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Equational Systems

I Consider a first order language with the following precedence hierarchy

{∀, ∃} > ¬ > ∧ > ∨ > {←,→} >↔

I Let≈ be a binary predicate symbol written infix

I An equation is an atom of the form s ≈ t

I An equational system E is a finite set of universally closed equations

I Notation Universal quantifiers are usually omitted

E1 (X · Y ) · Z ≈ X · (Y · Z) (associativity)

1 · X ≈ X (left unit)

X · 1 ≈ X (right unit)

X−1 · X ≈ 1 (left inverse)

X · X−1 ≈ 1 (right inverse)
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Axioms of Equality

I The equality relation enjoys some typical properties expressed by the following
universally closed axioms of equality E≈

X ≈ X (reflexivity)

X ≈ Y → Y ≈ X (symmetry)

X ≈ Y ∧ Y ≈ Z → X ≈ Z (transitivity)∧n
i=1 Xi ≈ Yi → f (X1, . . . , Xn) ≈ f (Y1, . . . , Yn) (f–substitutivity)∧n
i=1 Xi ≈ Yi ∧ r(X1, . . . , Xn)→ r(Y1, . . . , Yn) (r–substitutivity)

I Note

. Substitutivity axioms are defined for each function symbol f and each
relation symbol r in the underlying alphabet

. Universal quantifiers have been omitted
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Equality and Logical Consequence

I We are interested in computing logical consequences of E ∪ E≈

. E1 ∪ E≈ |= (∃X) X · a ≈ 1?

. E1 ∪ E≈ ∪ {X · X ≈ 1} |= (∀X , Y ) X · Y ≈ Y · X?

I One possibility is to apply resolution

. There are 1021 resolution steps needed to solve the examples

. E ∪ E≈ causes an extremely large search space

I Idea Remove troublesome formulas from E ∪ E≈
and build them into the deductive machinery

. Use additional rule of inference like paramodulation

. Build the equational theory into the unification computation
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Least Congruence Relation

I E ∪ E≈ is a set of definite clauses

I There exists a least model for E ∪ E≈

I Example

. Let the only function symbols be the constants a, b and the binary g

. Let E2 = {a ≈ b}

. The least model of E2 ∪ E≈ is

{t ≈ t | t is a ground term}
∪ {a ≈ b, b ≈ a}
∪ {g(a, a) ≈ g(b, a), g(a, a) ≈ g(a, b), g(a, a) ≈ g(b, b), . . .}

I Define s ≈E t iff E ∪ E≈ |= ∀ s ≈ t

. g(a, a) ≈E2 g(a, b)

. g(X , a) ≈E2 g(X , b)

. ≈E is the least congruence relation on terms generated by E
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Paramodulation

I Ldse literal which contains an occurrence of the term s

Lds/te literal obtained from L by replacing an occurrence of s by t

I Paramodulation

[L1dse, L2, . . . , Ln] [l ≈ r, Ln+1, . . . , Lm]

[L1ds/re, L2, . . . , Lm]θ
θ = mgu(s, l)

I Notation Instead of ¬s ≈ t we write s 6≈ t

I Remember

E ∪ E≈ |= ∀ s ≈ t iff
∧
E∪E≈ → ∀ s ≈ t is valid

iff ¬(
∧
E∪E≈ → ∀ s ≈ t) is unsatisfiable

iff E ∪ E≈ ∪ {¬∀ s ≈ t} is unsatisfiable
iff E ∪ E≈ ∪ {∃ s 6≈ t} is unsatisfiable

I Theorem 1 E ∪ E≈ ∪ {∃ s 6≈ t} is unsatisfiable iff there is a refutation of
E ∪ {X ≈ X} ∪ {∃ s 6≈ t} wrt paramodulation, resolution and factoring
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An Example

E1 ∪ {X ≈ X , X · X ≈ 1} |= (∀X , Y ) X · Y ≈ Y · X

1 a · b 6≈ b · a initial query · hypothesis

2 1 · X1 ≈ X1 left unit a · b 6≈ ((X3 · X3) · b) · (a · (X4 · X4))

