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Abstract. We propose a method of visualizing statistical information
in concept lattice diagrams. To this end, we examine the characteristics
of support, confidence, and lift, which are parameters used in association
analysis. Based on our findings, we develop the notion of cascading line
diagrams, a visualization method that combines the properties of addi-
tive line diagrams with association analysis. In such diagrams, one can
read the size of a concept’s extent from the height of the correspond-
ing node in the diagram and, at the same time, the geometry of the
formed quadrangles illustrates whether two attributes are statistically
independent or dependent and whether they are negatively or positively
correlated. In order to demonstrate this visualization method, we have
developed a program generating such diagrams.

1 Introduction

Formal concept analysis (FCA) is a mathematical approach for analyzing con-
ceptual hierarchies arising from relationships between objects and attributes. By
means of an order relation, hierarchically grouped sets of entities can be sorted
by set inclusion and later visualized by means of line diagrams, from which qual-
itative, crisp dependencies between the examined attributes, called implications,
can be read off easily.

Association analysis is a data mining technique, used to discover and evalu-
ate quantitative relationships and dependencies in a data set. It offers ways of
characterizing the strength of these relationships, using the statistical measures
support, confidence and lift.

The use of association analysis to extract “imperfect implications” — referred
to as association rules — has been explored widely in data mining, but also
specifically in FCA [ITI8/913]. Unfortunately, the same cannot be said about the
visualization part, i.e., representation of statistical information in line diagrams.
One 2004 paper introduced a method of lattice drawing where concepts were
placed at positions that were related to their support [I0]. However, the authors
stated that this method sometimes created nearly horizontal lines in the diagram.
To address this problem, they introduced a spring-based lattice drawing method
in a follow-up paper [7]. Additionally, the authors proposed to generate a lattice
diagram in R? and then allow the user to find a ”best” projection into R? by
rotating the lattice around a central axis.
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Our work aims at an approach for visualizing concept lattice diagrams in a
way that, on top of displaying all perfect relationships between attributes, also
reflects the frequencies of the depicted concepts as well as correlation strength
between attributes. To this end, we propose cascading line diagrams, realized
by means of a positioning rule that is inspired by the notion of additive line
diagrams but adjusts the height of the concept nodes according to their extent’s
cardinality. By choosing a logarithmic scale for the latter, statistic independence
between attributes manifests itself in perfect parallelograms, whereas positive
and negative correlations lead to obtuse or acute deviations from this parallelo-
gram shape. We present an open-source prototypical implementation for drawing
cascading line diagrams, which also allows for an intuitive interactive adjustment
of its parameters along the remaining degrees of freedom.

2 Preliminaries

We start by briefly introducing the basic notions of  Table 1. Cross table dis-
FCA [6]. A formal context is a triple (G, M, I), con-  playing the relation be-
sisting of a set G of objects, a set M of attributes as  tween objects and at-
well as a binary incidence relation I C G x M be-  tributes of a given formal
tween G and M. As usual, the fact that I relates  context.

an object g to an attribute m will be written as G\M|a|b|c|d]e
(g.m) € 1. T1 x| [

The set of all object-attribute relationships of a T2 X X
formal context can be written down by means of an T3 X
incidence matrix. An example of such a matrix, also T4 XX
known as cross table, can be seen in Table ¥2 o |« %
The set of attributes, shared by a set A C G of ob- 7 y
jects can be derived by

Al:={meM|VgeA:(9,m)e I} (1)

Dually, the set of all objects that have each of the attributes in a set B C M
can be obtained by

B :={geG|YmeB:(g,m)el}. (2)

A pair (A, B), with A C G and B C M will be called a formal concept of a
context (G, M,I)if A’ = B and B’ = A. The set A will be called the extent and
the set B the intent of the concept. The set of all formal concepts of a formal
context (G, M, I) is denoted by B(G, M, I).

Concepts can be ordered hierarchically by using the order relation <. For the
concepts (A1, By) and (Ag, B) one lets (A1, B1) < (Ag, By) iff A; C Ay. We call
(A1, By) a lower neighbor of (Ag, By) — and write (A1, B1) < (Az, B2) — whenever
both (A1, B;) < (As, By) and there is no “intermediate concept” (A, B) satis-
fying (A1, By) < (A, B) < (Ag, By). Tt turns out the set of a context’s formal

concepts together with < is not only an ordered set, but even a complete lattice,
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called the concept lattice of the context. As for partial orders in general, it is com-
mon to visualize concept lattices by means of line diagrams, where each node
represents one concept of the concept lattice and, for all (41, B1) < (Asg, Bs)
there is an ascending straight line connecting the node representing (A;, By) to
the node representing (As, By). While this requirement puts some constraints
on the vertical positioning of the nodes in a lattice diagram, there is still a lot
of leeway and it is a non-trivial question how to arrive at a “good” diagram.

