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Abstract

By cause of the human-interactive nature of business processes, a diversity of
problems emerge from their automation, which has become an increasingly
important activity and by consequence extensively effected nowadays. One
of the advantages of the referred automation is the capability to monitor pro-
cess and service executions, for whose analysis several reasoning-based tools
have emerged. The capability to analyze and reason about such executions is
weakened nevertheless by the detection of incomplete information concerning
the process-level activities.

The purpose of the present thesis is to solve the particular problem of re-
constructing incomplete observed executions of processes, in order to support
the performance of reliable business analysis over monitored behavior. Such
analysis permits among others, the enhancement of the process models.

The proposed solution consists in the characterization of the model of the
process, along with the recorded trace, as a logical formulation in terms of a
planning problem; this representation enables the use of well-founded auto-
mated reasoning engines to generate plans conforming to possible sequences
of activities that correspond to complete instances of process executions.
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Chapter 1

Introduction

The widely adopted use of IT systems nowadays for supporting business ac-
tivities, has brought to the development of tools and reasoning services, such
as ProM, Microsoft’s BAM suite, Oracle’s BAM and IBM WebSphere’s BAM
component, among many others, that offer the possibility to observe the
evolution of ongoing processes and hence to perform statistical analyzes on
current and past executions (business analysis monitoring (BAM)). The ob-
tained results enable to identify misalignments between process models and
executions, as well as to discover design bottlenecks, encouraging thus the
re-design and possible improvement of the models.

Certain difficulties though are subject to arise when exploiting the moni-
toring outcome for analysis purposes. The collected data for example, usually
does not contain information about their owner process instance, being the
correlation of both parts not a trivial task; the fetching of noise material
together with the useful information is as well frequently occurring.

Furthermore, in many real cases the different degrees of abstraction be-
tween the definition of a process and the elements of the modeling language,
the lack of IT-support for all the process activities (e.g. human interac-
tions, which are scarcely traceable) and the concealment of specific parts of
the process, result in the retrieval of incomplete information concerning the
process-level activities executed and the data by them produced.

Only recently the problem of dealing with incomplete information about
process executions has been faced by few works [4, 28]; the proposed ap-
proaches however rely, either on statistical models, as in [28] or on a specific
encoding of a particular business process language, with limited expressivity,
as in [4].

The present work focuses therefore on the last problem; the objective is



2 Introduction

thus to completely reconstruct a business process execution, based on the in-
formation observed about it by a monitoring system. The proposed approach
takes advantage of the well-defined description of a model and captures its
dynamics in terms of logical rules of an action language, making possible to
perform formal reasoning over them.

The underpinning idea comes from the similarity between processes and
automated planning [23], where activities in a process correspond to actions
in planning. Business processes are modeled by workflows; a complete process
execution corresponds then to a sequence of activities which, starting from
the unique initial condition, leads to the output condition of the workflow,
satisfying the constraints imposed to traverse the model. Analogously, a total
plan is a sequence of actions which, starting from the initial state, leads to
the specified goal advancing through states according to preconditions.

Given thus a workflow and an observed sequence of executed tasks (trace),
an algorithm to construct a planning problem such that each of its solutions
corresponds to a complete process execution and vice versa, is provided. In
this way, the analysis of all the possible plans allows to infer properties of the
original workflow specification.

The main advantage of using automated planning techniques is that, by
ensuring a correct statement of the planning problem, the conformance of
generated plans with traces is asserted by the underlying logic language.
Moreover, since it is a strong research field, many stable and reliable state-
of-the-art planners are available.

Seeking to develop a solid and well-founded procedure, structured work-
flows will be assumed in this thesis. This assumption rules out patterns with
notoriously hard to characterize behavior, such as nested OR joins, providing
still coverage for a wide range of interesting use cases.

The document is structured as follows: some preliminary notions and the
formalization of concepts founding the present work will be introduced in
the next chapter; the proposed encoding of a process in terms of a planning
problem is presented afterwards, together with a formal proof of the correct
simulation of the workflow semantics by the encoding. Chapter 4 introduces
an algorithm to generate exactly the plans representing complete executions
corresponding to the data in a given trace. A formal proof of its validity is
provided as well.

The handling of data interaction within a model is addressed in chapter
5. And later on, an overview of the implementation of the proposed approach
as well as a running example are reported. The last chapters concern related
work, conclusions and future work.



Chapter 2

Preliminaries

Given a process model and a partial execution trace of such process, the
problem to confront is the reconstruction of the information missing in the
trace.

Process models typically describe the flow of a process through activi-
ties (which can have associated data) and control flow constructs. Different
languages and notations are available to describe them, by instance YAWL,
BPMN and Petri Nets. The present work considers YAWL [33] as the mod-
eling language.

Action languages are intended to specify state transition systems and a
common use is the creation of formal models for the effects of actions on the
world [15]; planning languages are in general action languages. Because of
its answer set-like semantics giving it a powerful reasoning over incomplete
knowledge, the planning language K is selected here.

The main ideas behind the encoding are however general enough to be
adapted, under opportune assumptions, to other languages, by instance to
the PDDL standard [20].

The similarity between workflow processes and action languages is sup-
ported by the fact that the formal semantics of YAWL is provided in terms of
transition systems, where states are defined in terms of conditions that may
trigger the execution of activities causing transitions between states.

To establish the context of the topic, general concepts of planning and the
formal background of the selected languages will be provided in this chapter.

As an annotation, the notion of observability of tasks will be constantly
referred. As observable tasks we denote tasks in a model whose execution
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is always tracked; unobservable tasks on the other hand, refer to those ones
that depend on factors out the control of a monitoring system and thus its
execution can not be recorded. The observability of tasks is determined at
design time.

2.1 Planning overview

Automated planning concerns the execution of computational techniques to
choose and organize actions by anticipating their expected outcomes, aiming
to achieve as best as possible a preset objective [23].

A model for a planning specification is a state-transition system, where
states are sets of ground literals in the planning language and the transition
between states is decided by actions based on state constraints. The model
constitutes the domain of a problem.

A planning problem is a triple (Σ, s0, goal), where Σ is the definition of
the domain of the problem, s0 is the initial state and goal is a set of ground
literals to be satisfied. A solution (plan) is a sequence of ground actions that
lead from s0 to a state in Σ where all the elements in goal are satisfied.

A fluent or flexible relation is a predicate whose arguments are susceptible
to change over the time; a state is therefore determined by a set of fluents.
A rigid relation is a predicate not intended to vary over states, representing
thus a fact that belongs to the knowledge base.

The purpose of the present work is to specify a planning problem under
the assumption of incomplete knowledge, which in sum connotes that the
status of fluents might be unknown.

2.2 The workflow language YAWL

YAWL (Yet Another Workflow Language) is a powerful workflow modeling
language based on the well-known workflow patterns [30]. It is supported by
an open-source environment that handles complex data transformations and
full integration with organizational resources and external Web Services. [1]

YAWL’s formal operational semantics is founded on Petri Nets1, Workflow
1A Petri net is a bipartite graph where the nodes are either places (circles) or transitions

(squares)
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nets and the so called Reset nets, which combined create a language powerful
enough to model dynamic behaviors of systems. The basic notions of places,
transitions and flow relations that define a Petri net are implemented as well
in YAWL [33]. In the last however, conditions (places) can be omitted, being
implicitly represented by the arc connecting two tasks.

A workflow in YAWL is called a specification; each specification is com-
posed by a root workflow net that may contain nested nets. The formed
hierarchy obeys to best design practices, being though irrelevant from the
semantic perspective. Since this thesis centers in the last, it will be assumed
that a specification is composed by a one-level net, which is indeed equivalent
to the expansion of all the nested tasks contained in a regular specification.

The set of so called constructs defines the basic elements from which any
control-flow pattern supported by the language, and hence any specification,
can be formed; the elements of such set are:

+ condition + atomic task
+ input condition + output condition
+ AND/OR/XOR join + AND/OR/XOR split
+ multiple instance task + composite task
+ composite multiple instance task + cancellation region

In view of the fact that each instance of our problem concerns a sin-
gle execution of a process, the constructs referring to multiple tasks will be
disregarded in the present work. The rest of them will be treated in more
detail along the document, the particular behavior of each is introduced in
the encoding section.

As a remark, due to the non-local behavior of the OR-join construct,
derived from the requirement of synchronization depending on possible fu-
ture execution paths, a broad and deep research has emerged around its se-
mantics, for whose formal definition and posterior implementation, different
approaches have been taken aiming to closely match the informal behavior.

A model in YAWL can be approached from three different angles, the
control-flow, the data and the resource perspectives. The former concerns
the ordering and interaction of tasks in the model. The data perspective
approaches the exchange of information, distinguishing two types: the in-
ternal data transfer, which regards the exchange of data among elements of
the workflow and the external data transfer, which involves communication
between a process and its operating environment (users). The last perspec-
tive focuses in the organizational and work distribution model to describe the
manner in which work items are distributed to users according to roles.
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In the present work, our interest is concentrated in the control-flow per-
spective for the core of the bisimulation and in the internal data transfer from
the data perspective, when referring to branching selection.

Some explained examples of processes modeled in YAWL can be found in
the section devoted to the encoding.

2.2.1 Structured workflows

Since processes depict real world situations, a powerful modeling language
should impose the less possible restrictions for what can be modeled, however,
the complexity of reasoning over a language is directly proportional to its
expressive power. Some identified and widely discussed problems come out
for instance from the presence of the multi-merge pattern [30].

Aiming to provide well founded semantics to those languages, structured
workflows were introduced, which informally are models where splits and joins
are always paired by type into single-entry-single-exit blocks and loops occur
only with a single-entry and a single-exit points [33].

A formal specification based on the definition of structured models pre-
sented in [18], is then as follows:

Definition 2.2.1. A structured model (block) with entry i and exit o is
inductively defined as follows, where {c1, . . . , c4} are conditions:

1. Let t be an atomic task. Then, t preceded by c1 and followed by c2 is a
block. The entry of block is c1 and the exit is c2.

2. Sequence. Let X and Y be blocks. The concatenation of X and Y ,
where the exit of X is the entry of Y is also a block. The entry of block
is the entry of X and its exit is the exit of Y .

3. Parallel structure. Let X1 . . . Xn be blocks, s an AND-split pre-
ceded by c1 and j an AND-join followed by c2. The structure with c1
as entry, c2 as exit, transitions between s and the entries of the Xis and
transitions between the exits of the Xis and j is then a block as well.
The entry of block is c1 and the exit is c2.

4. Decision structure. Let X1 . . . Xn be blocks, c1 the unique condition
incoming to s, c2 the single condition following j and either (i)s an OR-
split and j an OR-join or (ii)s an XOR-split and j an XOR-join. The
structure with c1 as entry, c2 as exit, transitions between s and the
entries of the Xis and transitions between the exits of the Xis and j,
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Figure 2.1 Structured model

is a block. Predicates can be assigned to the outgoing transitions of s.
The entry of this block is c1 and the exit is c2.

5. Structured loop. Let X and Y be structures, j be an XOR-join
preceded solely by two conditions c1, c2 and s an XOR-split connected
with exactly two conditions c3, c4. Then block is also the structure with
c1 as entry, c4 as exit, transitions from j to the entry of X and from the
exit of X to s, and where c3 is the entry of Y and its exit is c2. X and
Y can be null.

Figure 2.1 illustrates each case of the previous definition.

Even if not all processes can be captured as structured models, a consid-
erable proportion of workflows can be transformed into a structured config-
uration, which promotes readability and makes models less error-prone [11],
as well as easier to be analyzed, verified and implemented [18].

An additional number of desirable properties are present in these models,
being of our particular interest safety, which refers to the presence of at most
one instance per task at a time and deadlock freedom. Many more can be
derived, as it will indeed be done later on in the appropriate section.

Note that the previous formalization is intended to maintain clarity and
simplicity of semantics, nevertheless, in practice the conditions joining blocks
are implicit conditions in a YAWL model and thus are not required to be
modeled.
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2.2.2 YAWL theoretical foundations

Two assumptions are considered in the solution approach here presented:

1. A single execution instance of the process at a time, and thus safe
models

2. Process workflows represented as structured models

Considering them, the original definition of extended workflow nets from
[35] is reformulated disregarding the aspects concerning multiple instances
and restricting it to convey with def. 2.2.1.

Definition 2.2.2. A structured workflow net (SWF-net) (aka. SESE
net) is a tuple (C, i, o, T, Z, split, join) where:

• C is a set of conditions

• i ∈ C is the input condition and there is exactly one in C

• o ∈ C is the output condition and there is exactly one in C

• T the set of tasks in the net

• Z ⊂ (C \ {o} × T ) ∪ (T × C \ {i}) is the flow relation. 2

• split : T → {AND,XOR,OR} specifies the split behavior of each task t.
By default split(t) =AND with exactly one (t, x) ∈ Z for a certain x.

• join : T → {AND,XOR,OR} specifies the join behavior of each task t.
By default join(t) =XOR with exactly one (x, t) ∈ Z for a certain x.

• The graph induced by C ∪ T ( ⟨C ∪ T, Z⟩ ) is a structured model.

A safe workflow model is a workflow where it is not possible that at some
point in time there exist multiple instances of the same task [33]. Derived
from the structured restriction, SWF-nets are safe and deadlock free ([35],
[32]).

Let N1 = (C, init, out, T, Z, split, join) be a structured workflow net. The
following concepts are then defined, underpinned on formalizations introduced
in [35] and adapted to the previously mentioned assumptions.

2YAWL’s syntax allows the connection from task to task in the model. Since this
transition is equivalent to have an implicit condition between the two tasks, the case is
covered by this definition.
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Definition 2.2.3. A workflow state σ is a set of pairs such that ∀c ∈ C,
(c, f(c)) ∈ σ, where the function f : C → N determines the cardinality of
tokens placed in the condition c at a certain moment.

Informally a state represents a multiset of tokens distributed over the
conditions in the net at a certain moment in time.

Provided that in the present work safe workflow models are assumed, the
elements of a workflow state take the form (cx, 0) or (cx, 1), for all cx ∈ C;
therefore, states will be hereafter represented by the conditions where f(cx) >
0. For instance, σ0 = {(c1, 1), (c2, 0), (c3, 0), (c4, 1), (c5, 1)} will be shortened
as σ0 = {c1, c4, c5}.