3 X2 ≈ X2 reflexivity · associativity

4 X1 ≈ 1 · X1 pm(2,3) a · b 6≈ (X3 · ((X3 · b) · (a · X4))) · X4

5 a · b 6≈ (1 · b) · a pm(1,4) · hypothesis

6 X3 · X3 ≈ 1 hypothesis a · b 6≈ (a · 1) · b
7 X4 ≈ X4 reflexivity · right unit

8 1 ≈ X3 · X3 pm(6,7) n a · b 6≈ a · b
9 a · b 6≈ ((X3 · X3) · b) · a pm(5,8) n′ X5 ≈ X5 reflexivity

· right unit n′′ [ ] res (n, n′)
a · b 6≈ ((X3 · X3) · b) · (a · 1)
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The Example in Shorthand Notation

E1 ∪ {X ≈ X , X · X ≈ 1} |= (∀X , Y ) X · Y ≈ Y · X

1 a · b 6≈ b · a initial query · hypothesis

2 1 · X1 ≈ X1 left unit a · b 6≈ ((X3 · X3) · b) · (a · (X4 · X4))

3 X2 ≈ X2 reflexivity · associativity

4 X1 ≈ 1 · X1 pm(2,3) a · b 6≈ (X3 · ((X3 · b) · (a · X4))) · X4

5 a · b 6≈ (1 · b) · a pm(1,4) · hypothesis

6 X3 · X3 ≈ 1 hypothesis a · b 6≈ (a · 1) · b
7 X4 ≈ X4 reflexivity · right unit

8 1 ≈ X3 · X3 pm(6,7) n a · b 6≈ a · b
9 a · b 6≈ ((X3 · X3) · b) · a pm(5,8) n′ X5 ≈ X5 reflexivity

· right unit n′′ [ ] res (n, n′)
a · b 6≈ ((X3 · X3) · b) · (a · 1)
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The Example in Shorthand Notation Again

b · a ≈ (1 · b) · a left unit
≈ ((X3 · X3) · b) · a hypothesis
≈ ((X3 · X3) · b) · (a · 1) right unit
≈ ((X3 · X3) · b) · (a · (X4 · X4)) hypothesis
≈ (X3 · ((X3 · b) · (a · X4))) · X4 associativity
≈ (a · 1) · b hypothesis
≈ a · b right unit

I Now, the search space is 1011 instead of 1021 steps

. Symmetry can be simulated, which leads to cycles

. All terms s occurring in L1 are candidates

. L1dse may be a variable and can be unified with any ter

I There are still many redundant and useless steps

I Idea Use equations only from left to right  term rewriting systems
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Term Rewriting Systems

I An expression of the form s → t is called rewrite rule

I A term rewriting system is a finite set of rewrite rules

I In the sequel,R shall denote a term rewriting system

I sdue denotes a term s which contains an occurrence of u

sdu/ve denotes the term obtained from s by replacing an occ. of u by v

I The rewrite relation→R on terms is defined as follows: sdue →R t iff
there exist l → r ∈ R and θ such that u = lθ and t = sdu/rθe

I Example R3 = { append([ ], X) → X ,

append([X |Y ], Z) → [X |append(Y , Z)] }

append([1, 2], [3, 4]) →R3 [1|append([2], [3, 4])]

→R3 [1, 2|append([ ], [3, 4])]

→R3 [1, 2, 3, 4]
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Matching

I Matching problem
Given terms u and l , does there exist a substitution θ such that u = lθ ?
If such a substitution exists, then it is called a matcher

I If a matching problem is solvable, then there exists a most general matcher

I If can be computed by a variant of the unification algorithm,
where variables occurring in u are treated as (different new) constant symbols

I Whereas unification is in the complexity class P , matching is inNC
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Closures

I
∗→R denotes the reflexive and transitive closure of→R

. append([1, 2], [3, 4]) ∗→R3 [1, 2, 3, 4]

I s ↔R t iff s ←R t or s →R t

. LetR4 = {a → b, c → b},
then a →R4 b ←R4 c and, consequently, a ↔R4 b ↔R4 c

I
∗↔R denotes the reflexive and transitive closure of↔R

. a ∗↔R4 c

I We sometimes simply write→ or↔ instead of→R or↔R, respectively
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Term Rewriting Systems and Equational Systems