One approach to obtain particularly well-readable diagrams, called additive
line diagrams, will be explained in the following.

2.1 Additive Line Diagrams

An attribute m € M is called irreducible if there is no set X C M of attributes
with m ¢ X so that {m}’ = X'. The set of all irreducible attributes is denoted
by M. The set irr(A, B) of all irreducible attributes of a concept is defined
by BN M.

An additive line diagram is obtained based on a function mapping each irre-
ducible attribute to a two-dimensional vector according to Formula . The
position in the plane at which the node representing concept (A, B) should be
drawn is determined according to Formula [@].

vec : My, — R x R (3)

pos(A, B) := Z vec(m) (4)

meirr(A,B)

The resulting diagrams are characterized by many
parallel lines, which makes them easier to read
than most other diagrams. An example is dis-
played in Fig.

An implication is a rule of the form X — Y,
where X is the body and Y is the head of the
rule. X and Y are sets of attributes. Given a
formal context an implication X — Y is valid iff
Y C X”. Tt is not too difficult and a standard ex-  Fig. 1. Example of an additive
ercise in FCA to directly read implications from  line diagram based on the con-
a concept lattice diagram. text given in Table [T}
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2.2 Association Analysis

Association rule learning is a data mining method used to discover and evaluate
relationships and dependencies in databases. It is used, among others, in shop-
ping cart analysis. Put into FCA terminology, the goal of association analysis
is to find connections between individual attributes in order to be able to make
statements about which of them often co-occur together in objects. For this pur-
pose, one uses the statistical characteristics support, confidence and lift [4l5],
which are explained in this section together with their relationship to FCA.
The basis of association analysis are association rules, which have the form
X =Y. X and Y represent disjoint and real subsets of the set of all attributes M.
An object fulfills such a rule if it has all the attributes, which occur in X and Y.
Support. The support of an attribute set X describes the relative frequency
of their joint occurrence in the data (that is: the context) and is calculated by

_Hgeal X {g}} _ X
supp(X) := el =G ()

In the same way, the support of an association rule X = Y describes the fre-
quency with which the union X UY occurs in the data, that is

supp(X =Y) :=supp(X UY) = |(X|LCJ;|Y)/ (6)

Confidence. The confidence is a measure of how often a rule is fulfilled in
relation to X. It is calculated by

supp(X =Y)

conf(X =Y):= supp(X)

: (7)

Lift. Since the confidence does not refer to the frequency with which the head
of the formula occurs “normally”, it cannot be used to make a statement about
how strong the body of an association rule really “promotes” the head. In order
to account for this fact, the lift is used, which is calculated by

‘ _conf(X=Y)  supp(XUY)
WX = Y) = supp(Y)  supp(X) - supp(Y)’ ®)

As is obvious from that formula, lift(X = Y) = lift(Y = X) always holds and
the corresponding value provides information regarding the correlation between
attribute occurrences X and Y. The following correspondences apply:

- Uft(X =Y)>1: X and Y positively correlated
- lift(X =Y)=1:X and Y not correlated
- Uft(X =Y) <1:X and Y negatively correlated
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3 Weight-Dependent Positioning

This section describes how support, confidence, and lift can be read from a line
diagram where each concept node’s y-coordinate is chosen according to the size
of its extent. Refining this idea, we then introduce the diagram type cascading
(additive) line diagram, where dependencies between attributes, can be read
using the parallelogram method, which is also presented.

3.1 Weighted Formal Contexts

Often, formal contexts representing large real-world ~ Table 2. Example of a
data sets contain many objects that coincide in ~ weighted context.

terms of their attributes. To represent such data
) . o ; mult||a|b|c|d
in a succinct but statistically faithfull] manner, we
endow formal contexts with weights. A weighted for- 01} 10 | x
mal context is a quadruple (G, M, I, mult) extend- 02| 10 XX
ing a formal context (G, M, I) by a mapping mult, 03| 1 x
which assigns a weight (or multiplicity) 04) 1 x
05| 1 X
mult : G — NT (9) 06| 1 X

to every object. In our setting, mult(g) = n means that object g occurs n times
in our data setE| In order to reflect this in cross tables, we extend them by a
column mult, which contains the weight of each object (cf. Table 2| where O1
and O2 are taken to appear 10-fold).