Definition 2.2.4. Let t ∈ T , pre, post, σ ⊆ C and for each element x in
C ∪ T , preset(y) = {x|(x, y) ∈ Z} and postset(x) = {y|(x, y) ∈ Z}. There
exists a binding(t,pre,post,σ) iff all of the following conditions hold:

1. pre ⊆ σ

2. pre ⊆ preset(t)

3. post ⊆ postset(t)

4. σ ∩ post = ∅

5. According to the type of t:

split(t) = AND =⇒ post = postset(t)
split(t) = OR =⇒ post ̸= ∅

split(t) = XOR =⇒ |post| = 1
join(t) = AND =⇒ pre = preset(t)

join(t) = OR =⇒ pre ̸= ∅
join(t) = XOR =⇒ |pre| = 1

The introduction of bindings is aimed to express that, when the appropri-
ate incoming conditions to t (the set pre) own a token in the state σ, then t
can be executed leading to a state where all the conditions in post hold a to-
ken. Notice that for the OR-join construct, the only assertion is the existence
of a token in at least one incoming condition to t previous to its activation.
The complete semantics are however captured in the following definition.

Definition 2.2.5. Let σ1, σ2 be workflow states of N1. There is a transition
from σ1 to σ2 iff both hold:
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1. ∃ t ∈ T and pre, post ⊆ C such that binding(t, pre, post, σ1) exists and
σ2 = (σ1 \ pre) ∪ post. (Not. σ1 ◃t σ2)

2. If join(t) = OR then, for each σ ∈ reach(σ1), there is no pre′ ⊆ σ s.t.
there exists a binding(t, pre′, post, σ) and pre ⊂ pre′, where reach(σ1) =
{σ ∈ 2C | σ1 ◃r1 · · · ◃rn σ and ri ̸= t, i ∈ [0, n]}

For notation, σ1
t→ σ2 ∈ N1 denotes a transition from σ1 to σ2 by the execu-

tion of t.

The second point in the above description affirms that it does not exist
a bigger set of preconditions containing pre, neither in σ1 nor in any of the
states reachable by the execution of one (or more) task(s) except t itself, such
that it is capable to activate t.

As an observation, some parts of the original semantics have been disre-
garded, such as the removal or blocking of useless tokens for instance when
an XOR-join receives more than one token. Those situations are though not
present in structured workflow models.

Definition 2.2.6. A case of N1 is a finite sequence of tasks ⟨t1, . . . , tn⟩,
ti ∈ T , for which ∃ σ0, . . . , σn workflow states, such that σj−1

tj→ σj is a
transition in N1, for all j ∈ [1, n] and σ0 = {init}. A case is completed iff
out ∈ σn.

Intuitively a case depicts an instance (an execution) of the process de-
scribed by N1. A case is generated each time a token is placed in the input
condition and it is constructed while tasks are being activated conforming to
the semantic rules.

2.3 The planning language K

K is a logic-based planning language, which thanks to its ASP-like semantics,
is well suited for planning under incomplete knowledge [12].

The main elements of K (and in general of action languages) are fluents
(see 2.1) and actions. The set of fluents depicts the state of the system in a
certain moment, which can be changed by means of actions.

A characterizing feature of the language is that it allows the use of default
negation besides strong negation, therefore, transitions between states are
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determined according to the possessed knowledge, not being necessary to
have a value for all the existent fluents. open world assumption

A planning problem specification in K is similar to a Datalog program;
facts are represented by predicate symbols. The evolution of the states in the
planning domain is ruled by a set of statements based on preconditions to
constraint the execution of actions and postconditions to modify fluents after
such executions.

A goal is a conjunction of ground literals and a plan for a goal is a sequence
of actions whose execution leads from an initial state to a state where all the
literals in the goal are satisfied. Each plan is a solution for the specified
planning problem.

2.3.1 K theoretical foundations

The formalization of the concepts in this section is based on the description
of K provided in [12].

Definition 2.3.1. A K program is a tuple (F, A, R, init_rules, goal) such
that:

• F is a set of fluent declarations

• A is a set of action declarations

• R is a set of rules, where each rule r is one of:

a) Causation rule
caused f if b1, . . . , bk, not bk+1, ..., not bm

after a1, . . . , ap, not ap+1, . . . , not aq

where f ∈ F ∪ A ∪ {false}, b{1,...,m} ∈ F and a{1,...,q} ∈ F ∪ A.
The if and the after parts are optional; if m = q = 0, then the
word caused is optional as well. Besides,

h(r) = {f} pre(r) = {a1, . . . , aq}
post+(r) = {b1, . . . , bk} post−(r) = {bk+1, . . . , bm}

b) Executability condition
executable a if b1, . . . , bk, not bk+1, ..., not bm

where a ∈ A, bis ∈ A ∪ F and m ≥ k ≥ 0. Additionally,
h(r) = {a} post(r) = ∅
pre+(r) = {b1, . . . , bk} pre−(r) = {bk+1, . . . , bm}

not stands for the default negation in the ASP context.
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• init_rules is the initial set of constraints, described by means of cau-
sation rules with q = 0

• goal is the set of constraints to be satisfied and described by a set of
ground fluent literals possibly preceded by the default negation symbol.

goal : f1, ..., fm, not fm+1, ..., not fn?

A literal is an action, type or fluent predicate symbol p(t1, ..., tn), possibly
preceded by the strong negation symbol “-". A literal is ground if it does not
contain variables.

Definition 2.3.2. A state is a consistent set of ground fluents, i.e., a set S
of fluent literals where it holds that: if x ∈ S then −x /∈ S and if −x ∈ S
then x /∈ S.

An action a ∈ A is executable with respect to a state s iff there exists an
executability condition e ∈ R (2.3.1.b) such that h(e) = {a}, pre+(e)∩F ⊆ s
and for each x ∈ pre−(e), it holds x /∈ s or −x ∈ s.

Definition 2.3.3. A legal transition is a tuple [s1, act, s2], where s1 is a
state, act is an executable action with respect to s1 and s2 is the minimal
state such that for every causation rule r ∈ R (2.3.1.a), whenever the three
of post+(r) ∩ F ⊆ s2, pre+(r) ∩ F ⊆ s1 and a ∈ pre+(r) ∩ A hold, then
h(r) ̸= false ⊆ s2.

A state s0 is a legal initial state iff it is a minimal set such that for each
ic ∈ init_rules, if post+(ic) ⊆ s0 then h(ic) ∈ s0. Informally, s0 is a state
determined by a minimal set of literals needed to satisfy all the constraints
in init_rules.

Definition 2.3.4. A sequence of actions ⟨a1, . . . , ai⟩, i ≥ 0 is a plan, if
there exists a sequence of legal transitions T = ⟨[s0, a1, s1], . . . , [si−1, ai, si]⟩
such that s0 is a legal initial state and for fi ∈ goal, {f1, . . . , fm} ⊆ si and
{fm+1, . . . , fn} ∩ si = ∅.

Definition 2.3.5. A partial plan is a sequence of actions ⟨a1, . . . , ai⟩, i ≥ 0,
for which exists a legal transitions’ sequence T = ⟨[s0, a1, s1], . . . , [si−1, ai, si]⟩
with s0 a legal initial state. A partial plan becomes a plan when the goal is
satisfied in si.

For simplicity and without loss of generality, no parallelism will be as-
sumed in this work, which is nonetheless expressible in the sequential ap-
proach, writing by instance all the concurrently executed actions one after
the other.



Chapter 3

Encoding YAWL workflows into K programs

YAWL’s control-flow perspective is the focus of attention when pursuing to
retrieve missing information about traces. As mentioned before, the set of
elements that define the control flow patterns supported by the language is
constituted by the so called constructs. It is therefore that a process depicted
by a YAWL model can be expressed in terms of a K program, through the
proper encoding of each of the constructs in such model.

This section is intended to establish a precise standard representation
of structured workflows as planning problems, along with the procedure to
generate it.

3.1 K representation of constructs

Standing on the definition of YAWL’s set of constructs provided in [33], as
well as in its operational semantics, a case by case encoding into the planning
language K is introduced. As previously mentioned, the proposal relies on
the assumption of structured YAWL models.

In consideration of the dynamic context of workflow nets, intuitively a to-
ken marks a position of the flow in the net; the status of a workflow execution
instance is then determined by the set of tokens. The idea underpinning the
encoding is to capture the advance of the token through the workflow net by
means of the enabled fluent and the negation of its stepped into instances.

For simplicity and w.l.o.g. workflows with a Petri Net disposition will be
considered, meaning that the elements appear in sequences of task-condition-
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task, i.e., no task-task connections occur. 1

As a general remark, the not operator stands for default negation while
the symbol - is used for strong negation in K.

Condition
To convey with Petri Net semantics, whenever two or more tasks in YAWL

are directly connected, the existence of an implicit condition in between is
assumed. Conditions can be however explicitly modelled to represent a nonde-
terministic decision point for advancing the activation token (which becomes
just the position of the active token when there is only one next task) in a
running case of a YAWL net.

The assumption of having structured models restricts each condition to
have exactly one incoming and one outgoing arc (single entry, single exit).
Its existence is thus represented as a fact.

condition(e1).

Input condition
This is the starting point of the flow, therefore, the unique condition holding
a token at the beginning of the process execution.

initially: enabled(start).

Remark that this encoding goes along with its corresponding encoding for
being a condition.

Output condition
It represents the last possible reachable point; the possession of the token by
this condition determines the termination of the process execution.

goal: enabled(end)?

Analogous to the input condition, this is joined with its condition’s en-
coding.

1This topic is discussed in the “Condition” encoding part and formalized in posterior
chapters.
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Atomic task

Enacts the default case, which assumes
an XOR-join and AND-split with exactly
one incoming and outgoing flow elements
(arcs) respectively. The encoding is thus
covered in the posterior corresponding
cases.

And split
S advances a token into all of the conditions from c1 to cn.

actions: S.

always: caused enabled(c1) after S.
...
caused enabled(cn) after S.

And join
S is activated when all of the incoming arcs have been enabled, i.e., when
there is a token in each of them.

actions: S.

always: executable S if enabled(c1),
... ,
enabled(cn).

caused -enabled(c1) after S.
...
caused -enabled(cn) after S.

Xor split
The token is passed to exactly one ci, i ∈ [1, n], based on the (ordered)
evaluation of branching predicates associated to each of the outgoing arcs; the
first one found true is selected. The below encoding disregards the evaluation,
in order to cover as well the possibility of having unobservable activities and
thus unknown value of the referred predicates.

caused enabled(c1) if not enabled(c2), . . . ,
not enabled(cn)

after S.
.....
caused enabled(cn) if not enabled(c1), . . . ,

not enabled(cn−1)
after S.
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The introduction of observed information concerning data variables to-
gether with observed tasks is discussed in a future chapter.

Xor join
S can be executed as soon as one ci, i ∈ [1, n] is enabled. After its execution,
none of the incoming conditions can trigger S again.

actions: S.

always: executable S if enabled(c1).
...
executable S if enabled(cn).
caused -enabled(c1) after S.
...
caused -enabled(cn) after S.

Given the assumption of structured models and the execution of a unique
path ensured by the XOR-split encoding, it suffices to inactivate locally the
preconditions of S after one incoming arc is true.

Or split
The token is passed to at least one ci, i ∈ [1, n], based on the evaluation of
the splitting predicates associated to each of the arcs joining them with S0.
Unlike the XOR case, the token is advanced into all the ci’s whose predicates
evaluate to true. As in the XOR-split, the encoding considers a generic case.

total enabled(c1) after S0.
.....
total enabled(cn) after S0.
forbidden not enabled(c1),

... , not enabled(cn)
after S0.

The total declaration is aimed to simulate the non-determinism of the
OR-split. The execution of at least one task is then asserted with the addition
of the forbidden rule.

Or join
S receives the token only when all the incoming arcs that can be enabled
according to previous selective conditions, have been done so. Due to its
semantics, whether to enable or not an OR-join cannot be decided locally
since reachable active tokens should be considered.
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actions: S.

always:
executable S if enabled(c1),

not delayed(c2), ... ,
not delayed(cn).

.....
executable S if enabled(cn),

not delayed(c1), ... ,
not delayed(cn−1).

caused -enabled(c1) after S.
.....
caused -enabled(cn) after S.

caused delayed(Y) if not enabled(Y),
reachable(Y,W),
enabled(W).

Here, reachable(Y,W) is a static predicate associated to background
knowledge that depends on the topology of the workflow. It expresses that
there exists a path that leads from W to Y and is defined for all the conditions
Y that have an outgoing arc connected to an OR-join task. The domain of
W is the set of conditions located between the corresponding OR-split task
sp (which exists by the structure of the models) and this OR-join, including
the incoming condition to sp.

The strategy to compute the ground set of reachable elements is de-
scribed in the next section, as part of the encoding algorithm.

The situation in which one of the cis is in a waiting status and thus
preventing the activation of S, is then mimicked by the fluent delayed(c),
which is true whenever c is not enabled but one of the currently enabled
conditions might lead a token into it.

3.1.1 Extensions

The following constructs are not structured workflows by definition, nonethe-
less, a possible encoding considering general workflows is illustrated.

Composite task

This construct is basically a best practice to encapsulate business activities
in the design stage; it can however be integrated into the main net unnesting
the elements that compose it, each of which can be represented in the same
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form as the elements in a non composite task. As a remark here, the input
and output conditions of the composite task CT are merged with e0 and en

respectively; the mapping should hence be represented as follows:

always:
executable CT.firstTask

if enabled(e0).
caused enabled(e_n)

after CT.lastTask

Cancellation region

When T completes executing, all of the tasks in execution as well as
all tokens residing in conditions into the associated cancellation region (for
the same case) are withdrawn. Since no parallel execution is assumed, only
conditions need to be considered.

always:
caused -enabled(c1) after T.
caused -enabled(c2) after T.

Multiple and Composite-multiple instances tasks

Since we work under the assumption of single process executions, this
construct will be disregarded.