I LetR be a term rewriting system

I ER := {l ≈ r | l → r ∈ R} ∪ E≈

. ForR4 = {a → b, c → b} we obtain ER4 = {a ≈ b, c ≈ b} ∪ E≈

I Theorem 2 (i) s ∗→R t implies s ≈ER t
(ii) s ≈ER t iff s ∗↔R t

I Proof  Exercise

. g(X , a)→R4 g(X , b) and g(X , a) ≈ER4
g(X , b)

. g(X , a) ≈ER4
g(X , c) and g(X , a)→R4 g(X , b)←R4 g(X , c)
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Reducibility and Normal Forms

I s is reducible wrtR iff there exists t such that s →R t

. otherwise it is irreducible

I t is a normal form of s wrtR iff s ∗→R t and t is irreducible

. [1, 2, 3, 4] is the normal form of append([1, 2], [3.4]) wrtR3

I Normal forms are not necessarily unique. Consider

R5 = { neg(neg(X)) → X ,
neg(or(X , Y )) → and(neg(X), neg(Y )),
neg(and(X , Y )) → or(neg(X), neg(Y )),
and(X , or(Y , Z)) → or(and(X , Y ), and(X , Z)),
and(or(X , Y ), Z) → or(and(Y , Z), and(Z , X)) }

and(or(X , Y ), or(U, V )) has the normal forms
or(or(and(Y ,U), and(U, X)), or(and(Y , V ), and(V , X))) and
or(or(and(Y ,U), and(Y , V )), or(and(V , X), and(X ,U))) wrtR5
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Confluent Term Rewriting Systems

I s ↓R t iff there exists u such that s ∗→R u ∗←R t

I s ↑R t iff there exists u such that s ∗←R u ∗→R t

. ConsiderR6 = {b → a, b → c}. Then a 6 ↓R6
c, but a ↑R6 c

I R is confluent iff for all terms s and t we find s ↑R t implies s ↓R t

. R7 = R6 ∪ {a → c} is confluent

I R is Church-Rosser iff for all terms s and t we find s ∗↔R t iff s ↓R t

I Theorem 3 R is Church-Rosser iff R is confluent

I Remember s ∗↔R t iff s ≈ER t

. If a term rewriting system is confluent,
then rewriting has only to be applied in one direction, viz. from left to right !
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Canonical Term Rewriting Systems

I R is terminating iff it has no infinite rewriting sequences

. The question whetherR is terminating is undecidable

I R is canonical iff R is confluent and terminating

. IfR is canonical, then s ≈ER t iff s ↓R t

. IfR is canonical, then ER is decidable

I Given E. If≈E =≈ER for some canonical term rewriting systemR,
then the application of paramodulation can be restricted:

. L1dπe may not be a variable

. Symmetry can no longer be simulated

. Equations, i.e., rewrite rules, are only applied from left to right

. Further restrictions concerning π ∈ PL1 are possible

. This restricted form of paramodulation is called narrowing
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Termination

I Is a given term rewriting systemR terminating?

I Let� be a partial order on the set of terms,
i.e.,� is reflexive, transitive, and antisymmetric

. s � t iff s � t and s 6= t

. s � t is well-founded iff there is no infinite sequence s1 � s2 � . . .

I Idea Search for a well-founded ordering� such that s →R t implies s � t

I A termination ordering� is a well-founded, transitive, and antisymmetric
relation on the set of terms satisfying the following properties:

. full invariance property if s � t then sθ � tθ for all θ

. replacement property if s � t then udse � uds/te

I Theorem 4
LetR be a term rewriting system and� a termination ordering.
If for all rules l → r ∈ R we find that l � r thenR is terminating
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Termination Orderings: Two Examples

I Let |s| denote the length of the term s
s � t iff for all grounding substitutions θ we find that |sθ| > |tθ|

. f (X , Y ) � g(X)

. f (X , Y ) and g(X , X) can not be ordered

I Polynomial ordering assign to each function symbol a polynomial with
coefficients taken from N+

. Let f (X , Y )I = 2X + Y
g(X , Y )I = X + Y

. Define s � t iff sI > t I

. Then, f (X , Y ) � g(X , X)

I There are many other termination orderings !

