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Equational Systems

» Consider a first order language with the following precedence hierarchy
{V,3}>->A>V>{+, >} >«

» Let =~ be a binary predicate symbol written infix

» An equation is an atom of the form s =~ t

» An equational system £ is a finite set of universally closed equations

» Notation Universal quantifiers are usually omitted

&4 X-Y)-Z=X-(Y-2) (associativity)
1. X=X (left unit)
X-1x=X (right unit)
X—1. X= (left inverse)
X-X"1x=1 (right inverse)
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Axioms of Equality

» The equality relation enjoys some typical properties expressed by the following
universally closed axioms of equality £~

X=X (reflexivity)

XY ->Y=X (symmetry)

X=cYANY=Z>X=xZ (transitivity)

AN Xi= Yy — f(Xi,..., Xn) = f(Y1,..., Yn) (f-substitutivity)

ANy Xim YiAnr(X, ..., Xn) = r(Y1,..., Yn) (r—substitutivity)
» Note

> Substitutivity axioms are defined for each function symbol f and each
relation symbol r in the underlying alphabet

> Universal quantifiers have been omitted
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Equality and Logical Consequence

» We are interested in computing logical consequences of £ U £~
>EUERE@X)X-ax1?
> EUERU{X - X=1}EMX,Y)X- Y=Y .X?

» One possibility is to apply resolution
> There are 102! resolution steps needed to solve the examples

> £ U Ex causes an extremely large search space

» Ildea Remove troublesome formulas from £ U £~
and build them into the deductive machinery

> Use additional rule of inference like paramodulation
> Build the equational theory into the unification computation
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Least Congruence Relation

» £ U Ex is a set of definite clauses
» There exists a least model for £ U £~
» Example
> Let the only function symbols be the constants a, b and the binary g
> Let & = {a = b}
> The least model of £&; U £~ is
{t = t| tisaground term}
u{a=xb, b= a}
U {g(a,a) = g(b,a), g(a,a) = g(a, b), g(a,a) = g(b,b),...}

> Defines =gt iff EUEL Vst
> g(a, a) =¢, g(a, b)
> g(X,a) =g, g(X, b)
=~ ¢ Is the least congruence relation on terms generated by £
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Paramodulation

» L[s] literal which contains an occurrence of the term s
L[s/t] literal obtained from L by replacing an occurrence of s by t

» Paramodulation

[L1[s], L2, ..., Ln] [l=r,Loptt,y...,Lm]

[Li[s/r, L2y ..., Lm]0 6 = mgu(s, /)

» Notation Instead of —s ~ t we write s % 1
» Remember

EUEx EVs=Lt iff  Agye, — Vs=tisvalid
iff  —(Agug. — VS = ) is unsatisfiable
iff €U é&x U {~Vs = t}isunsatisfiable
iff €U &~ U{3Is % t}is unsatisfiable

» Theorem1 E U Ex~ U {3 s % t}is unsatisfiable iff there is a refutation of
E U {X = X} U {3s % t} wrt paramodulation, resolution and factoring
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An Example
EUX=X, X X1} EMWVX,V)X- Y=Y .X
1 a-b%¥b-a initial query | hypothesis
21X =X leftunit | a-bz ((Xs-Xs)-b)-(a- (X - Xa))
3 Xo=x X reflexivity \ associativity
4 X =1-X pm23) | a-bz (Xs-((X:-b)-(a-X))) - X
5 a-bx(1-b)-a pm(1,4) | hypothesis
6 X3-X3~=1 hypothesis | a-bx(a-1)-b
7 Xa= Xy reflexivity | right unit
8 1=X;3-X3 pm(6,7) | n a-bxa-b
9 a-bx((X3-X3)-b)-a pm(5,8) | " X5 = Xs reflexivity
. rightunit | n”  [] res (n, n’)
|

a-bz (Xs-Xs)-b)-(a-1)
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The Example in Shorthand Notation

EU{XX, X- X1} (WX, )X - Y=V -X

1 a-b%b-a initial query | hypothesis

2 1-X =~ X leftunit | a b ((X-Xs)-b)-(a-(Xa-Xa))