3.2 Encoding algorithm

To represent the model as a planning problem, two files need to be produced:

• A .plan file to contain the specifications of the planning problem ex-
pressed in K.

• A .dl file to introduce background knowledge specified as a stratified
Datalog program

3.2.1 The background knowledge

From the control-flow perspective, the condition construct has a main role
due to the fact that conditions represent decision points to advance the token
in an instance of the modeled process. In the case of structured workflow
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nets, they indicate the instant previous and posteriors to the execution of
tasks and distinguish entries and exits of structured blocks.

For the previous reasons, the background knowledge will be constituted by
the proper encoding of every implicit and explicit conditions conforming the
encoded model, which in agreement with the previous part connotes that the
predicate condition(c). must be added to the .dl file, for every condition c
present.

As stated before, the information concerning the reachability of conditions
involved in the semantics of an OR-join construct must be added as well to the
background knowledge. By the structure of the workflows here considered,
extracting this facts is straightforward from the model:

1. For each task t found into an OR decision block bi (at any nesting
level), excluding the closing OR-join, add a reachbi

(xj, zi) fact, where
xj represents each element in the preconditions of t and the zi’s are each
of the postconditions.

2. To make transitive the reachability relation in the scope of the block,
add the rules:

reachablebi
(X,Y) :- reachbi

(X,Y).
reachablebi

(X,Y) :- reachablebi
(X,Z), reachbi

(Z,Y).

3. Encode likewise each OR decision block, labeling the reach and reachable
predicates with an identifier of the block.

The labeling of the reach and reachable predicates allows to distinguish
the search scope of each OR block. An example will be provided in the
following sections.

3.2.2 The K specification

Complying with the definition of a K program in [19], the .plan file is con-
structed as follows:

1. Each of the predicates used is declared as a fluent.

fluents: enabled(C) requires condition(C).
delayedx(C) requires condition(C).

where x represents the identifier of each OR decision block in the model.
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2. The identifier tid of each task construct in the model is added to the
actions declaration section. Action identifiers derive directly from the
names of tasks in the model. The identifier of the input and output
conditions will be “start” and “end” respectively.

actions: tid.

3. The always section is constituted with the encoding related to each of
the constructs present in the model, excluding the conditions.

4. An inertial fluent preserves its truth value through actions while not
explicitly changed, in which case, the new value is preserved. Taking
advantage of the corresponding K shortcut and to keep track of flows
in the model, include the declaration:

inertial enabled(X).

5. Mindful of the fact that the objective of the encoding points to traces
completion and considering that traces of models are given as sequences
of tasks, regardless the possible simultaneous executions, the declaration
noConcurrency. is added as well in the always section.

6. The initially and goal sections are defined respectively through the input
and output condition encoding.

3.2.3 Complexity

Inasmuch as each task and each condition are encoded exactly once, the
complexity of the presented algorithm is linear in the size of the model; since
a fixed number of rules and facts are produced from each YAWL element, the
size of the produced encoding is linear as well.

The complexity of computing cases of the modeled process is determined
then by the complexity of finding a plan for the corresponding planning prob-
lem, which is asserted to be PSPACE-complete [19]. The formal proof of the
complexity is considered as future work.

3.2.4 Simple example

The programs resulting of carrying out the algorithm over the model in figure
3.1, are provided for illustration purposes.
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The process depicted executes S0, which is a multiple choice task, then
S3, S1 or both can be executed. If the upper branch is selected, S4 must be
eventually executed after S3 and then the process can either loop or go to the
merging task. If S1 is executed then S2 must be as well eventually executed
before moving to S5, which can take place only if all the tasks corresponding
to the selected branches have finished. In the loop case, the last task of an
iteration must be S4. The process finishes after the execution of S5.

The labels next to the arcs identify the implicit condition between each
pair of tasks.

Figure 3.1 A simple example

The encoding

fluents: enabled(C) requires condition(C).
delayed(C) requires condition(C).

actions: s0. s2. s1. s5. s3. s4.

always:
executable s0 if enabled(start).
caused -enabled(start) after s0.

total enabled(c1) after s0.
total enabled(c2) after s0.
forbidden not enabled(c1),not enabled(c2) after s0.

executable s1 if enabled(c2).
caused enabled(c4) after s1.
caused -enabled(c2) after s1.

executable s2 if enabled(c4).
caused enabled(c5) after s2.
caused -enabled(c4) after s2.
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caused -enabled(c5) after s5.
caused -enabled(c7) after s5.
executable s5 if enabled(c5),not delayed(c7).
executable s5 if not delayed(c5),enabled(c7).
caused delayed(Y) if not enabled(Y), reachable(Y,W), enabled(W).
caused enabled(end) after s5.

executable s3 if enabled(c1),not enabled(c6).
executable s3 if not enabled(c1),enabled(c6).
caused -enabled(c1) after s3.
caused -enabled(c6) after s3.

caused enabled(c3) after s3.

executable s4 if enabled(c3).
caused -enabled(c3) after s4.

caused enabled(c6) if not enabled(c7) after s4.
caused enabled(c7) if not enabled(c6) after s4.

inertial enabled(X).
noConcurrency.

initially: enabled(start).
goal: enabled(end)?

The background knowledge file associated to this process is conformed as fol-
lows:

condition(start). condition(end).
condition(c1). condition(c2). condition(c3).
condition(c4). condition(c5). condition(c6).
condition(c7).

reach(c1,start). reach(c2,start). reach(c3,c1).
reach(c4,c2). reach(c7,c3). reach(c5,c4).
reach(c6,c3).

reachable(X,Y) :- reach(X,Y).
reachable(X,Y) :- reachable(X,Z), reach(Z,Y).

The execution of the K program with the obtained background knowledge,
using the DLV K planner, gives as solutions by instance exactly the two plans with
length four:

STATE 0: delayed(c3), delayed(c6), delayed(c4), delayed(c5),
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delayed(c2), delayed(c7), delayed(c1), enabled(start)
ACTIONS: s0
STATE 1: -enabled(start), enabled(c1), -enabled(c2), delayed(c3),

delayed(c6), delayed(c7)
ACTIONS: s3
STATE 2: -enabled(c1), enabled(c3), delayed(c6), delayed(c7),

-enabled(c6)
ACTIONS: s4
STATE 3: -enabled(c3), enabled(c7)
ACTIONS: s5
STATE 4: -enabled(c5), -enabled(c7), enabled(end)

PLAN: s0; s3; s4; s5

STATE 0: delayed(c3), delayed(c6), delayed(c4), delayed(c5), delay ed(c2), delayed(c7), delayed(c1), enabled(start)
ACTIONS: s0
STATE 1: -enabled(start), -enabled(c1), enabled(c2), delayed(c4),

delayed(c5)
ACTIONS: s1
STATE 2: -enabled(c2), enabled(c4), delayed(c5)
ACTIONS: s2
STATE 3: -enabled(c4), enabled(c5)
ACTIONS: s5
STATE 4: -enabled(c5), -enabled(c7), enabled(end)

PLAN: s0; s1; s2; s5

As a remark, since there is only one OR decision block in the model, the
subscript labeling of the reachable predicates was omitted and hereafter, it will be
done so whenever this situation occurs. To strictly comply with the algorithms
however, the predicates should be taking the label of the block, then, assuming it
is b0, the modifications in the encoding would be:

fluents: delayedb0(C) requires condition(C).

always:
executable s5 if enabled(c5),not delayedb0(c7).
executable s5 if not delayedb0(c5),enabled(c7).
caused delayedb0(Y) if not enabled(Y), reachableb0(Y,W), enabled(W).

And for the background knowledge:

reachb0(c1,start). reachb0(c2,start). reachb0(c3,c1).
reachb0(c4,c2). reachb0(c7,c3). reachb0(c5,c4). reachb0(c6,c3).

reachableb0(X,Y) :- reachb0(X,Y).
reachableb0(X,Y) :- reachableb0(X,Z), reachb0(Z,Y).



24 Encoding YAWL workflows into K programs

3.3 Correctness of the encoding

The encoding proposed in section 3.1 is intended to simulate the behavior of a
given YAWL specification by reproducing its semantics in the context of a planning
problem. The correctness of such simulation is formally proved in this section,
based on the formalisms introduced in the preliminary chapter.

An useful property observed in SWF-nets will be proved first.

Property 3.3.1. In a SWF-net, after the execution of a block there are no tokens
left neither in the inner conditions nor in the entry.

Proof. By structural induction considering the cases in def. 2.2.1:

1. The atomic task case is trivial.

2. The token in c1 is advanced into X and after its execution, to the entry of
Y , leaving by induction no tokens left in X. Then it is eventually consumed
by Y finishing, again by induction without tokens inside that block and thus
no tokens remain in the block sequence.

3. As 4.

4. The token in c1 is passed to some or all the entries of the Xn’s, depending
on the case of s; given that SWF-nets are deadlock free, eventually each
token is advanced to the exit of the corresponding Xn, leaving by induction
Xn cleared; next, according to the case, eventually c2 is triggered and by
semantics, the tokens in all the conditions are consumed and one in c2 is
produced.

5. c1 activates j passing the token to jX then by induction X advances it to Xs

with no tokens left in X; hereafter, either s passes the token to the exit, in
which case the property holds by semantics of s, or it passes it to Yj again
without leaving tokens in Y by induction.

As a corollary and since the blocks have a single entry:

Property 3.3.2. In a SWF-net, a block with tokens in the inner conditions has
no tokens in its entry.
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3.3.1 Bisimulation between YAWL models and K pro-
grams

The correctness of the bisimulation reduces to prove that for each execution in-
stance of a process in a model there exists a plan generated by its corresponding
K encoding and vice versa.

Outline of the proof: The encoding algorithm creates an action and a fact
predicate in the K program for each task and condition in the model; the conditions
satisfied at a certain moment of the execution determine states, thus, a task leads
from a state x to a state y in the model iff the corresponding action in the encoding
does so with the states mapping x and y. This holds because after the execution
of an action in the program, the proper postconditions are enabled and all the
preconditions are disabled, which simulates the advance of the token in the net.
In the case of OR-join tasks, the fact of having structured models guarantees the
correct activation of the action. Since this property holds for every pair of states,
it is also valid in the initial states of the model and the program, as well as in every
step involved in the sequence of tasks/actions going to the respective final states,
which again by the mapping function, are equivalent.

Let us start defining a bijective function to match each element in the workflow
with an element in K and formalizing the concerning notion of bisimulation.

Let N = (C, i, o, T, Z, split, join) be a structured workflow net in YAWL, KN =
(F, A, R, init_rules, goal) a K program and map : T ∪ C 7→ A ∪ F C a bijective
function such that for x ∈ T , map(x) ∈ A and for x ∈ C, map(x) ∈ F C , for a
predefined F C ⊆ F .

As an abuse of notation, map({c1, . . . , cn}) = {map(c1), . . . , map(cn)} deter-
mines a correspondence between states from a workflow net and states from a K
program, assigning a unique fluent to each condition holding a token in a given
workflow state.

Definition 3.3.1. N and KN are bisimilar (N ≃ KN ) iff there exists a def-
inition of map such that: TN,id = ⟨t1, . . . , tn⟩ is a case in N iff kplan,id =
⟨map(t1), . . . , map(tn)⟩ is a partial plan for KN .

TN,id is a completed case iff kplan,id is a plan.

To proceed, the next lemma captures the simulation between each pair of states.

Lemma 3.3.1. Let KN be the K encoding obtained from N through the application
of rules in section 3.1. Given a definition mape for the function map and states
s1, s2, σ1, σ2 such that s1 = mape(σ1) and s2 = mape(σ2), then, σ1

h→ σ2 ∈ N iff
[s1, mape(h), s2] is a legal transition in KN .
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Proof. newline
By definition of the encoding procedure, the unique fluents in KN are enabled(X)
and delayed(X); provided that the second is an auxiliary fluent and considering
that each action a ∈ KN is derived exactly from one task in N , named moreover
with the same identifier, let’s first define F C = {enabled(x) | condition(x) is in the
background knowledge of KN } and

mape(x) =
{

x if x ∈ T

enabled(x ) if x ∈ C

For simplicity and w.l.o.g., we will use indistinctly x in the subsequent to refer
to each, the action and the task. Additionally, the possible presence of delayed
fluents in s1 and s2 will be ignored when referring to the mapping, since it is not
part of the defined domain for mape . Finally, recall two facts:

[F1]: N being structured implies that every task t with a multiple join is
followed by a single condition, i.e. split(t) = AND with a sole outgoing edge (def.
2.2.2). Analogously, every multiple split task has exactly one incoming condition.

[RI ]: By definition, inertial enabled(X) is part of every K encoding.

Conscious about this, let’s assume σ1
h→ σ2 ∈ N . Then, by def. 2.2.5,

∃ pre, post ⊆ C and binding(h,pre,post,σ1) such that σ2 = (σ1 \ pre) ∪ post.

With [F1] in mind and assuming the next given preset and postset for h (as per
def. 2.2.4), we have the following cases and the corresponding encodings derived
from the value of h’s split and join functions:

• AND split: preset(h) = {cpre}, postset(h) = {c1, . . . , cn}

executable h if enabled(cpre). (R1)
caused -enabled(cpre) after h.
caused enabled(c1) after h.
...
caused enabled(cn) after h.

From def. 2.2.4: post = postset(h), pre = {cpre} and σ1 = {d1, . . . , dm, cpre}
with m ≥ 0; thus, by hypothesis, σ2 = {d1, . . . , dm, c1, . . . , cn}. This implies
that enabled(cpre) ∈ s1 and thus that h is executable with respect to s1, due
to (R1) and provided that rules of type nonexecutable, which might prevent
its execution, are never introduced. Then, map(σ2) = {enabled(d1), . . . ,
enabled(dm), enabled(c1), . . . , enabled(cn), not enabled(cpre)} is the
minimal state satisfying the causation rules concerning h; therefore [s1, h, s2]
is a legal transition in KN (according to def. 2.3.3).

• AND join. postset(h) = {caft}, preset(h) = {c1, . . . , cn}
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executable h if enabled(c1), ... , enabled(cn).
caused -enabled(c1) after h.
...
caused -enabled(cn) after h.
caused enabled(caft) after h.