I �′ is more powerful than� iff s � t implies s �′ t but not vice versa
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Confluence

I Is a given terminating term rewriting system confluent?

I R is locally confluent
iff for all terms r, s, t we find: If t ←R r →R s then s ↓R t

I Theorem 5 LetR be a terminating term rewriting system.
R is confluent iff it is locally confluent
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Local Confluence

I Is a given terminating term rewriting system locally confluent?

I A subterm u of t is called a redex
iff there exists θ and l → r ∈ R such that u = lθ

I Let l1 → r1 ∈ R and l2 → r2 ∈ R be applicable to t  two redeces

. Case analysis

(a) They are disjoint
(b) one redex is a subterm of the other one and corresponds to a

variable position in the left-hand-side of the other rule
(c) one redex is a subterm of the other one but does not correspond

to a variable position in the left-hand-side of the other rule
(the redeces overlap)
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Example

I Let t = (g(a) · f (b)) · c

(a) R8 = {a → c, b → c}

II a and b are disjoint redeces in t

II R8 is locally confluent

(b) R9 = {a → c, g(X)→ f (X)}

II a and g(a) are redeces in t

II a corresponds to the variable position in g(X)

II R9 is locally confluent

(c) R10 = {(X · Y ) · Z → X , g(a) · f (b)→ c}

II (g(a) · f (b)) · c and g(a) · f (b) are overlapping redeces in t

II This is the problematic case!
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Critical Pairs

I Let

. l1 → r1, l2 → r2 be two new variants of rules inR

. u be a non-variable subterm of l1 and

. u and l2 be unifiable with mgu θ

I Then, the pair 〈(l1du/r2e)θ, r1θ〉 is said to be critical

I It is obtained by superimposing l1 with l2

. Superimposing (X · Y ) · Z → X with g(a) · f (b)→ c
yields the critical pair 〈c · Z , g(a)〉

I Theorem 6 A term rewriting systemR is locally confluent
iff for all critical pairs 〈s, t〉 ofR we find s ↓R t
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Completion

I Can a terminating and non-confluentR be turned into a confluent one?

I Two term rewriting systemsR andR′ are equivalent iff ≈ER =≈ER′

I Idea if 〈s, t〉 is a critical pair then add either s → t or t → s toR

. This is called completion

. The equational theory remains unchanged
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Completion Procedure

I Given a terminatingR together with a termination ordering�

1 If for all critical pairs 〈s, t〉 ofR we find that s ↓R t

then return “success”;R is canonical

2 IfR has a critical pair whose elements do not rewrite to a common term,

then transform the elements of the critical pair to some normal form.

Let 〈s, t〉 be the normalized critical pair:

II If s � t then add the rule s → t toR and goto 1

II If t � s then add the rule t → s toR and goto 1

II If neither s � t nor t � s then return “fail”

I The completion procedure may either succeed or fail or loop

I During completion the ordering� may be extended to a more powerful one

I The completion procedure may be extended to unfailing completion
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Completion: An Example

I Consider
R11 = {c → b, f → b, f → a, e → a, e → d}

I Let f � e � d � c � b � a

I The critical pairs are 〈b, a〉 and 〈d, a〉

I They can be oriented into the new rules b → a and d → a

I We obtain

R′11 = {c → b, f → b, f → a, e → a, e → d, b → a, d → a}

I R′11 is canonical

I s ≈ER t iff s ≈ER′ t

I All proofs for s ≈ER′11
t are in so-called valley form
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Unification Theory

I Idea We want to build equational axioms into the unification computation

I An E-unification problem consists of an equational theory E and two terms
s and t , and is the question whether E ∪ E≈ |= ∃ s ≈ t holds

. A substitution θ is a solution of the E-unification problem iff sθ ≈E tθ

. In this case θ is called E-unifier for s and t

. If E = ∅ then E-unification is unification

. Consider E = {f (X) ≈ X} and let s = g(f (a), a) and t = g(Y , Y ).