3 Xo=x= X2 reflexivity | . associativity

4 X ~1-X pm23) | a-bz (X ((X-b)-(a-Xa) - X

5 a-bz%(1-b)-a pm(1,4) | . hypothesis

6 X3-X3=~1 hypothesis | a-bz(@a-1)-b

7 Xax= Xy reflexivity | right unit

8 1~X3:-X; pm(6,7) | n a-bza-b

9 a-b#((X-X3)-b)-a pm(5,8) | " X = Xs reflexivity
. rightunit | n” [] res (n, n’)

|

a-b ((Xs-Xs)-b)-(a-1)
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The Example in Shorthand Notation Again

b-a =~ (1-b)-a left unit
~ ((X3-X3)-b)-a hypothesis
~ ((X3-X3)-b)-(a-1) right unit
= ((X3-X3)-b)-(a-(Xq-Xq)) hypothesis
~ (X3-((X3-b)-(a-X)))-Xa associativity
~ (a-1)-b hypothesis
~ a-b right unit

» Now, the search space is 10! instead of 102! steps

> Symmetry can be simulated, which leads to cycles
> All terms s occurring in L; are candidates
> L4[s] may be a variable and can be unified with any ter

» There are still many redundant and useless steps

» ldea Use equations only from left to right -~ term rewriting systems
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Term Rewriting Systems

» An expression of the form s — 1 is called rewrite rule
» A term rewriting system is a finite set of rewrite rules
» In the sequel, R shall denote a term rewriting system

> s[u] denotes a term s which contains an occurrence of u
s[u/v] denotes the term obtained from s by replacing an occ. of u by v
» The rewrite relation — on terms is defined as follows: s[u| —x t iff
there exist/ — r € Rand 6 suchthatu = /0 and t = s[u/r0]|
» Example Rj3 = { append([], X) - X,
append([X|Y],Z) — [X|append(Y,Z)] }
append([1,2],[3,4]) —x, [1|append([2],[3,4])]

_>’R3 [1 bl 2|append([ ]7 [37 4])]
—Rs [1 ,2,3, 4]
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Matching

» Matching problem
Given terms u and /, does there exist a substitution 8 such that u = 16 ?
If such a substitution exists, then it is called a matcher

» If a matching problem is solvable, then there exists a most general matcher

» If can be computed by a variant of the unification algorithm,
where variables occurring in u are treated as (different new) constant symbols

» Whereas unification is in the complexity class P, matching is in N'C
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Closures

» >z denotes the reflexive and transitive closure of —
> append([1,2],[3,4]) Sx, [1,2,3,4]
b Syt iff s<xrt or s—>gt

> Let R4 = {a— b, c — b},
then a —x, b +—r, cand, consequently, a <+, b <+, C

» <>z denotes the reflexive and transitive closure of <>
> ar, €

» We sometimes simply write — or <> instead of —x or <>, respectively
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Term Rewriting Systems and Equational Systems

» Let R be a term rewriting system
> Er={l=r|l—->reR} U &

> ForRqg ={a— b, c — b} weobtainEr, = {a~ b,c = b} U Ex
» Theorem2 (i) st implies smgy t

(i) smgxt iff sSHrt

» Proof -~ Exercise

> g(X,a) —+=, g(X;b) and g(X,a) 2z, 9(X;b)

> g(X,a) e, 9(X,c) and g(X,a) =r, 9(X,b) <=, 9(X,c)

Steffen Holldobler INTERNATIONAL CENTER [3
Equational Logic FOR COMPUTATIONAL LOGIC



TECHNISCHE
@ UNIVERSITAT
DRESDEN

Reducibility and Normal Forms

» sisreducible wrt R iff there exists t suchthats —x t

> otherwise it is irreducible

» tisanormal formofswrt R iff s —*Mz t and t is irreducible

> [1,2,3,4] is the normal form of append([1, 2], [3.4]) wrt R3

» Normal forms are not necessarily unique. Consider

Rs = { neg(neg(X)) -
neg(or(X, Y)) —
neg(and(X,Y)) —
and(X,or(Y,Z)) —
and(or(X,Y),Z) —