Based on this, the weight associated to a concept (A, B) is defined as the
sum of the weights of all objects contained in its extent A. We define:

wgt : P(G) - N (10)
wgt(A) := Y mult(g) (11)
geA

3.2 Linear Vertical Positioning

In this paper, the nodes in concept lattice diagrams are positioned in a 2-dimen-
sional Cartesian coordinate system. Thereby, in order to implement our goal
that statistical information be readable from the diagram, we first investigate
the approach where we let the y-position of a node be defined by its weight. In
the lattice diagram of a given weighted formal context (G, M, I, mult) defined
this way, the highest node has the y-coordinate wgt(G). We note that such a
positioning always creates admissible lattice diagrams, since the function defined
in Formula is a monotonic mapping from (P(G), C) to (N, <).

! clarifying the context would prune duplicates but distort the statistical information

2 Note, however, that the notion easily generalizes to settings where the weight ex-
presses other qualities that justify to assign more statistical importance to certain
objects (in which case one might rather choose Q or R as codomain).



6 J. Klimpke and S. Rudolph

,y in wgt(A
W‘l 05% -
or 02 i g
C51/0/04 05 W\\
6
10
Fig. 2. Additive line diagram. Fig. 3. Y-weighted, additive line diagram.

In additive line diagrams, the position of a node is determined by summing
up the vectors associated to all irreducible nodes that define it and adding them
to a normalization vector. The lattice diagrams represented in this way are char-
acterized by many parallel lines, which increases readability. By simply adjusting
the y-coordinate in the way described above, this advantage is lost. To illustrate
this, consider the context from Table [2]

Figure[2]shows a possible additive line diagram which can be derived from the
context. Fixing the y-coordinate of each node with its weight results in Fig.
The parallel sides of the diagram are lost and some of the lines have become
almost horizontal, which is obstructing readability. In this work, therefore, the
x-coordinate is not determined as an unweighted sum of the irreducible nodes,
as is the case with additive line diagrams. Instead, the x-position is determined
by compressing or stretching the vector resulting from the summation of the
vectors of all upper neighbor nodes. Figure [4] illustrates this approach. Figure
shows the resulting line diagram without auxiliary lines.

W in wgt(A)

24 . gy in wgt(A)
T 4 4 .
18
i 118
12
112 a b c d
S~ v\/‘\/v
6 . 03~ o1 04 05 02 06
0
" 10
Fig. 4. Weighted line diagram with Fig. 5. X-Y-weighted, additive line di-

auxiliary lines. agram.
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Support. Having in mind the meaning of multiplicities, the support of a weighted
context’s concept (A, B) is defined analogous to Formula by its weight as

wgt(B')  wgt(A)
- LB S supn(a) (12)

supp(B) :

Since wgt(G) is constant and wgt(A) was used as the weight of the concept to
define the y-coordinate of the corresponding node, the support can also be read
from the previously defined lattice diagram. This only requires an adjustment of
the labeling of the y-axis.

In order to illustrate this, we introduce a new ex-  Table 3. Distribution
ample, which will be used in the following to explain by height and gender in
how to read off the confidence, the lift, and the correla- ~ Germany 2006 [2].

tion. The used weighted context is shown in Table|3] It 2
reflects the statistical distribution by height and gen- == g § “S
der in Germany in 2006, differentiated by height <175 E|| || VA
and >175 centimeters. The mult column shows the M131] x X
percentage of the respective gender for each height. M2 |69 || x X
Figure [6] shows a line diagram that can be derived F11|91 X | X
from the given context. On the y-axis, in addition to F2| 9 X X

the weight wgt(A), the support supp(A) is shown. The
support is calculated by Formula (12)). This line diagram allows for reading the
weight as well as the support of the displayed concepts from the y-axis.

The natural way of defining the support of an implication in a weighted
context is by the weight of all objects that fulfill this implication, relative to the
weight of the set of all objects G. It can be formalized in two ways using the
intents X and Y or the extents X’ and Y.

supp(X'NY’')  supp(X UY)

supp(X = Y) = = 13
( ) supp(G) supp(G) (13)
y in wgt(A) (supp(A))
1200(1.0)
1160 (0.8)
| 120 (0.6) <175

male female

180(04) =175

M2
140(02)

1000 F2

Fig. 6. Gender and size distribution with representation of wgt(A) and supp(A).
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Confidence. As explained in Section [2.I] implications can be read off from the
concept lattice diagram. For example, the line diagram displayed in Fig. [6] can
be used to find the implication {male} — {>175}.