II {Y 7→ a} is an E-unifier for s and t

II The unification problem {̇s ≈ t}̇ is unsolvable

I Substitutions η and θ are E-equal on a set V of variables (θ ≈E η[V])
iff Xη ≈E Xθ for all X ∈ V

. Reconsider E = {f (X) ≈ X}

II {Y 7→ a} and {Y 7→ f (a)} are E-equal on {X , Y}
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E-Instances

I Subsitution η is an E-instance of θ on a set V of variables (η ≤E θ[V])
(or θ is more general than η wrt E and V)
iff there exists a substitution τ such that Xη ≈E Xθτ for all X ∈ V

I η is a strict E-instance of θ (η <E θ[V]) iff η ≤E θ[V] and η 6≈E θ[V]

I If neither η ≤E θ[V] nor θ ≤E η[V]
then θ and η are said to be incomparable on V
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Examples

I Consider E ∪ E≈ |= (∃X , Y ) f (X , g(a, b)) ≈ f (g(Y , b), X)

I E = ∅

. Unification problem is decidable

. Most general unifier is unique modulo variable renaming

θ1 = {X 7→ g(a, b), Y 7→ a}

I E = {f (X , Y ) ≈ f (Y , X)}

. θ1 is a solution and so is θ2 = {Y 7→ a}

f (X , g(a, b))θ2 = f (X , g(a, b)) ≈E f (g(a, b), X) = f (g(Y , b), X)θ2

. θ1 ≤E θ2[{X , Y}]

. There are at most finitely many most general unifiers
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Examples Continued

I Reconsider E ∪ E≈ |= (∃X , Y ) f (X , g(a, b)) ≈ f (g(Y , b), X)

I E = {f (X , f (Y , Z)) ≈ f (f (X , Y ), Z))}

. θ1 = {X 7→ g(a, b), Y 7→ a} is a solution

. So is θ3 = {X 7→ f (g(a, b), g(a, b)), Y 7→ a}

f (X , g(a, b))θ3 = f (f (g(a, b), g(a, b)), g(a, b))
≈E f (g(a, b), f (g(a, b), g(a, b)))
= f (g(Y , b), X)θ3

. θ1 and θ3 are incomparable on {X , Y}

. θ4 = {X 7→ f (g(a, b), f (g(a, b), g(a, b))), Y 7→ a}
is yet another solution incomparable to θ1 and θ3 on {X , Y}

. In general, there may be infinitely many most general unifiers

I E = {f (X , f (Y , Z)) ≈ f (f (X , Y ), Z)), f (X , Y ) ≈ f (Y , X)}

. There are at most finitely many most general unifiers
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Sets of E-Unifiers

I Given an E-unification problem E ∪ E≈ |= ∃ s ≈ t

I UE(s, t) denotes the set of all E-unifiers of s and t

I Complete set S of E-unifiers for s and t

. S ⊆ UE(s, t) and

. for all η ∈ UE(s, t) there exists θ ∈ S such that η ≤E θ[var(s) ∪ var(t)]

I Minimal complete set S of E-unifiers for s and t

. complete set and

. for all θ, η ∈ S we find η ≤E θ[var(s) ∪ var(t)] implies θ = η

I Complete sets of E-unifiers for s and t are often denoted by cUE(s, t)

I Minimal complete sets of E-unifiers for s and t are often denoted by µUE(s, t)

I If cUE(s, t) is finite and≤E is decidable then there exists µUE(s, t)

I Let θ ≡E η[V] iff η ≤E θ[V] and θ ≤E η[V]

I µUE(s, t) is unique up to≡E [var(s) ∪ var(t)] if it exists
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Another Example

I Let the constant a and the binary f be the only function symbols

I Let E = {f (X , f (Y , Z)) ≈ f (f (X , Y ), Z)}

I Consider E ∪ E≈ |= ∃ f (X , a) ≈ f (a, Y )

. θ = {X 7→ a, Y 7→ a} is a solution

. η = {X 7→ f (a, Z), Y 7→ f (Z , a)} is another solution

. {θ, η} is a complete set of E-unifiers  Exercise

. θ and η are incomparable under≥E

. The set {θ, η} is minimal

Steffen Hölldobler
Equational Logic 31



On the Existence of Minimal Complete Sets of E-Unifiers

I Theorem 7 Minimal complete sets of E-unifiers do not always exist

I Proof Let R = {f (a, X)→ X , g(f (X , Y ))→ g(Y )}

I Claim µUER(g(X), g(a)) does not exist

. R is canonical  Exercise

. Define σ0 = {X 7→ a}
σ1 = {X 7→ f (X1, a)} = {X 7→ f (X1, Xσ0)}
...
σi = {X 7→ f (Xi , Xσi−1)}