X,
and(neg(X), neg(Y)),
or(neg(X), neg(Y)),
or(and(X,Y), and(X, Z)),
or(and(Y, Z),and(Z, X)) }

and(or(X, Y), or(U, V)) has the normal forms
or(or(and(Y, U),and(U, X)), or(and(Y, V),and(V, X))) and
or(or(and(Y, U),and(Y, V)),or(and(V, X),and(X, U))) wrt Rs
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Confluent Term Rewriting Systems

» sl t iff thereexists usuchthats Sz u < g t

» ST t iff thereexists usuchthats < u Sx t
> Consider R¢ = {b — a, b — c}. Thena ,ZRsc, butatr, ¢

» R is confluent iff for all terms sand t we find s T timpliess | t
> R7 = Re U {a@a — c} is confluent

» R is Church-Rosser iff forallterms sand t we find s <> tiffs Ir t

» Theorem 3 7R is Church-Rosser iff R is confluent

» Remember s &gt iff smgp, t

> If a term rewriting system is confluent,
then rewriting has only to be applied in one direction, viz. from left to right !
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Canonical Term Rewriting Systems

» R isterminating iff it has no infinite rewriting sequences
> The question whether R is terminating is undecidable

» R is canonical iff R is confluent and terminating
> If R is canonical, then s =g, t iff s{grt
> If R is canonical, then £ is decidable

» Given £. If ¢ = =g for some canonical term rewriting system R,
then the application of paramodulation can be restricted:

> Ly[w] may not be a variable

> Symmetry can no longer be simulated

> Equations, i.e., rewrite rules, are only applied from left to right
> Further restrictions concerning = € P, are possible

> This restricted form of paramodulation is called narrowing
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Termination

» Is a given term rewriting system R terminating?

» Let > be a partial order on the set of terms,
i.e., > is reflexive, transitive, and antisymmetric

>s>1t iff s>—tands #t
> s > tis well-founded iff there is no infinite sequence sy > so > ...
» Ildea Search for a well-founded ordering > such that s —x t implies s > t

» A termination ordering > is a well-founded, transitive, and antisymmetric
relation on the set of terms satisfying the following properties:

> full invariance property if s > t then s6 > t6 for all 6
> replacement property if s > tthen u[s] > u[s/t]

» Theorem 4
Let R be a term rewriting system and > a termination ordering.
If for all rules I — r € R we find that / > r then R is terminating

Steffen Holldobler INTERNATIONAL CENTER [3
Equational Logic FOR COMPUTATIONAL LOGIC



TECHNISCHE
@ UNIVERSITAT
DRESDEN

Termination Orderings: Two Examples

» Let |s| denote the length of the term s
s »— t iff for all grounding substitutions 6 we find that |s@| > |t0|

> f(X,Y) = g(X)
> f(X, Y)and g(X, X) can not be ordered

» Polynomial ordering assign to each function symbol a polynomial with
coefficients taken from N+

> Let f(X,Y) = 2X+VY
ax,y) = X+v

> Defines -t iff s/ >t/
> Then, f(X, Y) > g(X, X)

» There are many other termination orderings!

» >’ is more powerful than > iff s > timplies s >’ t but not vice versa
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Confluence

» Is a given terminating term rewriting system confluent?

» R is locally confluent
iff foralltermsr,s,twefind:lft < r - sthens |r t

» Theorem 5 Let R be aterminating term rewriting system.
‘R is confluent iff itis locally confluent
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Local Confluence

» Is a given terminating term rewriting system locally confluent?

» A subterm u of t is called a redex
iff there exists9and/ — r € R suchthatu = 16

» Leth - rn € Rand L — r, € R be applicabletot -~ two redeces
> Case analysis

(a) They are disjoint

(b) one redex is a subterm of the other one and corresponds to a
variable position in the left-hand-side of the other rule

(c) one redex is a subterm of the other one but does not correspond
to a variable position in the left-hand-side of the other rule
(the redeces overlap)
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Example

» Lett = (g(a)-f(b))-c

(a) Rg={a—c, b—>c}
» aand b are disjoint redeces in t
» 7Rg is locally confluent

(b) Re = {a — ¢, g(X) — f(X)}
» aand g(a) are redeces in t
» a corresponds to the variable position in g(X)
» Ry is locally confluent

Rio={(X-Y)-Z— X, g(a) - f(b) — ¢}
» (g(a) - f(b)) - cand g(a) - f(b) are overlapping redeces in t
» This is the problematic case!

