G_S = (V, E)$ where $E = \{ (u, v) \mid \exists (..., u, ..., v, ...) \in R_i \text{ for some } i \}$

007James BondAstorThe Gaifman graph of a graph G is the underlyingUK200Mr SmithCaon.undirected graph.USA201Mrs SmithMercedesMercedesGermany	Agent	Name	Drives	Car	Country
201Mrs SmithMercedesMercedesGermany	007	James Bond		e i	UK
	200	Mr Smith	Cadh, u	ndirected graph.	USA
	201	Mrs Smith	Mercedes	Mercedes	Germany
3 Jason Bourne BIVIV BIVIV Germany	3	Jason Bourne	BMW	BMW	Germany

- dist (u, v) = distance between u and v in the Gaifman graph
- $S[u,r] = \text{sub-structure induced by } \{v \mid \text{dist}(u,v) \le r\} = \text{ball around } u \text{ of radius } r$

Definition. Two structures S_1 and S_2 are Hanf(r, t) - equivalent iff for each structure B, the two numbers #u s.t. $S_1[u,r] \cong B$ #v s.t. $S_2[v,r] \cong B$ are either the same or both $\ge t$.

Example. S_1 , S_2 are Hanf(1, 1) - equivalent iff they have the same balls of radius 1

Definition. Two structures S_1 and S_2 are Hanf(r, t) - equivalent iff for each structure B, the two numbers #u s.t. $S_1[u,r] \cong B$ #v s.t. $S_2[v,r] \cong B$ are either the same or both $\ge t$.

Example. K_n , K_{n+1} are **not** Hanf(1, 1) - equivalent

Theorem. If S_1 , S_2 are **Hanf(r,t)** - equivalent, with $r = 3^n$ and t = nthen S_1 , S_2 are **n** - equivalent (they satisfy the same sentences with quantifier rank n)

[Hanf '60]

Exercise: prove that *acyclicity* is not FO-definable (on finite structures)

Theorem. S_1 , S_2 are *n*-equivalent (they satisfy the same sentences with quantifier rank *n*) whenever S_1 , S_2 are Hanf(r, t)-equivalent, with $r = 3^n$ and t = n. [Hanf '60]

Exercise: prove that testing whether a binary tree is *complete* is not FO-definable

Theorem. S_1 , S_2 are *n*-equivalent (they satisfy the same sentences with quantifier rank *n*) whenever S_1 , S_2 are Hanf(r, t)-equivalent, with $r = 3^n$ and t = n. [Hanf '60]

Why so **BIG**?

Remember $\phi_k(x,y)$ = "there is a path of length 2^k from x to y"

$$\begin{array}{l} \varphi_{0}(x,y) = E(x,y), \text{ and} \\ \varphi_{k}(x,y) = \exists z \ (\ \varphi_{k-1}(x,z) \land \varphi_{k-1}(z,y) \) \\ qr(\varphi_{k}) = k \end{array}$$

Not (n+2)-equivalent yet they have the same 2^n-1 balls.

Hanf's theorem proof: Part I

If \mathfrak{A} and \mathfrak{B} are Hanf (\mathfrak{Z}^n, n) -equivalent then $\mathfrak{A} \equiv_m \mathfrak{B}$.

Proof

Hanf's theorem proof: Part II

Let $a_1, a_2, \ldots, a_k \in A$ and $b_1, b_2, \ldots, b_k \in B$ be the history of the play after k rounds. (Invariant): $\bigcup_{i=1}^k \mathfrak{A}[a_i, 3^{n-k}] \cong \bigcup_{i=1}^k \mathfrak{B}[b_i, 3^{n-k}]$

Suppose that Spoiler picked $a_{k+1} \in A$ such that $dist(a_{k+1}, a_i) \leq 2 \cdot 3^{n-k}$ holds for some a_i .

Hanf's theorem proof: Part II

Let $a_1, a_2, \ldots, a_k \in A$ and $b_1, b_2, \ldots, b_k \in B$ be the history of the play after k rounds. (Invariant): $\bigcup_{i=1}^k \mathfrak{A}[a_i, 3^{n-k}] \cong \bigcup_{i=1}^k \mathfrak{B}[b_i, 3^{n-k}]$

Suppose that Spoiler picked $a_{k+1} \in A$ such that $dist(a_{k+1}, a_i) > 2 \cdot 3^{n-k}$ holds for some a_i .

We know how to reply since we have sufficiently many realisations of $\mathfrak{A}[a_{k+1}, 3^{n-k-1}]$ in \mathfrak{B} .

Copyright of used icons, pictures and slides

- **1.** Universities/DeciGUT/ERC logos downloaded from the corresponding institutional webpages. 2. Idea icon created by Vectors Market — Flaticon flaticon.com/free-icons/idea. **3.** Head icons created by Eucalyp — Flaticon flaticon.com/free-icons/head **4.** Graph icons created by SBTS2018 — Flaticon flaticon.com/free-icons/graph **5.** Angel icons created by Freepik — Flaticon flaticon.com/free-icons/angel 6. Devil icons created by Freepik and Pixel perfect — Flaticon flaticon.com/free-icons/devil **7.** VS icons created by Freepik — Flaticon flaticon.com/free-icons/vs 8. Robot icon created by Eucalyp — Flaticon flaticon.com/free-icons/robot. **9.** Warning icon created by Freepik - Flaticon flaticon.com/free-icons/warning. **10.** Slides 78–110 from ESSLI 2016 by [Diego Figueira] **11.** German and Poland maps by Vemaps.com https://vemaps.com/europe.
- 12. Radius icons created by Freepik Flaticon flaticon.com/free-icons/radius.