From def. 2.2.4: post = {caft}, pre = preset(h) and σ1 = {d1, . . . , dm,
c1, . . . , cn} with n ≥ 0; by hypothesis then σ2 = {d1, . . . , dm, caft}. Given
that thereupon, ∀j ∈ [1, n], enabled(cj) ∈ s1, h is executable with respect
to s1 and the state after the execution is {enabled(d1), . . . , enabled(dm),
-enabled(c1), . . . ,-enabled(cn), enabled(caft)} (considering [RI ]), which
by the semantics of the default negation operator in K, implies {enabled(caft),
enabled(d1), . . . , enabled(dm), not enabled(c1), . . . , not enabled(cn)
}. This state corresponds to s2. Hence, [s1, h, s2] is a legal transition in KN .

• XOR split. preset(h) = {cpre}, postset(h) = {c1, . . . , cn}

executable h if enabled(cpre).
caused -enabled(cpre) after h.
caused enabled(c1) if not enabled(c2), ... , not enabled(cn)

after h.
...
caused enabled(cn) if not enabled(c1), ... , not enabled(cn−1)

after h.

We will consider the general case in which branching selection predicates
are not introduced. The management of data will be explained later in this
document.
Def. 2.2.4 implies pre = {cpre}, |post| = 1 and post ⊆ postset(h), then
σ1 = {d1, . . . , dm, cpre} and σ2 = {d1, . . . , dm, cx} for some x ∈ postset(h),
m ≥ 0. Now, h is executable with respect to s1 for the same reasons that
the AND split case. Different possibilities exist however for the state to be
produced, to tell {enabled(d1), . . . , enabled(dm), enabled(ci)} for any
i ∈ [1, n], regarding though that once one enabled(ci) is selected, the pre-
conditions of the others become unachievable; for this reason, each of the
referred states is minimal. Given that moreover, s2 is one of those states,
[s1, h, s2] is a legal transition in KN .

• XOR join. postset(h) = {caft}, preset(h) = {c1, . . . , cn}

executable h if enabled(c1). (R1)
...
executable h if enabled(cn).
caused -enabled(c1) after h.
...
caused -enabled(cn) after h.
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caused enabled(caft) after h.

From def. 2.2.4, we have post = {caft}, |pre| = 1 and pre ⊆ preset(h),
therefore w.l.o.g. pre = {c1} and σ1 = {d1, . . . , dm, c1} with m ≥ 0; by
hypothesis then σ2 = {d1, . . . , dm, caft}. Since mape(σ1) = s1, enabled(c1)
∈ s1 and thus h is executable with respect to s1 due to (R1). The state
after the execution is {enabled(d1), . . . , enabled(dm), -enabled(c1), . . . ,
-enabled(cn), enabled(caft)}, which as explained in the AND join case,
corresponds to s2. Hence, [s1, h, s2] is a legal transition in KN .

• OR split. preset(h) = {cpre}, postset(h) = {c1, . . . , cn}

executable h if enabled(cpre).
caused -enabled(cpre) after h.
total enabled(c1) after h. (R1)
...
total enabled(cn) after h.
forbidden not enabled(c1), ... , not enabled(cn)

after h. (RF )

Again let’s consider the general case without branching selection predicates.
From 2.2.4, pre = {cpre}, ∅ ≠ post ⊆ postset(h) and σ1 = {d1, . . . , dm, cpre}
for m ≤ 0. Then, w.l.o.g. σ2 = {d1, . . . , dm, c1, . . . , ck} with k ∈ [1, n]. h’s
executability is once again the same as in the AND split case. Regarding the
reached state, (RF ) guarantees the existence of one enabled(ci), i ∈ [1, n];
by definition of total (see [13]), (R1) is equivalent to have
caused enabled(c1) if not -enabled(c1) after h.
caused -enabled(c1) if not enabled(c1) after h.
By semantics of K, the behavior of those rules is to non deterministically
assign a truth value to enabled(c1), whenever its value is unknown. As this
is analogous for the rest of the total rules, the set of achievable states after
the execution of h is the power set of mape(postset(h)), where each element
is additionally joined with {enabled(d1), . . . , enabled(dm)}; the element
where all enabled(ci) are negated is excluded.
Since the power set contains all the possible combinations, each element (let
it be s2i) is minimal and so each [s1, h, s2i] is a legal transition in KN . In
particular s2 is one of the s2i; therefore, [s1, h, s2] is a legal transition in KN .

• OR join. preset(h) = {c1, . . . , cm} and postset(h) = {cpost}

executable h if enabled(c1),
not delayed(c2), ... , not delayed(cm). (E1)

...
executable h if enabled(cm),

not delayed(c1), ... , not delayed(cm−1). (Em)
caused -enabled(c1) after h.
...
caused -enabled(cm) after h.
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caused enabled(cpost) after h.

caused delayed(Y) if not enabled(Y),reachable(Y,W),enabled(W).
(RD)

By hypothesis and def. 2.2.5:

(i) ∃ pre, post ⊆ C and binding(h, pre, post, σ1) s.t. σ2 = (σ1 \ pre) ∪ post

(ii) ∀ δ ∈ reach(σ1), ̸ ∃ pre′ ⊆ δ s.t. there is a binding(h, pre, post, δ) and
pre ⊂ pre′

From (i) and def. 2.2.4: post = {cpost}, w.l.o.g. pre = {c1, . . . , ck} for some
1 ≤ k ≤ m and σ1 = pre∪{c′

1, . . . , c′
n} with n ≥ 0 and σ2 = {c′

1, . . . , c′
n, cpost};

consequently {enabled(c1), . . . , enabled(ck)} ⊆ s1 and thus none of
delayed(c1), . . . , delayed(ck) is caused in that state, since the precondi-
tions of (RD) don’t hold, i.e., not delayed(cj) is true in s1 for all 1 ≤ j ≤ k.
Aside, by construction of the encoding, for each condition w in a path that
ends in cr and starts in the OR-split task connected to the entry(eh) of the
block whose exit is cpost, there is a reachable(cr, w) fact in the knowl-
edge base; that block exists due to the assumption of N being structured;
reachable(cr, w) is then true in every state of KN , exactly for all the re-
ferred w’s.
Given that (ii) holds in σ1, ̸ ∃ pre′ ⊆ C in none of the states δ reachable from
σ1 by a (sequence of) task(s) different from h, nor in σ1 itself, such that h
can be executed in δ with pre′. This implies that:

– enabled(cr), k + 1 ≤ r ≤ m, are not in s1, i.e., not enabled(cr) is
true in s1.

– ∀ w previously introduced, w /∈ {c′
1, . . . , c′

n}
– Since h won’t be activated, ∀ δ holds pre ⊆ δ, then by property 3.3.2,

eh /∈ δ, whereby jointly with the previous point derives that ∀ δ, w,
holds w /∈ δ.

Provided that mape(σ1) = s1, then not enabled(w) is true in s1 and fur-
thermore it will be so in all the states produced after s1 from executing an
action different to h. Consequently and because reachable(cr, x) is false
for any other condition x, delayed(cr) is not caused in s1 and hence not
delayed(cr) is true.
As a result, h is executable with respect to {enabled(c1), . . . , enabled(ck),
enabled(c′

1), . . . , enabled(c′
n) } = s1, for instance with (E1) and being

aware of [RI ], its execution leads to the state s2 = { enabled(c′
1), . . . ,

enabled(c′
n), enabled(cpost)} = mape(σ2).

Therefore, [s1, h, s2] is a legal transition in KN .

An atomic h corresponds to the case when split(h) = AND and join(h) =
XOR both with cardinality one, which is covered by the previous cases.
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For the left hand side direction, let’s assume that [s1, h, s2] is a legal transition
in KN . This implies that h is executable with respect to s1 and that f ∈ s2 for
each caused f if

∧
sss2 after

∧
sss1, h. ∈ KN , where sss1 ⊆ s1, sss2 ⊆ s2.

The existence of the required transition in N is shown as well according to the
type of the associated task h. The same preset and postset of the right hand side
part of the proof will be assumed, thus the same encoding for each case.

• AND split
From the assumption, s1 = {enabled(d1), . . . , enabled(dy), enabled(cpre)}
and s2 = {enabled(d1), . . . , enabled(dy), enabled(c1), . . . , enabled(cn)}
for some y ≥ 0. Let pre = preset(h) and post = postset(h), then pre ⊆ σ1
and therefore, recalling N is structured, σ1 ∩ post = ∅, otherwise property
3.3.2 would be violated (notice that because mape is bijective, {enabled(di)
| 1 ≤ i ≤ y} ∩ {enabled(cj)|1 ≤ j ≤ n} = ∅ holds as well in KN ).
Thence, there exists binding(h, pre, post, σ1), which together with the impli-
cation that σ2 = (σ1 \ pre) ∪ post, entails that σ1

h→ σ2 ∈ N .

• AND join
From the hypothesis, {enabled(c1), . . . , enabled(cn)} ⊆ s1 and {not
enabled(c1), . . . , not enabled(cn), enabled(caft)} ⊆ s2 for some y ≥ 0.
Considering then pre = preset(h) and post = postset(h), we derive pre ⊆ σ1
and σ2 = (σ1 \ pre) ∪ post. Besides, in agreement with property 3.3.1,
σ1 ∩ {caft} = ∅, which by definition of mape guarantees as a plus that
enabled(caft) /∈ s1.
Therefore, there exists binding(h, pre, post, σ1), which together with the pre-
vious statement about σ2 implies that σ1

h→ σ2 ∈ N .

• XOR split
From the encoding and the initial assumption derives that enabled(cpre)
∈ s1 and {-enabled(cpre), enabled(cx)} ⊆ s2, for some x ∈ [1, n]. Let now
pre = preset(h) and post = {cx}; then, post ⊆ postset(h) and since cpre ∈ σ1,
by property 3.3.2, σ1 ∩ post = ∅, which given the bijectivity of mape implies
in plus that enabled(cx) /∈ s1. As a consequence, σ2 = (σ1 \ pre) ∪ post.
Given that all conditions of def. 2.2.4 hold, there is a binding(h, pre, post, σ1)
and thus σ1

h→ σ2 ∈ N .

• XOR join
W.l.o.g. {enabled(c1), . . . , enabled(ck)} ⊆ s1 for some 1 ≤ k ≤ n, {not
enabled(c1), . . . , not enabled(cn), enabled(caft)} ⊆ s2 is implied; then
{c1, . . . , ck} ⊆ σ1; given the structure of N , this implies that an XOR split
must have been executed, which guarantees that exactly one cx, 1 ≤ k ≤ x
appears in σ1. With pre = {cx} and post = {caft}, this case holds analogous
to the AND join.

• OR split
Being h executable with respect to s1 implies from the encoding that { -
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enabled(cpre), (-)?enabled(c1), . . . , (-)?enabled(cn)}2 ⊆ s2, where at
least one of the enabled(ci) is positive and that enabled(cpre) ∈ s1. Since
s1 = mape(σ1), cpre ∈ σ1 and ∅ ̸= {c1?, ..., cn?} ⊆ σ2. Let now post =
σ2∩postset(h); given that N is structured and by property 3.3.2 σ1∩post = ∅,
since by definition h is the first task of a block.
Because mape is bijective, s1 \ {enabled(cpre)} = s2\{-enabled(cpre), (-
)?enabled(c1), . . . , (-)?enabled(cn)} and then taking pre = {cpre}, σ2 is
equal to σ2 = (σ1 \ pre) ∪ post. As a consequence as well, by def. 2.2.4, there
is a binding(h, pre, post, σ1) and thus σ1

h→ σ2 ∈ N .

• OR join
Recall first that (i) since N is structured, there exists an OR-split task hsplit,
which is the first task of the block whose last task is the encoded h. Let
blockh denote the mentioned block.
Then, from hypothesis, {enabled(cpost), -enabled(cj)} ⊆ s2, for all 1 ≤
j ≤ m and at least one of (E1) to (Em) is satisfied in s1, i.e., ∃ cj s.t.
enabled(cj) and not delayed(ck) are in s1, ∀ 1 ≤ k ≤ m. (note that not
delayed(cj) holds too due to (RD)). Then, s1 = {f1, . . . , fx, enabled(c1),
. . . , enabled(ck)}, with 1 ≤ k ≤ m and fi fluents s.t. {fi}∩ {enabled(cj)}
= ∅, i ≥ 0.
Aware of [RI ], {f1, . . . , fy, enabled(cpost)} ⊆ s2 is as well implied from
[s1, h, s2], with y ≤ x and f1, . . . , fy all the fluents that in s1 correspond to
the enabled(X) predicate.3

Let pre = {x ∈ preset(h)|enabled(x) ∈ s1} and post = {cpost}; we have
then σ1 = {d1, . . . , dy, c1, . . . , ck} and σ2 = {d1, . . . , dy, cpost}, assuming fi =
enabled(di). According thus to def. 2.2.4, ∃ binding(h, pre, post, σ1) and
because σ2 = (σ1 \ pre) ∪ post as well, hence (1.) from def. 2.2.5 holds.
Now, since not delayed(ck) ∈ s1, ∀ 1 ≤ k ≤ m, then for each ck either:

a) enabled(ck) ∈ s1, in which case ck ∈ pre

b) not enabled(ck) is true and [reachable(ck, w), enabled(w)] is false
Let’s consider B = {w| reachable(ck, w) is in the background knowl-
edge}4. B ̸= ∅ due to (i). Since reachable(ck, w) is a fact (thus true),
then enabled(w) must be false, i.e., ∀ w ∈ B, not enabled(w) holds
in s1.
Therefrom, {c ∈ blockh|c ∈ C} ∩ σ1 = pre, which implies that the only
task executable from blockh in σ1 is h itself. Since by definition h can’t
be executed in any of the states δ ∈ reach(σ1), then ∀δ holds pre ⊆ δ,
which by property 3.3.2 implies that the entry of blockh is not in any δ
and thus none of {c ∈ blockh} \ pre either.
Taking so preset(hsplit) = {x} ([F1]), not enabled(x) remains true
in every state previous to the execution of h, which together with the

2? is the operator for regular expressions to denote 0 or 1 occurrence of the operated
symbol

3The rest of the fi’s can be fluents of the type delayed(_)
4By construction, those are all the conditions in the path from hsplit, leading to ck,

including preset(hsplit)
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construction of the encoding, implies that all of the not enabled(w)
remain true as well.