According to Section the confidence of an association rule can be deter-
mined using Formula . For an implication X — Y, the confidence is defined
analogously as:
supp(X —=Y)

conf(X =Y):= supp(X)

(14)

3.3 Logarithmic Vertical Positioning

Since the confidence is defined as a fraction, it is difficult to read it from the
previously defined representation of the concept lattice diagram. With the help
of the logarithmic law log, (z/y) = log,(z) —log, (y), Formula can be trans-
formed and displayed as subtraction.

supp(X — Y)> (15)

log, (conf(X —Y)) := log, < supp(X)

= log,(supp(X —Y)) —log, (supp(X)) (16)

The logarithmized confidence could be easily read from a line diagram, where
the logarithmic support is shown on the y-axis. There are several possibilities
for the choice of the base a of the used logarithm, but they only lead to a linear
vertical scaling. In the following, the base 2 was chosen, since log,(0.5) = —1.0
applies and thus the results can be easily estimated. The concept lattice with
logarithmically scaled y-axis is shown in Fig. [7]

4y in loga(supp(A))
0

-1.0
-2.0

-3.0

-4.0

w2

Fig. 7. Gender and size distribution with representation of the logarithmized support
of each node on the y-axis.
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A y in log,(supp(A))
0l

S0 o 3

136 g g

_ - Nle)

: 5 :l: X S
-154 T X B N

o0 1 ' o

= ;XN =

Fig. 8. Example for reading the logarithmic confidence for the implications X — Y
and Y — X.

Since nodes with weight zero would have the value —oo with this scaling,
they are not displayed. To be able to see if a bottom element with weight O
exists, short vertical auxiliary lines are attached to those nodes, that share an
edge with it. Those can be seen in Fig. [/l Figure [§ illustrates the process of
reading the logarithmic confidence for the implications X — Y and ¥ — X. It
shows an excerpt of Figure

Reading correlation. As described in Section [2.2] it is possible to derive
from the lift of an association rule X = Y how X and Y are correlated. Anal-
ogous to Formula for association rules, the lift for implications X — Y in
weighted contexts is defined by

conf(X —-Y)

supp(Y)
Since statements about the polarity and approximate strength of the correlation
are usually more important than the correlation coefficient’s exact value, it is not
necessary to calculate the lift exactly. In many cases, a quantitative estimation
is sufficient. If the lift is greater than one, X and Y are positively correlated.
If it is smaller than one, they are negatively correlated. As the lift is defined
as a fraction, it is advisable to apply the logarithm, similar to the case of the

confidence. This way, we obtain the following characterization for the case of
positive correlation:

lift(X = Y) = (17)

X Y
M > 1.0 (18)
supp(Y')
(X Y)
log, <conf - ) > log,(1.0) (19)
supp(Y

log,(conf(X —=Y)) — logQ(supp(Y
logy(conf(X =Y

>0.0 (20)

)
)) > logy(supp(Y)) (21)

—_ —
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A y in logy(supp(A))
0| A
/=
=
o
&
~ E
-1.00 & —~
-, 1
x
=
-136f- 8
2
1540 S
2

Fig. 9. Estimating the dependence of X and Y by reading off confidence and support.

To estimate whether X and Y are positively correlated, it is therefore sufficient
to compare the logarithmic values of the implication’s confidence and the head’s
support. This can be done purely graphically.

Figure [9] shows the values to be read for the estimation of the lift for the
implication X — Y. It shows a cutout of Fig. [} with X being > 175 and YV’
being male. It can therefore be concluded that there is a positive lift for the
implication {> 175} — {male}, since log,(conf({> 175} — {male})) is —0.18
and log, (supp(male)) is —1.0. Comparing the two values shows

—0.18 > —1.0 — positively correlated (22)

A second possibility to read the correlation between X and Y in the logarithmic
lattice diagram can be derived from the definition of the lift. This is due to the
fact that the lift for the implication X — Y mathematically equals the lift for
the implication ¥ — X.