. Let S = {σi | i ≥ 0}

. S is a cUER(g(X), g(a))  Exercise

. With ρi = {Xi 7→ a} we find Xσiρi = f (a, Xσi−1) ≈ER Xσi−1

. Hence, σi−1 ≤ER σi [{X}]

. Because Xσi = f (Xi , Xσi−1) 6≈ER Xσi−1 we find σi 6≈ER σi−1

. Thus σi−1 <ER σi [{X}]
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Proof of Theorem 7 Continued

I Remember R = {f (a, X)→ X , g(f (X , Y ))→ g(Y )}

. Assume S′ is a µUER(g(X), g(a))

. Because S is complete we find that
for all θ ∈ S′ there exists σi ∈ S such that θ ≤ER σi [{X}]

. Because σi <ER σi+1[{X}] we obtain θ <ER σi+1[{X}]

. Because S′ is complete we find that
there exists σ ∈ S′ such that σi+1 ≤ER σ[{X}]

. Hence θ <ER σ[{X}]

. Thus S′ is not minimal  Contradiction
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Unification Types

I The unification type of E is

unitary iff a set µUE(s, t) exists for all s, t and has cardinality 0 or 1
finitary iff a set µUE(s, t) exists for all s, t and is finite
infinitary iff a set µUE(s, t) exists for all s, t ,

and there are u and v such that µUE(u, v) is infinite
zero iff there are s, t such that µUE(s, t) does not exist
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Unification procedures

I E-unification procedure

. input: s ≈ t

. output: subset of UE(s, t)

. is complete iff for all s, t the output is a cUE(s, t)

. is minimal iff for all s, t the output is a µUE(s, t)

I Universal E-unification procedure

. input: E and s ≈ t

. output: subset of UE(s, t)

. is complete iff for all E and s, t the output is a cUE(s, t)

. is minimal iff for all E and s, t the output is a µUE(s, t)
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Typical Questions

I Given E

I Is it decidable whether an E-unification problem is solvable?

I What is the unification type of E?

I How can we obtain an efficient E-unification algorithm
or, preferably, a minimal E-unification procedure?
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Classes of E-Unification Problems

I The class of an E-unification problem E ∪ E≈ |= ∃ s ≈ t is called

. elementary iff s and t contain only symbols occurring in E

. with constants iff s and t may contain additional so-called free constants

. general iff s and t may contain add. function symbols of arbitrary arity
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Unification with Constants: Some Examples

Equational Unification Unification Complexity of the
System Type decidable? decision problem
EA infinitary yes NP-hard
EC finitary yes NP-complete
EAC finitary yes NP-complete
EAG unitary yes polynomial
EAI zero yes NP-hard
ECR1 zero no –
EDL, EDR unitary yes polynomial
ED infinitary ? NP-hard
EDA infinitary no –
EBR unitary yes NP-complete
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Additional Remarks

I E-matching problem
E ∪ E≈ |= ∃θ s ≈E tθ

I Combination problem
Can the results and unification algorithms for E1 and E2 be combined for
E1 ∪ E2?

I Universal E-unification problem
E-unification problem, where the equational system is part of the input
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Canonical Term Rewriting Systems Revisited

I Let R be a canonical term rewriting system

I So far, we were able to answer questions of the form ER |= ∀ s ≈ t

. Rewriting sdue →R t iff there are l → r ∈ R and θ such that
u = lθ and t = sdu/rθe

I Now consider ER |= ∃ s ≈ t

. Narrowing sdue ⇒R t iff there are l → r ∈ R and θ such that
uθ = lθ and t = (sdu/re)θ

where u is a non-variable subterm of s

. Please compare narrowing to rewriting and paramodulation!