Recalling that mape is a bijection between N ’s states and the states in KN ,
from (a) derives that there is no pre′ such that ∃ binding(h, pre′, post, σ1) and
pre ⊂ pre′ ⊆ σ1. And from (b), that none of the elements in preset(h) \ σ1
can be part of any state δ reachable from σ1 by a task distinct from h; thus,
there is no pre′ ⊆ δ s.t. pre ⊂ pre′ ⊆ preset(h). Consequently, (2.) from
def. 2.2.4 holds.

At this point , the expected bisimulation of the proposed encoding is asserted
by the following theorem.

Theorem 3.3.1. Let N = (C, start, end, T, Z, split, join) be a structured workflow
net in YAWL and KN the K encoding obtained from the application of the rules in
section 3.1 to N . Then N ≃ KN .

Proof. Let map be the mape function defined in the proof of lemma 3.3.1. Then,

⟨t1, . . . , tn⟩ is a case in N
def.2.2.6⇐⇒ ∃ σ0, . . . , σn workflow states of N , s.t. σj−1

tj→ σj is a transition
in N , with j ∈ [1, n] and σ0 = {init}

by lemma 1⇐⇒ ∃ s0, . . . , sn states of KN , s.t. [sj−1, map(tj), sj ] is a legal transition
in KN , with j ∈ [1, n], sj = map(σj) and s0 is the initial state

⇐⇒ ⟨[s0, map(t1), s1], . . . , [sn−1, map(tn), sn]⟩ is a legal transition se-
quence in KN

def.2.3.5⇐⇒ ⟨map(t1), . . . , map(tn)⟩ is a partial plan in KN

Hence, (N ≃ KN ) by definition 3.3.1.



Chapter 4

Restriction of plans to observed executions

Informally a trace of a process is the record of a sequence of tasks observed during
an execution of such process. Depending on the observability of the tasks in the
modelling SWF-net, the trace can contain all of the executed tasks or simply a
part of them.

A general algorithm to include information regarding traces into the K represen-
tation of a SWF-net is presented in this section. The intuitive idea is to constraint
the execution of observable actions to the detection in the trace of any instance of
such action (captured by a ground fluent). The trace sequence is then encoded in
such way that each action in it can be executed uniquely if the previous one has
been done so. The execution of all the actions is then asserted by the addition of
the fluent depicting the observed end of the trace to the goal.

4.1 Algorithm for inclusion of traces

Let P be the encoding in K of a YAWL specification and T a trace of the process
described by P . Then, proceeding as follows, the set of solutions for P can be
restricted to contain only those plans pt such that, for each occurrence of a task in
T , the action that corresponds to it in P appears in pt, maintaining the observed
order.

1. Add a new fluent observed(X,Y) to P , with X an action and Y an integer.
This fluent is intended to represent an action observed in a case, assign-
ing it an identifier. Notice that although Y can be any different integer
for each action, an ordered sequence will be used here in order to indicate
the execution order. By instance, the elements in the trace s1, s3, s4, s3,
s5, s6 will be represented as observed(s1,1), observed(s3,2), observed(s4,3),
observed(s3,4), observed(s5,5), observed(s6,6).
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2. Make the new fluent inertial to propagate its value.

inertial observed(X,Y).

3. For every observable action act in P , observed(act,_), must be added to
the if condition of the respective executable act constraints, so that the
sequence in T is respected and since observable actions can be performed
only if there is track of their execution.

executable act if observed(act,_), ... .

4. To encode the observed sequence of tasks, for each observed(x, i) add a rule

caused observed(z, i + 1) after x, observed(x, i).

where z denotes the action subsequent to observed(x, i) in T . If x is the
last task in the trace, then add instead

caused observed(end, i + 1) after x, observed(x, i).

5. Disable each action in T after executed.

caused -observed(A,N) if observed(_,M), M=N+1 after
observed(A,N).

6. The grounded fluent observed(end,i) introduced above, must be added to
the goal constraints in order to ensure that all the observed actions form part
of the solution.

7. Add to initially: the grounding of the fluent associated to is the first action
in T . ( Ex. observed(t0,1) )

Let’s consider the simple example from figure (3.1) in section 3.2.4. Assuming
that all the activities except s2 and s4 are observable, for T = s0, s3, s1, s5, the
corresponding K constraints are:

fluents:
observed(X,Y).

always:
executable s0 if enabled(start), observed(s0,_).
executable s1 if enabled(c0), observed(s1,_).
executable s3 if enabled(c3),not enabled(cTo_s3), observed(s3,_).
executable s3 if not enabled(c3),enabled(cTo_s3), observed(s3,_).
executable s5 if enabled(c2),not delayed(c4), observed(s5,_).
executable s5 if not delayed(c2),enabled(c4), observed(s5,_).

%% trace
caused observed(s3,2) after s0, observed(s0,1).
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caused observed(s1,3) after s3, observed(s3,2).
caused observed(s5,4) after s1, observed(s1,3).
caused observed(end,5) after s5, observed(s5,4).

%% disable executed actions
caused -observed(A,N) if observed(_,M), M=N+1 after observed(A,N).

inertial observed(X,Y).

initially: .... observed(s0,1).
goal: end, observed(end,5)?

4.2 Validity of the algorithm

In this section we will prove the soundness and completeness of the algorithm
proposed to restrict the set of solutions in agreement with information from traces.
Let us formalize some concepts first.

Let M be a SWF-net and tsk the set of tasks in M . Then OM ⊆ tsk denotes
the set of observable tasks in M and UM ∈ tsk the set of unobservable tasks, such
that tsk = OM ∪ UM.

Definition 4.2.1. A trace is a subsequence of observable tasks derived from a
case. As an abuse of notation, T ⊆ Tcase denotes that T is a trace of the case Tcase.

Let KM be the K encoding of a SWF-net M and T an observed trace of the
process described by M .

Taking into account the theorem 3.3.1, each Tcase of M has a corresponding
plan Pcase for KM , compounded exactly by the same tasks in the same order.
Based on this fact, the notation T ⊆ Pcase will be used as well to symbolize that a
subsequence containing the tasks in a trace T is a subsequence of the plan Pcase.

Let besides KM |T designate the encoding resulting from the application of the
algorithm in the previous section to KM and T . The soundness of the algorithm
is then asserted by the two following theorems, for which an auxiliary lemma is
proved first.

Lemma 4.2.1. A partial plan for KM |T is a partial plan for KM .

Proof. In addition to the rule in step 5 of the algorithm, the rules in KM are
extended and modified in KM |T as follows, where oi represents each element in
the set of observable tasks and preconditionsKM

(r) denotes all the preconditions
defined for the same rule in KM .
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executable oi if observed(oi, _), preconditionsKM
(r) (RO)

caused observed(a2, 2) after a1, observed(a1, 1).
...
caused observed(an, n) after an−1, observed(an−1, n − 1).
caused observed(end, n + 1) after an, observed(an, n).

Let p = ⟨a1, ... , ak⟩ be a partial plan for KM |T . Then, ∃ seq = ⟨ [s0, a1, s1],
. . . , [sk−1, ak, sk]⟩ a legal transitions sequence in KM |T , with s0 the initial state.

We will strengthen the proof by showing as well that
(i) ∀si ∈ seq, si \ observed(si) is the corresponding state in KM .
where observed(si) denotes all the instances of the observed fluent appearing in
si.

By induction over the length of p:

k = 1. [s0, a1, s1] is a legal transition in KM |T .
Then, preconditionsKM

(r) are true in s0, for at least one of the executability
rules r with a1 as head. In addition, observed(a1, 1) is true as well in case
of a1 being observable.
(i) holds by construction (step 7) and thus, a1 is executable in KM .
The rules above have consequences uniquely in the case of a1 being observ-
able, in which case, an observed instance becomes true and observed(a1, 1)
is falsified in s1. Since the rest of the encoding remains as in KM and given
that the observed fluent, which is the only one introduced by the algorithm,
is not part of the set of fluents in KM , (i) holds for s1.
p is therefore a partial plan in KM and (i) holds for s0 and s1.

I.H. Lets assume now that for ⟨a1, ... , ak−1⟩ the lemma holds.

I.S. Then, for p = ⟨a1, ... , ak⟩, ∃ ⟨[s0, a1, s1], . . . , [sk−1, ak, sk]⟩ such that, in
particular, [sk−1, ak, sk] is a legal transition in KM |T . Analogous to the base
case, this implies that preconditionsKM

(r) are true in sk−1, for some r in
the executability rules of ak. Additionally by (RO), observed(ak, k) is true
if ak is observable.
Furthermore, by induction, the sequence ⟨[s′

0, a1, s′
1], . . . , [s′

k−2, ak−1, s′
k−1]⟩

is a legal transitions sequence in KM , with s′
i = si \ observed(si), whereby

ak is executable in KM .
Thus p is a plan for KM .
Analogous to the base case, the rules introduced in KM |T have only conse-
quences over instances of the observed fluent and solely if ak is observable,
thus (i) holds for sk for the same reasons.
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Theorem 4.2.1. A plan for KM |T is a plan for KM .

Proof. Let plan be a plan for KM |T , then, ∃ ⟨ [s0, a1, s1], . . . , [sn−1, an, sn]⟩ a legal
transitions sequence in KM |T , with s0 the initial state, such that {enabled(end),
observed(end, n + 1)} ∈ sn.

As a direct consequence of the previous lemma, plan is a partial plan in KM ;
since in addition x = sn \ observed(sn) is the corresponding last state in KM , then
enabled(end) ∈ x. Therefore, plan is a plan in KM .

Next we will prove that observable activities are present in a plan for KM |T iff
they are part of the trace T and that the order of appearance of the actions is the
same in both.

Theorem 4.2.2. Let P be a plan for KM |T . Then:

(a) ∀oi ∈ OM : oi ∈ T iff oi ∈ P

(b) ⟨ax, ax+1⟩ ⊆ T iff ⟨ax, n1, ..., nk, ax+1⟩ ⊆ P , where for all k ≥ 0, j ∈ [1, k],
nj is unobservable.

Proof. newline

(a) Let’s assume that a is an observable action in P and suppose a /∈ T . Since a /∈
T , there is no causation rule in KM |T with observed(a, i) in the head, i ∈ N
introduced by the algorithm. Provided that a is observable, observed(a, _)
is part of the preconditions of every executability rule with a in the head.
Thus, from both facts derives that a is not executable with respect to any
state and therefore a /∈ P , which contradicts the assumption. Hence, a ∈ T .
Assume now a as an action in T 1. Since P is a plan in KM |T , observed(end,
n + 1) is true in the last state. By step 4 of the algorithm, this implies that
the last action in T was executed and thus recursively each of the previous
ones, since no other rule can cause the observed fluent become true. Given
that a ∈ T , again from 4, there is a causation rule with observed(a, i) in
the head, for some i ∈ N, which requires the execution of a to reach the
observed(end, n + 1). Thus, a ∈ P .

(b) Derived from step 1 of the algorithm, remark first that ak uniquely identifies
an (observable) action by the order in which it appears in a trace, being so
that ak denotes the kth action in it.
Let now ⟨ax, ax+1⟩ ⊆ T . Then from (a), ax, ax+1 ∈ P . Assuming that
⟨ax, n1, ..., nk, ax+1⟩ ̸⊆ P , either:

1Recall that by definition all the tasks in a trace are observable
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• ∃ni, i ∈ [1, k], such that ni is observable, i.e. ⟨ax, ni, ax+1⟩ ⊆ P . In
this case, since observable actions require a true observed instance
to be executable (step 3), then observed(ni, i) is true in some state.
Because solely observed(a1, 1) is true at the initial state, there must
exist a causation rule with observed(ni, i) in the head and ax in the
preconditions. Analogously, caused observed(ax+1,x+1) after ni,
observed(ni,i) must be in KM |T . By construction of KM |T , this
implies that ⟨ax, ni, ax+1⟩ ⊆ T , which is absurd since ̸ ∃i ∈ N s.t.
x < i < x + 1.

• ax+1 appears before ax, i.e. ⟨ax+1, ..., ax⟩ is in P ; therefrom, there exist
causation rules in KM |T such that observed(ax+1, x+1) is true before
observed(ax, x), thus, by construction (step 4), ax+1 appears in T
before ax, which is a contradiction.

Hence, the right hand side of (b) holds.
Let’s now assume that ⟨ax, n1, ..., nk, ay⟩ as described in (b) is a subsequence
of P and suppose that ⟨ax, ay⟩ ̸⊆ T . Given that by hypothesis and (a) ax

and ax+1 ∈ T , either:

• exists at least one am such that ⟨ax, am, ay⟩ ⊆ T , in which case, due to
the previous demonstration, am = ni for some i ∈ [1, k], which together
with the fact that ni is observable, contradicts the assumption.

• ⟨ay, . . . , ax⟩ ⊆ T . In this case, y < x, then by step 4, there are cau-
sation rules such that observed(ay, y) is true at some point before
observed(ax, x). Due to the rule in step 5, observed(ay, y) is negated
after the execution of the associated action and it is never set true again.
Thus ay is never executed after ax and so ⟨ax, ..., ay⟩ can not be in P .

Therefore, the left hand side of (b) holds as well.

To prove completeness, the following theorem is formulated.

Theorem 4.2.3. Let PT be a plan for KM such that T ⊆ PT . Then, PT is a plan
in KM |T .

Proof. Let’s assume that PT is not a plan in KM |T . Then, there is no state in
KM |T such that enabled(end) and observed(end, i) are both true, for i ∈ N.
From the fact that PT is a plan for KM derives that enabled(end) is true for some
state in KN ; furthermore, by the proof of lemma 4.2.1, there is a corresponding
state in KM |T where enabled(end) is true, thus, observed(end, i) is never true
provided that both fluents are inertial and that there is no rule in KM |T that
negates observed(end, i).