G
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Critical Pairs

> Let
>k — r, b — rp; be two new variants of rules in R
> u be a non-variable subterm of /; and
> u and k be unifiable with mgu 6
» Then, the pair ((/1[u/r.])0, r16) is said to be critical
» ltis obtained by superimposing / with &

> Superimposing (X - Y)-Z — X with g(a) - f(b) — ¢
yields the critical pair (c - Z, g(a))

» Theorem 6 A term rewriting system R is locally confluent
iff for all critical pairs (s, t) of R wefinds | t
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Completion

» Can a terminating and non-confluent R be turned into a confluent one?
» Two term rewriting systems R and R’ are equivalent iff =g, ==¢_,
» ldea if (s, t) is a critical pair then add either s — tort — stoR

> This is called completion
> The equational theory remains unchanged
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Completion Procedure

» Given a terminating R together with a termination ordering >
1 If for all critical pairs (s, t) of R we find that s | »
then return “success”; R is canonical
2 If R has a critical pair whose elements do not rewrite to a common term,
then transform the elements of the critical pair to some normal form.
Let (s, t) be the normalized critical pair:
» If s > t then add the rule s — t to R and goto 1
» If t > sthen add the rule t — s to R and goto 1
» If neither s > t nor t > s then return “fail”
» The completion procedure may either succeed or fail or loop
» During completion the ordering > may be extended to a more powerful one

» The completion procedure may be extended to unfailing completion
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Completion: An Example

» Consider
Ru={c—b,f—>b, f—>a e—a e—d}

> Letf~e>~d>c>b>a
» The critical pairs are (b, a) and (d, a)
» They can be oriented into the new rules b —+ aand d — a
» We obtain
Ryy={c—b,f—b, f—a e—a e—d b—a d—a}
» R}, is canonical
> SRe, U iff sme, t

» All proofs for s =~¢_, tarein so-called valley form
1
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Unification Theory

» ldea We want to build equational axioms into the unification computation

» An E-unification problem consists of an equational theory £ and two terms
s and t, and is the question whether £ U £~ = 3 s = t holds
> A substitution 0 is a solution of the £-unification problem iff s6 ~¢ t0
> In this case 6 is called £-unifier for sand t
> If € = @ then E-unification is unification
> Consider £ = {f(X) =~ X} and let s = g(f(a),a)and t = g(Y, Y).
» {Y — a} is an E-unifier for sand t
» The unification problem {s ~ t} is unsolvable
» Substitutions n and 0 are £-equal on a set V of variables (6 ~¢ n[V])
iff Xn =g XOforall X € V
> Reconsider £ = {f(X) = X}
»w {Y — a}and {Y — f(a)} are E-equal on {X, Y}
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E-Instances

» Subsitution 7 is an £-instance of 6 on a set V of variables ( <g 0[V])
(or @ is more general than n wrt € and V)
iff there exists a substitution ~ such that Xn ~g Xé6r forall X € V

» nisastrict £-instance of 6 (n <g O[V]) iff n <g 6[V]and n ¢ 6[V]

» If neither n <g 6[V] nor 0 <g n[V]
then 6 and 7 are said to be incomparable on V
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Examples

» Consider €U €~ = (3X,Y)f(X,g(a, b)) = f(g(Y,b), X)
» E=0

> Unification problem is decidable

> Most general unifier is unique modulo variable renaming

6 = {X+— g(a,b), Y — a}

> £={f(X,Y) =~ f(Y,X)}
> 0y is a solution and sois 6, = {Y — a}
f(X, g(a’ b))02 = f(Xv g(av b)) Re f(g(a7 b)aX) = f(g(Y’ b)ax)02

> 61 <g 62[{X, Y}]
> There are at most finitely many most general unifiers
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Examples Continued