. Theorem 8
LetR be a canonical term rewriting system with var(l) ⊇ var(r) for all
l → r ∈ R. Then narrowing and resolution is sound and complete

. A complete universal E-unification procedure for canonical theories E can
be built upon narrowing and resolution

Steffen Hölldobler
Equational Logic 40



Applications

I databases

I information retrieval

I computer vision

I natural language processing

I knowledge based systems

I text manipulation systems

I planning and scheduling systems

I pattern directed programming languages

I logic programming systems

I computer algebra systems

I deduction systems

I non-classical reasoning systems
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Multisets

I {̇e1, e2, . . . }̇ or ∅̇

I X ∈k M iff X occurs precisely k times inM

M1 =̇M2 iff for all X we find X ∈k M1 iff X ∈k M2

X ∈m M1 ∪̇M2 iff there exist k , l ≥ 0 such that
X ∈k M1, X ∈l M2 and k + l = m

X ∈m M1 \̇M2 iff there exist k , l ≥ 0 such that
either X ∈k M1, X ∈l M2, k > l and m = k − l
or X ∈k M1, X ∈l M2, k ≤ l and m = 0

X ∈m M1 ∩̇M2 iff there exist k , l ≥ 0 such that
X ∈k M1, X ∈l M2 and m = min{k , l}

M1 ⊆̇M2 iff M1 ∩̇M2=̇M1
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Fluent Terms

I Consider an alphabet with variables V and set F of function symbols
which contains the binary ◦ (written infix) and the constant 1

I Let F− = F \ {◦, 1}

I The non-variable elements of T (F−,V) are called fluents

I The set of fluent terms is the smallest set satisfying the following conditions

. 1 is a fluent term

. Each fluent is a fluent term

. If s and t are fluent terms then s ◦ t is a fluent term as well

I Let EAC1 = { X ◦ (Y ◦ Z) ≈ (X ◦ Y ) ◦ Z
X ◦ Y ≈ Y ◦ X
X ◦ 1 ≈ X }
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Multisets vs. Fluent Terms

I In the sequel let

. t be a fluent term and

. M be a multiset of fluents

I Consider the following mappings

. ·I (from the set of fluent terms into the set of multisets of fluents)

t I =


∅̇ if t = 1
{̇t}̇ if t is a fluent
uI ∪̇ v I if t = u ◦ v

. ·−I (from the set of multisets of fluents into the set of fluent terms)

M−I =

{
1 ifM =̇ ∅̇
s ◦ N−I ifM =̇ {̇s}̇ ∪̇ N
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Matching and Unification Problems

I Submultiset matching problem
Does there exist a θ such thatMθ ⊆̇N , whereN is ground?

I Submultiset unification problem
Does there exist a θ such thatMθ ⊆̇Nθ?

I Fluent matching problem
Does there exist a θ such that (s ◦ X)θ ≈AC1 t ,
where t is ground and X does not occur in s?

I Fluent unification problem
Does there exist a θ such that (s ◦ X)θ ≈AC1 tθ,
where X does not occur in s or t?
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Submultiset versus Fluent Unification Problems

I Equivalence of matching problems

(s ◦ X)θ ≈AC1 t iff (sθ)I ⊆̇ t I and (Xθ)I =̇ t I \̇ (sθ)I

I Equivalence of unification problems

(s ◦ X)θ ≈AC1 tθ iff (sθ)I ⊆̇ (tθ)I and (Xθ)I =̇ (tθ)I \̇ (sθ)I

I Theorem 9 Fluent matching and fluent unification problems are

. decidable

. finitary and

. there always exists a minimal complete set of matchers and unifiers
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Fluent Matching Algorithm

Input A fluent matching problem ∃θ (s ◦ X)θ ≈AC1 t?
(where t is ground and X does not occur in s)

Output A solution θ of the fluent matching problem, if it is solvable;
failure, otherwise

1 θ = ε

2 if s ≈AC1 1 then return θ{X 7→ t}

3 don’t-care non-deterministically select a fluent u from s and remove u from s

4 don’t-know non-deterministically select a fluent v from t such that
there exists a substitution η with uη = v

5 if such a fluent exists then apply η to s, delete v from t and let θ := θη,
otherwise stop with failure

6 goto 2
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