By construction, the rule caused observed(end, i) after x, observed(x,
i − 1) is in KM |T , where x is the last action in T . Altogether entails that x
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and observed(x, i − 1) are not satisfied at the same time, then, either x was not
executed, observed(x, i − 1) is not reachable or both. Again due to lemma 4.2.1’s
proof, the preconditions inherited from KM for x, hold in some state, so, x is not
executable because observed(x, i − 1) is never true.

This behavior repeats recursively yielding to conclude that observed(a, 1) is
never true, with a the first action in T , which is impossible inasmuch as by step 7,
it is part of the initial state.

Hence, PT is a plan in KM |T .





Chapter 5

Inclusion of branching predicates

As stated by YAWL’s semantics, the determination of which conditions to advance
the token into, after the execution of an OR or an XOR split (decision tasks),
is ruled by the evaluation of branching predicates 1 (given in terms of XPath [6]
boolean expressions) associated to each of the outgoing arcs. Solely the branches
(arcs) whose predicates evaluate to true are considered to move on and then the
advance proceeds according to the respective construct’s semantics.

When not specified, YAWL sets the predicate of an arc to the boolean value
true. The default configuration consists thus in all the predicates true, which in
case of an XOR derives in the activation of the postcondition corresponding to the
first evaluated predicate 2, while in the case of an OR has the effect of an AND split
passing the token to all the post conditions. Also, each of this constructs requires
always a default flow, which is taken whenever all the other flow predicates evaluate
to false [24].

Branching predicates hinge on the data interaction within the process, captured
through the so called net variables. The value of the variables is determined at
execution time and depending on the source, two types are distinguished:

Internal Variables Those whose value is set by the system itself, by instance
flag variables indicating that a task was executed, such as “cardSentByPost"
being set to true after executing a “Send card" task or “loggedInSite" being
enabled each time a system detects a “Sign in" task.

Exogenous Variables Those whose value comes from external sources, such as
an user decision or a webservice. Each variable is either input, output or
both of a YAWL task, such task will be considered as the modifier task of
the variable since is the one where the process gets knowledge about its value
(either it is required to or observed from the environment).

1Named branching conditions in YAWL
2The order of evaluation of the predicates can be set in the model



42 Inclusion of branching predicates

So far we have considered a general behavior in SWF-nets by assuming that
predicates are not interrelated in a model, in the sense that each predicate is defined
it terms of a single and unique variable. It is very likable though that a variable
is involved in more than one predicate, whereby its value assignment influences
different evaluations and thus the operation of the process.

Here, we aim to introduce the branching predicates into the K encoding of the
model, for which two aspects need to be taken into account:

• the inclusion of the values assigned to the variables involved in those predi-
cates

• the interaction between the given trace and the model, which until this point
have been treated separately.

5.1 Encoding of Decision arcs

Predicates are boolean expressions; as such, they can be seen as propositional for-
mulas, where a propositional variable would represent the evaluation of an atomic
predicate, which in the Xpath context corresponds to an expression related to
comparison operators, such as ! = or ≤. Therefore, an atomic predicate will be
associated by nature with a fluent in K; remark that the fluent represents indeed
the evaluation of the expression, not the expression itself, by instance, a fluent f
could be associated to evaluate(age ≥ 18).

The encoding simulating an arc through which a decision task S and a condi-
tion c are connected, is then determined by the form of the associated branching
predicate.

Atomic predicate This is the case where a fluent corresponds to the evaluation
of a comparison expression or to any of the boolean constants (true or false).
The encoding for an arc with an atomic predicate splittingPred associated
is then:

fluents:
splittingPred.

always:
inertial splittingPred.
caused enabled(c) if splittingPred after S.

The inertial declaration is introduced to propagate, once assigned, the
value of splittingPred.
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Complex predicate By definition a boolean expression in Xpath has the struc-
ture [6]

OrExpr ::= AndExpr | OrExpr ‘or’ AndExpr
AndExpr ::= SimpleExpr | AndExpr ‘and’ SimpleExpr

which basically means that is a formula in disjunctive normal form, where
each literal is an atomic predicate as described before3. From this definition,
a fluent is then associated with a SimpleExpr and the branching predicates
are of the form

P = (f1
1 ∧ ... ∧ f1

n) ∨ ... ∨ (fk
1 ∧ ... ∧ fk

m)

for some k, n, m > 0 and each f i
j a fluent.

The encoding in this case is:

fluents:
f1

1 . ... f1
n.

...

...
fk

1 . ... fk
m.

always:
inertial f i

j.

caused enabled(c) if f1
1 , ... , f1

n after S.
...
caused enabled(c) if fk

1 , ... , fk
n after S.

Beware that this encoding extends the core encoding from section 3.1 and
does not replace it, provided that the value of the branching predicates might be
unknown when the decision after a split task need to be taken, by instance if the
split is the first task and it is unobservable. In this case, the general semantics
determine the advance of the token, which can be restricted afterwards if more
information about the branching predicates is acquainted.

The execution of exactly one path in the XOR case relies on the inherited
generic encoding in case of unobservability of the task and in the introduction
of the observed value of splittingPred otherwise, where the exclusive choice has
already been handled by YAWL.

As a simple example to clarify the encoding, consider the extract in figure 5.1.
The corresponding K representation is:

fluents: a. b. c. d.
actions: t.

3Conscious of the fact that K programs are implemented over disjunctive logic semantics,
the expression being in DNF represents an advantage for the encoding process
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Figure 5.1 Branching predicates

always:
inertial a. inertial b.
inertial c. inertial d.
caused enabled(c1) if d after t.
caused enabled(c2) if a,b after t.
caused enabled(c2) if c after t.

In addition, considering t as an XOR task:

caused enabled(c1) if not enabled(c2) after t.
caused enabled(c2) if not enabled(c1) after t.

Instead, for t an OR split:

total enabled(c1) after t.
total enabled(c2) after t.
forbidden not enabled(c1), not enabled(c2) after t.

5.2 Encoding behavior from the model
Each variable appearing in the model is encoded depending on the source of its
value.

Case: Internal net variable

For every modifier task t of an internal net variable sPx, add a rule

caused sPx after t.

For example caused trainingComplete after Run_5_km.
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Case: Exogenous net variable

Let sPx be an exogenous net variable. Then add the corresponding rules, according
to the case:

1. sPx is modified (recall Exogenous Variables) by a non decision task t

caused modif_sPx after t.
inertial modif_sPx.

where modif_sPx is a new fluent that has a flag function, indicating when
enabled, that the task where the value of sPx is learned was executed.

2. sPx is an atomic predicate in the arc connecting a task t with a condition c
and does not fulfill (a)

caused sPx if enabled(c) after t.

3. sPx occurs in a complex predicate associated to an arc connecting task t with
condition c and does not fulfill neither (a) nor (b).

caused modif_sPx if enabled(c) after t.
inertial modif_sPx.

The causation rule in step 2 completes the previous encoding of the arc with
atomic predicate, adding the left hand side of the implication: enabled(c) iff sPx

is true.

5.3 Encoding observed evaluations

The information regarding the evaluation of branching predicates is implicitly en-
capsulated in the trace records of the observable tasks, being so that the value of
fluents linked to branching predicates is introduced to the encoding together with
the data concerning the trace.

The following steps extend the trace’s inclusion algorithm introduced in section
4, pursuing to add observed data attached to the trace (captured by net variables)
and to constraint the computation of plans accordingly.

Extension of trace’s inclusion algorithm:

1. For every task t that observes variables sP1 ... sPn at step i, add their fluents
with the observed value as a postcondition to the already existing causation
rule introduced in step 4 of the trace’s inclusion algorithm. Then, assuming
z to be the action after t in the trace:
caused observed(z, i + 1) if sP1, ..., sPn after t, observed(t,i).

where each sPi can be either sPi or not sPi according to the value in the
trace
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Figure 5.2 Fragment of a hospital process

2. The observed value of a variable from cases 1 or 3 in the case 5.2 of the pre-
vious section algorithm, is explicitly caused but conditioned to the execution
of the modifier task. Then, considering sPx observed by task t in step i:

caused sPx if modif_sPx after t, observed(t, i).
caused −modifiable_sPx after sPx.

where sPx is in fact a literal, thus it possibly appears as −sPx. The second
statement is just to reset the flag fluent once used.

Step 1 guarantees the incorporation of observed evaluations into the encoding
by conditioning the execution of the task immediately after the observer in the
trace, to fluents having the detected values.

Step 2 asserts the correct selection of paths; for instance if two alternative
unobservable activities x and y, from which x is known to learn sPx’s value, are
eligible to complete a plan and eventually sPx is observed to be true in the trace,
it allows to infer that, from the two options, x was executed.

Let’s consider the fragment in picture 5.2 to illustrate the algorithms. After the
performance of a medical study to a patient, an external system informs whether
he/she has a terminal disease; the process then adds a mandatory health insurance
and the next steps are determined by the clinical state of the patient and his/her
purpose of attending the hospital.

Applying the algorithm in section 5.2 to the model: The only internal variable
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is set by Add insurance, then we add the rule

caused hasInsurance after AddInsurance.

hasTerminalDisease corresponds to the case 1 of the exogenous variables,
therefore

caused modif_hasTerminalDisease after PerformStudyToPatient.
inertial modif_hasTerminalDisease.

As well, for the case 2

caused isCheckUp if enabled(c2) after Next.

Instead, hasDisease fits on case 3, thus

caused modif_hasDisease if enabled(c3) after Next.
inertial modif_hasDisease.

Encoding now the information from a trace T := Next[hasInsurance = true,
hasDisease = true, isCheckUp = false], applying step 1 of the extended algo-
rithm

caused observed(end, 2) if hasInsurance, hasDisease, not isCheckUp
after Next, observed(Next,1).

And from step 2:

caused hasDisease if modif_hasDisease
after Next, observed(Next,1).

caused −modif_hasDisease after hasDisease.





Chapter 6

Implementation

In order to automatize the reconstruction of traces, fulfilling so the goal estab-
lished in the introductive chapter, a system implementing the proposed encoding
and algorithms was developed. Its general behavior is straightforward from the
formulation of the problem and the presented work:

1. Read and parse the process model file given in the specified format

2. Read and parse the trace file in XES format

3. Generate two files containing each:

• A K program built by the application of the algorithms for model’s
encoding and for inclusion of trace and branching predicates

• The background knowledge extracted from the model as a DLV program

4. Execute the front end system DLV K with the created files to obtain plans
that complete the trace

5. Write the plans in XES format

Diagram 6.1 summarizes the execution sequence integrating the components of
the system.

6.1 System overview

The implementation is in Java version 1.6 and requires a distribution of the DLV
[14] system. The architecture of the system is depicted in the class diagram of
figure 6.2.
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Figure 6.1 Sequence diagram for traces’ reconstruction

All the simple objects supporting the system rest in the basic package. The
parsing and exceptions packages contain respectively the classes associated to
the extraction of model and trace from files, and the exceptions of the system.

The core is implemented in the encoding package, where the K encoding al-
gorithms are performed. The control package contains the classes in charge of
the interaction among the components and where the main flow described above is
executed.

Finally, ui.TracesReconstructor is the executable class implementing the
command line user interface.

Regarding the search of solutions, DLV is a stable state-of-the-art answer set
solver for disjunctive extended logic programs (without function symbols) [14].
Taking advantage of their close semantics, a front end for K has been implemented
on top of it, resulting in the DLV K planner, whose reasoning engine lays over
stable models semantics.

A planning problem in K is a program for DLV K , therefore, this solver was
selected to be integrated in the systems for the generation of plans.

As a last consideration, even though it is an issue of interest, the integration
of data extracted from variables is out of the scope of the present thesis. For
simplicity thus, the type of the variables associated to the model is assumed to be
boolean; this assumption can be easily extended through the implementation of
the evaluation of comparison predicates, however, since such functionality is not
essential for our primary objective, it will be considered as future work.
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Figure 6.2 System’s Packages

6.2 Input files format

XES [16] is an XML-based standard for the representation of event logs, mainly
designed for process mining purposes. Since it is widely adopted in such area, this
format will be required for the input traces’ file. Additional advantages are that, as
a standard, it is well documented and many libraries for its integration in particular
with Java are available.

The complete documentation can be found in the project site [16]. For illus-
tration purposes though, the next representation belongs to a trace where tasks
Task3 and Task6 were observed and the observation of Task3 included the model
variables a, b and c.

<?xml version="1.0" encoding="UTF-8" ?>
<log xes.version="1.0" xes.features="nested-attributes"

openxes.version="1.0RC7" xmlns="http://www.xes-standard.org/">
<extension name="Concept" prefix="concept"

uri="http://www.xes-standard.org/concept.xesext"/>
...

<global scope="event">
<string key="concept:name" value=""/>
...

</global>
<classifier name="Event Name" keys="concept:name"/>
...
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<trace>
<string key="concept:name" value="1"/>
<string key="description" value="Example trace"/>
<event>

<string key="org:resource" value=""/>
<container key="Process Data">

<string key="a" value="true"/>
<string key="b" value="false"/>
<string key="c" value="false"/>

</container>
<string key="concept:name" value="Task3"/>

</event>
<event>

<string key="org:resource" value=""/>
<container key="Process Data">
</container>

<string key="concept:name" value="Task6"/>
</event>

</trace>
</log>

In relation with the models, considering that this work is based on the as-
sumption of structured workflows, a simplified layout in XML format is proposed
for their representation instead of the YAWL’s format. The conceiving idea is
centered in the inductive definition of SESE blocks.

The DTD specification which files defining models must comply with, is pro-
vided in appendix A. As per w3c recommendation, it should be referenced in every
model file to verify that it is well formed, minimizing consequently the possibility
to reach exceptions at run time.

6.3 Tests and results

A process regarding the registration of a newborn in Italy has been selected to
evaluate the performance of the system. This example was created in collaboration
with a research group from the Fondazione Bruno Kessler(FBK). The workflow
starts when a birth has place, the birth is recorded and when the parents are noti-
fied, they proceed to register the child; this can be done either at the municipality
or at the hospital itself. Two different flows can occur then depending on the place
where the registration took place:

1. Registration at hospital: a log from the Local Registration Office is gener-
ated, the data is registered and if the registration has already been done as
well in the municipality, then that record is obtained, otherwise, the Local
office generates a Receipt.
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2. Registration at municipality: a log from the municipality is generated, the
data registered and set to the appropriate institutions. A fiscal code can
be then generated or not, depending on certain conditions and only if the
registration has not been done in the Local Office, a Receipt is generated

The process terminates solely after both registries have been successfully cre-
ated. The YAWL model representing this process is depicted in figure 6.3.