Another way to determine whether X and Y are statistically dependent or
independent is the parallelogram method presented below. As already described,
X and Y are statistically independent exactly if

logy (conf (X —Y)) = logy(supp(Y)). (23)

If the independence of X and Y can be derived from X — Y, then follows

logy (conf(Y — X)) = logy (supp(X)). (24)

If X and Y are independent, i.e. Formulas and are satisfied, a parallel-
ogram is formed in the diagram. However, if they are dependent, a one-sided dis-
tortion of the parallelogram along the diagonal occurs. A simple, convex square
is formed. If the downward-pointing half of the parallelogram is compressed, X
and Y are positively correlated. If it is stretched, they are negatively correlated.
Table [4] shows all three possible correlation types together with an example.
On the basis of the deviation of the calculated parallelogram the dependence
of X and Y can be read. For this purpose, it may be helpful to mark the result-
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A v inlogy(supp(A))
(U
-1.00)
13677
-1.54f--
236}

Fig. 10. Illustrating the parallelogram method. The downward-pointing half of the
quadrangle is compressed, indicating that > 175 and male are positively correlated.

ing parallelogram, which symbolizes independence, with auxiliary lines in the
diagram. Figure [10| shows such an example.

3.4 Cascading Additive Line Diagrams

In order to achieve that the parallelogram method can also be used in situations
where the nodes representing X and Y do not share an edge with the top node,
we refine our idea leading to the definition of cascading additive line diagmmsﬂ
detailed below.

The y-coordinate of each node in a cascading additive line diagram is de-
fined by the logarithm of the support of the concept associated with the corre-
sponding node, just as it was described in Section 3.1} The x-coordinate, on the
other hand, is defined taking into account the positions of all upper neighbor
nodes, leading to a recursive definition — hence the name ’cascading’. The upper
neighbors (also called direct predecessors) of the node associated to the concept
(A, B) are determined according to the order relation as defined in Section [2{and

Formula .

pre(A, B) .= {(C,D) € B(G,M,I)| (A,B) < (C,D)} (25)

Remember that in the diagram, these are just the nodes that have a higher
y-position and share an edge with the node in question. The unscaled position
upos(A, B) of each concept node is defined by adding the positions of all prede-

Cessors:
Z vec(m) (26)

me M, A={m}’

upos(A, B) = Z pos(C, D) +
(C,D)epre(A,B)

3 short: cascading line diagrams
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Table 4. Minimal examples showcasing the three different types of correlation. The

diagrams have been created with the help of the program described in Section

negatively correlated independent positively correlated
mult||a|b mult||a|b mult||a|b
T | 10 T | 20 T | 30
Al 30 ||x A 20 ||x Al 10 ||x
B | 30 X B 20 X B | 10 X
AB| 10 ||x|x AB| 20 ||x|x AB| 30 ||x|x
lift({a} = {b}) = lift({a} = {b}) = lift({a} — {b}) =
1/8 1/4 3/8
—— =1/2< 1 — =1 =3/2> 1
2z /2<10 212 10 212~ 2>10

supp(X) | log2 (s upp (X)) | wgi(X)
1.00 | 0.00 | 80

supp(X) | log2(supp (D) | wi(X)
L.00 | 0.00 | 80

supp(X) | log2(supp (X0 | wt(X)
1.00 | 0.00 | 80

0.50 | -1.00 | 40 0.50 | -1.00 | 40 0.50 | -1.00 | 40
0.33 |-1.42 | 30
w 0.25 | -2.00 | 20
0.13 [ -3.00 | 10
AR
stretched well-formed compressed
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By scaling the unscaled position with respect to the y-coordinate, the final po-
sition of the node is determined:

log, (supp(B))
A, B) = . A B 27
pos(4,B) = =2 S - upos(4,B) (21)
To illustrate this presentation method in more Table 5. Example context.

detail, we use the context shown in Table [l

This context is characterized by the indepen- mult|| g | h|k|m
dence of {k} and {m}, which is proved math- G 25 || x
ematically in Formula by calculating the H 30 X
lift of {k} — {m}. GH 51 x| x
GHK 20 || X | X | x
. supp({k} — {m}) GHM 151 x | x X
lift({k} = {m}) :=
({ } { }) supp({k})'supp({m}) GHKM 5l x | X | x| X
0.05
= — = 1. 2
0.25-0.2 0 (28)

