Foundations of Semantic Web Technologies

Tutorial 8

Sebastian Rudolph, Lukas Schweizer

SS 2017

Exercise 8.1. Transform the following concepts into negation normal form:

- (a) $\neg (A \sqcap \forall r.B)$
- (b) $\neg \forall r. \exists s. (\neg B \sqcup \exists r. A)$
- (c) $\neg((\neg A \sqcap \exists r. \top) \sqcup \geq 3 s. (A \sqcup \neg B))$

Exercise 8.2. Apply the tableau algorithm in order to check if the axiom $A \sqsubseteq B$ is a logical consequence of the TBox $\{\neg C \sqsubseteq B, A \sqcap C \sqsubseteq \bot\}$.

Exercise 8.3. Apply the tableau algorithm in order to check satisfiability of the concept $A \sqcap \forall r.B$ w.r.t. the TBox $\{A \sqsubseteq \exists r.A, B \sqsubseteq \exists r^-.C, C \sqsubseteq \forall r.\forall r.B\}$.

Exercise 8.4. Markus wants to apply the tableau algorithm for checking the satisfiability of the concept $B \sqcap \exists r^-.A$ w.r.t. the TBox $\{A \sqsubseteq \exists r^-.A \sqcap \exists r.B, \top \sqsubseteq \leqslant 1 r\}$. He arrives at the situation depicted below and concludes that no further rules are applicable, since v_2 is blocked by v_1 . What is Markus' error? Continue the algorithm until its termination. (You don't have to illustrate all intermediate steps, just provide the final state.)

v_0	
$r^{-}\downarrow$	$L(v_0) = \{B \sqcap \exists r^A, B, \exists r^A, C_{\mathcal{T}}, \neg A, \leqslant 1 r\}$
v_1	$L(v_1) = \{A, C_{\mathcal{T}}, \exists r^ A, \exists r. B, \leqslant 1 r\}$
$r \downarrow v_2$	$L(v_2) = \{A, C_{\mathcal{T}}, \exists r^ A, \exists r. B, \leqslant 1 r\}.$

Exercise 8.5. Extend the ≤ 1 rule in a way that also qualified functionality axioms of the form $\top \sqsubseteq \leq 1 r.A$ can be treated correctly, where A is an atomic concept. Can you also treat arbitrary axioms of the form $C \sqsubseteq \leq 1 r.D$?