6.3.1 Settings and test

The only observable actions involved in the process are distinguished with the blue
image in the model. The model specification in the format defined in A, as well as
one of the tested traces can be found in the appendix B.

The tests were performed in a 64-bit Windows Vista machine with 2 gB of
RAM and an Intel Core Duo processor. The generated encoding is also attached
in the appendix B.

6.3.2 Results

Different traces were used to verify the behavior of the process in different situa-
tions. In every test the obtained plans were aligned to the traces and described
valid paths from the input condition to the end.

Both, the standard version and the one considering branching predicates have
similar execution times, which depend mainly on the reasoning system (DLV). The
length of the solutions though impacts on this time, which however keeps very
acceptable considering the size of the model. For plans of length 28, which is the
minimal, the approximate execution time is from 2-4 minutes and 7 min for a 35
size plan; a plan of length 40 required though around 40 minutes. In presence of
loops the execution of this example took more than 3 hours.

As an observed issue, even though XML is a clean and in this case suitable
standard, the specification of models by hand is subject to many errors; a considered
future enhancement of the system is therefore the parsing of models created through
the use of graphical sources, such as the YAWL editor, increasing consequently the
target audience able to use it.
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Figure 6.3 Birth Management Process
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Related work

The problem of incompleteness of information associated to process execution
traces has been faced mainly in the field of process mining, whose purpose is the
analysis of business processes based on event logs; it still represents one of the chal-
lenges regarding in particular process discovery and conformance [34]. The goal
and preconditions of the present work are however slightly different since a cor-
rect model is assumed, while logs derived from monitoring activities can be either
incomplete or non-conformant at all.

Regarding process conformance, the alignment between event logs and pro-
cesses’ definitions without [2] and with [8] data, or considering declarative mod-
els [9], is approached. These works explore the search space of the set of possible
moves, based on the A* algorithm [10], originally proposed to find the path with
the lowest cost between two nodes in a directed graph; their aim is to find the best
move for aligning the log to the model.

In detail, Adriansyah et al. [2] align Petri Nets and logs identifying skipped
and inserted activities in the process model. De Leoni et al. [8] extend the search
space by considering also the data values, nevertheless, they are used to weight a
cost function for determining the alignment, instead of to drive the reconstruction
of the complete trace as in our case.

Other works in the same field have addressed the problem of measuring the
extent to which process models capture the observed behavior(fitness). Rozinat
et al. [29] use for example missing, remaining, produced and consumed tokens for
computing fitness.

The reconstruction of flows of activities of a model, given a partial set of infor-
mation, can be closely related to several fields of research in which the dynamics of
a system are perceived only to a limited extent, being hence needed to reconstruct
missing information.

According to their approach, the existing proposals can be divided in those
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relying on the availability of a probabilistic model of execution and knowledge
(quantitative) and the ones relying on equally likely “alternative worlds” given
some observations in time (qualitative).

An instance of the quantitative group is [28], where the authors exploit stochas-
tic Petri nets and Bayesian Networks to recover missing activities, as well as their
duration, from process execution traces.

Among qualitative approaches, several works have been developed to efficiently
model sets of possible worlds, ranging from tree-based representations (BDDs) [3,
5], to logical formulae whose satisfaction models implicitly represent the worlds [4,
17, 26]. In [4] the issue of reconstructing missing information in execution traces has
been tackled as well; their solution however reformulates the problem in terms of a
boolean Satisfiability problem (SAT), rather than considering a planning approach
and particularly described with an action language.

In [25] a characterization of workflows in terms of labeled transition systems is
presented. They consider YAWL as well as the workflows’ language; the base of
their translation relies though on workflow patterns rather than in the constructs
themselves and their goal points to verification of properties of the model. The
approach presented in such paper uses fluent linear time temporal logic (FLTL)
formulas to capture constraints present on workflows, which can later on be verified
through model checking techniques. Alike the proposal here, they consider tasks
having a starting and an end event instead of pre and post conditions.

Concerning the employment of automated planning in relation with process
models, a similar approach has been developed in [27], where a planning problem
is defined in predicate logic terms for the planner IPSS, out from a workflow de-
signed in the tool SHAMASH. The work is however oriented to business process
reengineering(BPR), concerning thus about the translation from workflow mod-
els into plannning problems so that planning tools semi-automatically generate
enhanced business process models. No information about executions is considered.

Planning techniques applied to the creation and reconstruction of process mod-
els are also presented in [7], [31] and [22]. In the last by instance, YAWL is cus-
tomized with Planlets, YAWL nets where tasks are annotated with pre-conditions,
desired effects and post-conditions, aiming to enable automatic adaptivity of dy-
namic processes at run-time. The same problem is addressed through the use of
continuous planning, in [21], where workflow tasks are translated into plan actions
and task states into causes and effects, constraining the action execution similarly
to the approach presented here. All these papers have a different orientation since
their solutions center in the model itself rather than in executions as in the present
work.

To the best of our knowledge however, planning approaches have not yet been
applied to specifically face the problem of incomplete execution traces.
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Conclusions

The main contribution of the thesis consists in sound and complete algorithms to
encode business process models in terms of planning problems, in particular using
action languages. Such representation enables among others, the use of reasoning
tools based on non monotonic logics, to simulate the behavior of the actual process
under the assumption of incomplete knowledge, making thus possible to analyze
and learn about the process itself.

YAWL and K were used to concretize the presented theories, nevertheless, the
basis of the techniques relies on the formal semantics of the languages, which at
some extent, are the common foundations of most of the process modeling and ac-
tion languages respectively. Therefore, the core ideas of the algorithms are subject
to be applied to other modeling and action languages.

Formal proofs of correctness of the presented algorithms are provided; these
algorithms were as well implemented to show and evaluate their feasibility.

Given the similarity of their supporting background, by which workflows can be
characterized as transition systems, planning techniques have been applied to tackle
different problems in the processes area, such as dynamic recovery or automated
verification of processes. The diversity of pursued goals enhances the importance
to develop a solid standard formulation that can be adapted to specific objectives,
which is the aim of the model encoding algorithm.

A planning approach is particularly suitable to solve the problem of recon-
struction of traces, considering the clear intuitive equivalence between the notions
of process executions and plans.

By the reason of their desirable properties, the restriction to structured models
allows to focus in the semantics of the constructs excluding particular situations
originated from the design of the model, such as the presence of deadlocks in blocks
opened by an XOR split and closed by an AND join. Following the presented
line the encoding could be though extended; the main challenge consists in the
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appropriate handling of loops and the scope of activation of OR splits.

Because of the linear complexity of the encoding algorithms, the performance of
the system depends on the planning solver’s performance. The tests however expose
that efficient enough software is available to process real workflows’ instances, in
this case DLV K shows to perform well under incomplete knowledge thanks to its
non monotonic semantics.

Regarding the limitations of the present work, the data management is still
in a preliminary stage; net variables have been considered and tested in a general
overview, however, the concrete definition of certain parts and their consequent
detailed treatment remain as future work, along with the proof of complexity of
the algorithms and the extension to non structured models.

Finally, from the implementation perspective, in order to take advantage of the
graphical interface of YAWL, the incorporation of a parser for models described in
the YAWL format is as well one of the primary focuses to develop in the future.
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Appendix A

Model description’s file format

The Document Type Definition for the files containing descriptions of structured
models, accepted as input for the implemented system is specified as follows.

<!ELEMENT structuredModel (block)>
<!ELEMENT block (task|block)+>
<!ELEMENT task (predicate|setVar)*>
<!ELEMENT predicate (#CDATA)>
<!ELEMENT setVar (#CDATA)>

<!ATTLIST structuredModel title (#PCDATA) #IMPLIED>
<!ATTLIST block type (simple|seq|parallel|decision|loop) #REQUIRED>
<!ATTLIST block id ID #IMPLIED>
<!ATTLIST task id ID #REQUIRED>
<!ATTLIST task observable xsd:boolean #REQUIRED>
<!ATTLIST task type (A|ANDj|ANDs|XORj|XORs|ORj|ORs) #REQUIRED>
<!ATTLIST predicate toElemId (#PCDATA) #REQUIRED>
<!ATTLIST setVar type (sys|manual) #REQUIRED>

Basically a structured model is a (SESE) block and each block is composed by
more blocks, tasks or both in the case of structures involving split constructs. The
value of the type attribute in a block element maps each case in the definition of
structured workflow 2.2.2:

TYPE STRUCTURED BLOCK
simple Atomic task structure
seq Sequence
parallel Parallel structure (block with AND constructs)
decision Decision structure
loop Structured loop

The following aspects should be considered as well when defining a structured
model.
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The block id attribute is optional except for blocks contained into a decision
block, since they need to be referenced by the branching predicates.

For a block where type = “seq”, the order of appearance of inner blocks is
assumed to be the order of the sequence.

For blocks that are direct children of a loop block, the attribute position is
mandatory with value either “fwd" or “bwd". This value determines respectively
if the block takes the place after the join task (the first in the loop) or if it is the
block performed after the decision to do a new iteration.

<!ATTLIST block position (fwd|bwd) #REQUIRED>

Recall that this last declaration applies uniquely for blocks inside a block with
type = “loop”.

The three attributes for a task t are mandatory; id is the name of the task.
The value of type is determined by the construct of t; A represents an atomic task
and the rest are implicit from the name, where the ’s’ identifies split tasks and the
’j’ join tasks. The value of observable determines whether t is observable or not.

The predicate element represents a splitting condition for the parent split task.
This element can only appear under tasks of type decision. The value of the
attribute toElemId is the id of the element that is reachable whenever the predicate
evaluates to true. For tasks closing a block of type = “loop”, the predicate that
leads to the exit of the block has toElemId = “exit”.

The content of a predicate is of the form v1, ..., vn| ... |x1, ..., xm where the “,"
stands for a logical “and” and the “|" represents a logical “or".

Finally, the setV ar element is used to capture the knowledge of a variable
being internally modified or getting its value from external sources during the
execution of the task where it appears; type = “sys” is used for internal variables
and type = “manual” for exogenous variables (see 5). The set of setV ar elements
in a task corresponds to the output variables of a task in the specification of a
YAWL model.

All the variables involved in the predicates must be declared by the setV ar
element in some task, otherwise they are not recognized as part of the model.

The XML representation of the workflow in figure 3.1 aligned to this format is
exemplified next, supposing that variables SP1 and SP2 are set by a user decision.
<structuredModel title="simpleExample">

<block type="decision">
<task id="s0" observable="true" type="ORs">

<predicate toElemId="path1">sP1</predicate>
<predicate toElemId="path2">sP2</predicate>
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<setVar type="manual">sP1</setVar>
<setVar type="manual">sP2</setVar>

</task>
<block type="seq" id="path2">

<block type="simple">
<task id="s1" observable="true" type="A"/>

</block>
<block type="simple">

<task id="s2" observable="false" type="A"/>
</block>

</block>
<block type="loop" id="path1">

<task type="XORj" id="s3" observable="true" />
<task type="XORs" id="s4" observable="false">

<predicate toElemId="s3">back</predicate>
<predicate toElemId="exit">sP2</predicate>
<setVar type="manual">back</setVar>

</task>
</block>

<task id="s5" observable="true" type="ORj"/>
</block>

</structuredModel>
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Birth Management Process

The model of the process used as a test case is presented here.

<structuredModel title="sequenceExample">
<block type="seq">

<block type="simple">
<task id="Execute birth" observable="false" type="A"/>

</block>
<block type="simple">

<task id="Produce record" observable="false" type="A"/>
</block>
<block type="simple">

<task id="Parent notification" observable="false" type="A"/>
</block>
<block type="decision">

<task id="Parent Registration" type="XORs" observable="false" >
<predicate toElemId="M">registryMunicipality</predicate>
<predicate toElemId="H">registryHospital</predicate>

</task>
<block type="seq" id="M" >

<block type="simple">
<task id="Present at Municipality" observable="false" type="A"/>

</block>
<block type="simple">

<task id="Municipality Registration" observable="false" type="A"/>
</block>

</block>
<block type="seq" id="H">

<block type="simple">
<task id="Present at Hospital" observable="false" type="A"/>

</block>
<block type="simple">

<task id="Hospital Registration" observable="false" type="A"/>
</block>

</block>
<task id="Close Parents Registration" type="XORj" observable="false" />

</block>
<block type="loop">

<task type="XORj" id="MunicAPPSswitch" observable="false" />
<block type="decision" position="fwd">

<task type="XORs" id="MunicAPPSstart" observable="false">
<predicate toElemId="Mlog">registryMunicipality,noMunicLog |

APSSreceipt,noMunicLog</predicate>
<predicate toElemId="Alog">registryHospital,noAPSSlog |

municipReceipt,noAPSSlog</predicate>
</task>
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<block type="seq" id="Mlog">
<block type="simple" >

<task id="Municipality Logging" observable="true" type="A"/>
</block>
<block type="simple" >

<task id="Register Municipality Data" observable="true" type="A"/>
</block>
<block type="simple">

<task id="Send To SAIA" observable="true" type="A"/>
</block>
<block type="simple" >

<task id="Communication Receipt" observable="false" type="A"/>
</block>
<block type="decision">

<task id="Technical Check" observable="false" type="ORs" >
<predicate toElemId="cf">notCF</predicate>
<predicate toElemId="verif">CF,Risk</predicate>

</task>
<block type="simple" id="verif">

<task id="Verify FC" observable="false" type="A"/>
</block>
<block type="seq" id="cf">

<block type="simple" >
<task id="Generate FC" observable="false" type="A"/>

</block>
<block type="simple" >

<task id="Check FC" observable="false" type="A"/>
</block>

</block>
<task id="Return Result" observable="true" type="ORj" />

</block>
<block type="simple">

<task id="Result Receipt" observable="false" type="A"/>
</block>
<block type="decision">