Figure [11] displays the corresponding concept lattice as a cascading additive line
diagram. It can be seen that the top-element forms a parallelogram with the
nodes labeled with "GHK”, ”GHM” and ”GHKM?”, thus displaying the inde-
pendence of {k} and {m}. If the node labeled ”GHKM” were higher, meaning
it had a larger y-coordinate, then {k} and {m} would be positively correlated.
If the y-coordinate were smaller, the parallelogram would be stretched on the
lower side. This would correspond to a negative correlation.

y in loga(supp(A))
0.0 [

-042 |
-0.51 7]

-L15

-2.00
-232

-4.32

GHKM

Fig. 11. Cascading line diagram of the context shown in Table
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The cascading additive line diagram allows to read at each node that has exactly
two predecessors, the (in)dependence of these predecessors using the parallelo-
gram method. Furthermore, in all cases, it is possible to read the dependence by
means of the y-coordinates, as discussed in Section [3.1

4 Prototype Implementation

To demonstrate the operation of the cascading additive line diagram, we imple-
mented a visualisation prototype. The source code is freely available online [IJ.
The tool creates concept lattice diagrams for given formal contexts. It is able to
generate both additive and cascading line diagrams.

' 4 =

(& |

Content Help

Add Object‘ ‘AI:II:I Attribute‘

Mult male female =175 =175
31 M1 X X
69 M2 X X
91 Fl X X
9 F2 X X

Fig. 12. Display of a cross table in the program.

Figure shows the user interface for entering the formal context. In the
screenshot, the example from Table [3| has been entered. Clicking on ’Create
Lattice’ triggers the creation of the concept lattice diagram. The additive line
diagram is created as described in Section The cascading line diagram is
created as described in Section [3.41

Upon displaying the diagram, the irreducible nodes are marked by green
squares. In the cascading view, the independence of two attributes is expressed
by the parallelogram formed with the top element. By left-clicking on a reducible
node with two predecessors, the parallelogram that would result if the predeces-
sors were independent is shown in red. This is shown in Fig. using the context
from Table[3] which was considered in detail in Section[3.2] Figure[13|also shows
an information window, which opens upon right-clicking on a node.

5 Conclusion

The goal of this paper was to develop a representation for concept lattice dia-
grams that — in addition to the attribute-logical relationships — allows statistical
relationships between attributes to be read off the diagram. Toward a more suc-
cinct representation of the input data, the cross table defining the formal context
was extended by a multiplier column, where the positive natural number in this
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& = E 22
Dragging Mode: ) free @ additive
Additive LD | Cascading LD |
supp(X) | log2(supp(X)) | wet(X)
1.00 | 0.00 | 200
0.61]-0.71|122 <175
0.39 |-1.36 | 78
0.16 | -2.69 | 31
M1
- »
Concept Infarmation @
,@ Extent : {M1}
Intent : {male, <175}
Weight: 31
0.05 [ -447]9 -
................. Support: 0.16
Log2(Support): -2.69

Fig. 13. Display of a cascading additive line diagram in the program with the paral-
lelogram with the top element shown and the additional window opened.

cell indicates the weight or multiplicity of the associated object. This can be
understood to represent an aggregation of several objects with the same intent
from a normal cross table.

Inspired by the display form of additive line diagrams, a new display form
was then developed, which allows for reading statistical and associative measures
such as support, confidence, and lift from the concept lattice diagram. Further-
more, the statistical (in)dependence of two attributes can be derived from the
diagram. This was achieved by a vertical positioning following the logarithmized
support of the associated concept. Through additive scaling, it was also possi-
ble to develop a form of representation, called cascading additive line diagram,
in which the dependence or independence of two attributes can be intuitively
grasped from their formed parallelograms (or, rather, the deviation from the
parallelogram shape).

We presented a prototype implementation that allows to input a formal con-
text as a cross table and, from this, to derive, display, and adjust both additive
and a cascading line diagrams.

It has been shown in this paper that a formal context’s concept lattice can
be represented by a line diagram from which, beyond the classical logical depen-
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dencies, statistical relationships between attributes can be read rather directly
and intuitively.

As one avenue of future work, the proposed representation paradigm could
be coupled with existing optimization approaches toward a beneficial choice of
the vector assignment vec to the irreducible attributes, with the goal of avoiding
(near-)overlap of nodes, nodes being positioned on (or close to) edges they are
not incident with, and reducing the overall number of edge crossings.

Finally, our novel visualization approach will have to be tested empirically:
determining if this way of presenting statistical information is indeed useful to
human users and how well this paradigm works for larger concept lattices can
only be found out by means of comprehensive user studies.
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