<task id="Generate Card" type="XORs" observable="false" >
<predicate toElemId="log">noAPSSlog</predicate>
<predicate toElemId="GoToClose">APSSlog</predicate>

</task>
<block type="seq" id="log">

<block type="simple" >
<task id="Report to ASL" observable="false" type="A"/>

</block>
<block type="simple">

<task id="MunicipalityNotificationReceipt"
observable="false" type="A"/>

</block>
</block>
<block type="simple" id="GoToClose">

<task id="Do nothing" observable="false" type="A"/>
</block>
<task id="CloseGenerateCard" type="XORj" observable="false" />

</block>
</block>
<block type="seq" id="Alog">

<block type="simple">
<task id="APSSlogging" observable="false" type="A"/>

</block>
<block type="simple">

<task id="RegisterData" observable="false" type="A"/>
</block>
<block type="decision">

<task id="Align Assisted Registry" type="XORs" observable="true" >
<predicate toElemId="Mrr">noMunicLog</predicate>
<predicate toElemId="Gmr">municLog</predicate>

</task>
<block type="simple" id="Mrr" >

<task id="MunicipalityRecordReceiptByAPSS" observable="false" type="A"/>
</block>
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<block type="simple" id="Gmr">
<task id="Generate APSS report" observable="true" type="A"/>

</block>
<task id="CloseAlignAssisted" type="XORj" observable="false" />

</block>
</block>
<task id="CloseMunicAPSS" type="XORj" observable="false" />

</block>
<task id="CloseMunicAPSSloop" type="XORs" observable="false" >

<predicate toElemId="MunicAPPSswitch">noMunicLog|noAPSSlog</predicate>
<predicate toElemId="exit">municLog,APSSlog</predicate>

</task>
</block>
<block type="simple">

<task id="EndProcess" observable="false" type="A"/>
</block>

</block>
</structuredModel>

Additionally, one of the traces:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- This file has been generated with the OpenXES library. -->
<!-- XES standard version: 1.0 -->
<!-- OpenXES library version: 1.0RC7 -->
<log xes.version="1.0" >

<extension name="Lifecycle" prefix="lifecycle"
uri="http://www.xes-standard.org/lifecycle.xesext"/>

<extension name="Organizational" prefix="org"
uri="http://www.xes-standard.org/org.xesext"/>

<extension name="Time" prefix="time"
uri="http://www.xes-standard.org/time.xesext"/>

<extension name="Concept" prefix="concept"
uri="http://www.xes-standard.org/concept.xesext"/>

<global scope="trace">
<string key="concept:name" value=""/>

</global>
<global scope="event">

<string key="concept:name" value=""/>
<string key="lifecycle:transition" value="complete"/>

</global>
<classifier name="Event Name" keys="concept:name"/>
<classifier name="Resource" keys="org:resource"/>
<string key="concept:name" value="DEFAULT"/>
<string key="lifecycle:model" value="standard"/>
<string key="description" value="Simulated process"/>
<trace>

<string key="concept:name" value="1"/>
<string key="description" value="Simulated process instance"/>
<event>

<string key="org:resource" value=""/>
<string key="lifecycle:transition" value="complete"/>
<string key="concept:name" value="Align Assisted Registry"/>
<date key="time:timestamp" value="1970-01-01T01:00:00+01:00"/>

</event>
<event>

<string key="org:resource" value=""/>
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<string key="lifecycle:transition" value="complete"/>
<string key="concept:name" value="Generate APSS report"/>
<date key="time:timestamp" value="1970-01-01T01:00:00+01:00"/>

</event>
<event>

<string key="org:resource" value=""/>
<string key="lifecycle:transition" value="complete"/>
<string key="concept:name" value="Municipality Logging"/>
<date key="time:timestamp" value="1970-01-01T01:00:00+01:00"/>

</event>
<event>

<string key="lifecycle:transition" value="complete"/>
<string key="concept:name" value="Register Municipality Data"/>
<date key="time:timestamp" value="1970-01-01T01:00:00+01:00"/>

</event>
<event>

<string key="org:resource" value=""/>
<string key="lifecycle:transition" value="complete"/>
<string key="concept:name" value="Send To SAIA"/>
<date key="time:timestamp" value="1970-01-01T01:00:00+01:00"/>

</event>
<event>

<string key="org:resource" value=""/>
<string key="lifecycle:transition" value="complete"/>
<string key="concept:name" value="Return Result"/>
<date key="time:timestamp" value="1970-01-01T01:00:00+01:00"/>

</event>
</trace>

</log>

And the background knowledge

condition(c32). condition(c33). condition(c30). condition(c31).
condition(c36). condition(c37). condition(c34). condition(c35).
condition(c38). condition(c39). condition(c29). condition(c28).
condition(c27). condition(c22). condition(c21). condition(c20).
condition(c26). condition(c25). condition(c24). condition(c23).
condition(cTo_municAPPSswitch). condition(c6). condition(c5).
condition(c4). condition(c3). condition(c9). condition(c8).
condition(c7). condition(c17). condition(c16). condition(c19).
condition(c18). condition(c1). condition(c2). condition(start).
condition(c0). condition(c11). condition(c10). condition(c13).
condition(c12). condition(c15). condition(c14).

reach(c21,c17). reach(c20,c19). reach(c19,c17). reach(c23,c22). reach(c22,c21).

reachable(X,Y) :- reach(X,Y).
reachable(X,Y) :- reachable(X,Z), reach(Z,Y).

The K program obtained as outcome from the system is:

fluents: enabled(C) requires condition(C).
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delayed(C) requires condition(C).
observed(X,Y).

actions: return_Result. parent_Registration. closeGenerateCard. align_Assisted_Registry.
municAPPSstart. endProcess. execute_birth. check_FC. closeAlignAssisted.
municipalityNotificationReceipt. generate_APSS_report. municipality_Registration.
municAPPSswitch. technical_Check. parent_notification. present_at_Municipality.
verify_FC. produce_record. hospital_Registration. registerData. send_To_SAIA.
do_nothing. municipalityRecordReceiptByAPSS. communication_Receipt.
closeMunicAPSSloop.municipality_Logging. report_to_ASL. generate_FC.
register_Municipality_Data. result_Receipt. present_at_Hospital. closeMunicAPSS.
aPSSlogging. generate_Card. close_Parents_Registration.

always:
executable technical_Check if enabled(c17).
caused -enabled(c17) after technical_Check.

total enabled(c21) after technical_Check.
total enabled(c19) after technical_Check.
forbidden not enabled(c21),not enabled(c19) after technical_Check.

executable align_Assisted_Registry if enabled(c33), observed(align_Assisted_Registry,_).
caused -enabled(c33) after align_Assisted_Registry.

caused enabled(c35) if not enabled(c37) after align_Assisted_Registry.
caused enabled(c37) if not enabled(c35) after align_Assisted_Registry.

executable send_To_SAIA if enabled(c15), observed(send_To_SAIA,_).
caused enabled(c16) after send_To_SAIA.
caused -enabled(c15) after send_To_SAIA.

executable report_to_ASL if enabled(c26).
caused enabled(c27) after report_to_ASL.
caused -enabled(c26) after report_to_ASL.

executable aPSSlogging if enabled(c31).
caused enabled(c32) after aPSSlogging.
caused -enabled(c31) after aPSSlogging.

executable check_FC if enabled(c22).
caused enabled(c23) after check_FC.
caused -enabled(c22) after check_FC.

executable closeMunicAPSS if enabled(c25),not enabled(c34).
executable closeMunicAPSS if not enabled(c25),enabled(c34).
caused -enabled(c25) after closeMunicAPSS.
caused -enabled(c34) after closeMunicAPSS.

caused enabled(c12) after closeMunicAPSS.

executable register_Municipality_Data if enabled(c14), observed(register_Municipality_Data,_).
caused enabled(c15) after register_Municipality_Data.
caused -enabled(c14) after register_Municipality_Data.

executable municipality_Registration if enabled(c5).
caused enabled(c6) after municipality_Registration.
caused -enabled(c5) after municipality_Registration.

executable verify_FC if enabled(c19).
caused enabled(c20) after verify_FC.
caused -enabled(c19) after verify_FC.

executable municipality_Logging if enabled(c13), observed(municipality_Logging,_).
caused enabled(c14) after municipality_Logging.
caused -enabled(c13) after municipality_Logging.

executable execute_birth if enabled(start).
caused enabled(c0) after execute_birth.
caused -enabled(start) after execute_birth.
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executable communication_Receipt if enabled(c16).
caused enabled(c17) after communication_Receipt.
caused -enabled(c16) after communication_Receipt.

executable parent_Registration if enabled(c2).
caused -enabled(c2) after parent_Registration.

caused enabled(c4) if not enabled(c7) after parent_Registration.
caused enabled(c7) if not enabled(c4) after parent_Registration.

executable hospital_Registration if enabled(c8).
caused enabled(c9) after hospital_Registration.
caused -enabled(c8) after hospital_Registration.

executable do_nothing if enabled(c29).
caused enabled(c30) after do_nothing.
caused -enabled(c29) after do_nothing.

executable municipalityRecordReceiptByAPSS if enabled(c35).
caused enabled(c36) after municipalityRecordReceiptByAPSS.
caused -enabled(c35) after municipalityRecordReceiptByAPSS.

executable generate_FC if enabled(c21).
caused enabled(c22) after generate_FC.
caused -enabled(c21) after generate_FC.

executable result_Receipt if enabled(c18).
caused enabled(c24) after result_Receipt.
caused -enabled(c18) after result_Receipt.

executable produce_record if enabled(c0).
caused enabled(c1) after produce_record.
caused -enabled(c0) after produce_record.

executable endProcess if enabled(c10).
caused enabled(c39) after endProcess.
caused -enabled(c10) after endProcess.

executable close_Parents_Registration if enabled(c6),not enabled(c9).
executable close_Parents_Registration if not enabled(c6),enabled(c9).
caused -enabled(c6) after close_Parents_Registration.
caused -enabled(c9) after close_Parents_Registration.

caused enabled(c3) after close_Parents_Registration.

executable generate_APSS_report if enabled(c37), observed(generate_APSS_report,_).
caused enabled(c38) after generate_APSS_report.
caused -enabled(c37) after generate_APSS_report.

executable present_at_Hospital if enabled(c7).
caused enabled(c8) after present_at_Hospital.
caused -enabled(c7) after present_at_Hospital.

executable municAPPSswitch if enabled(c3),not enabled(cTo_municAPPSswitch).
executable municAPPSswitch if not enabled(c3),enabled(cTo_municAPPSswitch).
caused -enabled(c3) after municAPPSswitch.
caused -enabled(cTo_municAPPSswitch) after municAPPSswitch.

caused enabled(c11) after municAPPSswitch.

executable registerData if enabled(c32).
caused enabled(c33) after registerData.
caused -enabled(c32) after registerData.

executable parent_notification if enabled(c1).
caused enabled(c2) after parent_notification.
caused -enabled(c1) after parent_notification.
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executable closeMunicAPSSloop if enabled(c12).
caused -enabled(c12) after closeMunicAPSSloop.

caused enabled(cTo_municAPPSswitch) if not enabled(c10) after closeMunicAPSSloop.
caused enabled(c10) if not enabled(cTo_municAPPSswitch) after closeMunicAPSSloop.

executable closeAlignAssisted if enabled(c36),not enabled(c38).
executable closeAlignAssisted if not enabled(c36),enabled(c38).
caused -enabled(c36) after closeAlignAssisted.
caused -enabled(c38) after closeAlignAssisted.

caused enabled(c34) after closeAlignAssisted.

executable municipalityNotificationReceipt if enabled(c27).
caused enabled(c28) after municipalityNotificationReceipt.
caused -enabled(c27) after municipalityNotificationReceipt.

executable closeGenerateCard if enabled(c28),not enabled(c30).
executable closeGenerateCard if not enabled(c28),enabled(c30).
caused -enabled(c28) after closeGenerateCard.
caused -enabled(c30) after closeGenerateCard.

caused enabled(c25) after closeGenerateCard.

executable present_at_Municipality if enabled(c4).
caused enabled(c5) after present_at_Municipality.
caused -enabled(c4) after present_at_Municipality.

executable municAPPSstart if enabled(c11).
caused -enabled(c11) after municAPPSstart.

caused enabled(c13) if not enabled(c31) after municAPPSstart.
caused enabled(c31) if not enabled(c13) after municAPPSstart.

executable generate_Card if enabled(c24).
caused -enabled(c24) after generate_Card.

caused enabled(c26) if not enabled(c29) after generate_Card.
caused enabled(c29) if not enabled(c26) after generate_Card.

caused -enabled(c20) after return_Result.
caused -enabled(c23) after return_Result.
executable return_Result if enabled(c20),not delayed(c23), observed(return_Result,_).
executable return_Result if not delayed(c20),enabled(c23), observed(return_Result,_).
caused delayed(Y) if not enabled(Y), reachable(Y,W), enabled(W).
caused enabled(c18) after return_Result.

%trace
caused observed(generate_APSS_report,2)

after align_Assisted_Registry, observed(align_Assisted_Registry,1).
caused observed(municipality_Logging,3)

after generate_APSS_report, observed(generate_APSS_report,2).
caused observed(register_Municipality_Data,4)

after municipality_Logging, observed(municipality_Logging,3).
caused observed(send_To_SAIA,5)

after register_Municipality_Data, observed(register_Municipality_Data,4).
caused observed(return_Result,6)

after send_To_SAIA, observed(send_To_SAIA,5).
caused observed(end,7) after return_Result, observed(return_Result,6).

caused -observed(A,N) if observed(_,M), M=N+1 after observed(A,N).

inertial observed(X,Y).
inertial enabled(X).
noConcurrency.

initially: enabled(start). observed(align_Assisted_Registry,1).
goal: enabled(c39), observed(end,6)?
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Architecture of the implementation

Here we extend the class diagrams of the packages conforming the system.

Figure C.1 Package emcl.thesis.tracesCompletion.encoding
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Figure C.2 Package emcl.thesis.tracesCompletion.basic
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