» Reconsider £ U &~ = (3X,Y)f(X,g(a, b)) = f(g(Y, b), X)
» € ={f(X,1(Y,2)) = {(f(X,Y),2))}
> 6y = {X — g(a,b), Y — a}is asolution
> Sois 03 = {X — f(g(a, b),g(a, b)), Y — a}
f(f(9(a, b), g(a; b)), g(a, b))

e f(g(a, b),f(g(a, b), g(a, b)))
f(9(Y, b), X)63

(X, 9(a, b))0s

o

> 61 and 03 are incomparable on {X, Y}

> 04 = {X = f(g(a7 b)7 f(g(a7 b)» 9(37 b)))a Y — a}
is yet another solution incomparable to 6; and 63 on {X, Y}

> In general, there may be infinitely many most general unifiers
> £ ={f(X,1(Y,2) = {(f(X,Y),2)), f(X,Y) = (Y, X)}

> There are at most finitely many most general unifiers
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Sets of £-Unifiers

>

>

Given an E-unification problem £ U~ E3s =t

Ue (s, t) denotes the set of all £-unifiers of s and ¢

Complete set S of £-unifiers for s and t

> 8 C Ug(s, t)and

> forall n € Ug (s, t) there exists 0 € S such that n <g O[var(s) U var(t)]
Minimal complete set S of £-unifiers for s and t

> complete set and
> forall 8, € S we find n <g O[var(s) U var(t)] implies 0 = n

Complete sets of £-unifiers for s and t are often denoted by cUg (s, )

Minimal complete sets of £-unifiers for s and t are often denoted by . Us (s, f)
If clus (s, t) is finite and <¢ is decidable then there exists uiis (s, t)

Let 0 =c n[V] iff n <g 6[V]and 6 <g n[V]

pnle (s, t) is unique up to =¢ [var(s) U var(t)] if it exists
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Another Example

» Let the constant a and the binary f be the only function symbols
» Let& = {f(X,f(Y,2)) = f(f(X,Y),2)}
» Consider E U &~ =3 f(X,a) = f(a,Y)

> 6 = {X+— a, Y — a}is a solution

> n={Xw~— f(a,Z), Y — f(Z,a)} is another solution

> {0,n} is a complete set of £-unifiers -~ Exercise

> 6 and n) are incomparable under >¢

> The set {6, n} is minimal
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On the Existence of Minimal Complete Sets of £-Unifiers

» Theorem 7 Minimal complete sets of £-unifiers do not always exist
» Proof Let R = {f(a,X) — X, g(f(X,Y)) — g(YV)}
» Claim pler (9(X), g(a)) does not exist

> R is canonical -+ Exercise

> Define o9 = {X+— a}
o1 = {X— f(X,a)} = {X— f(X1,Xo0)}
;7'i = {X = (X, Xoj_1)}

> Let S = {o;|i >0}

> SisacUg; (9(X),g(a)) ~ Exercise

> With p; = {X; — a} we find Xo;p; = f(a, Xoj_1) Rer Xoi_q
> Hence, oj_1 <g, oi[{X}]

> Because Xoj = f(Xj, Xoi_1) Ber Xoj_qwefindo; Ze, oi_q
> Thus oj_1 <gx oi[{X}]
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Proof of Theorem 7 Continued

» Remember R = {f(a,X) — X, g(f(X,Y)) — g(Y)}
> Assume S’ is a pulle, (9(X), g(a))

> Because S is complete we find that
for all @ € S’ there exists o; € S such that 0 <¢, o;[{X}]

> Because oj <g ojy1[{X}] we obtain 6 <g. o 1[{X}]

> Because S’ is complete we find that
there exists o € S’ such that o1 <g, o[{X}]

> Hence 8 <g, o[{X}]
> Thus S’ is not minimal -~ Contradiction
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Unification Types

» The unification type of £ is

unitary iff aset ulg (s, t) exists for all s, t and has cardinality 0 or 1
finitary iff aset ulg(s, t) exists for all s, t and is finite
infinitary  iff a set ulg(s, t) exists for all s, t,
and there are u and v such that ulie (u, v) is infinite
zero iff  there are s, t such that ulig (s, t) does not exist
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Unification procedures

» E-unification procedure
> input: s = t
> output: subset of Ug (s, )
> is complete iff for all s, t the output is a cls (s, t)
> is minimal iff for all s, t the output is a utig (s, t)
» Universal £-unification procedure
> input: £and s =~ t
> output: subset of Ug (s, t)
> is complete iff forall £ and s, t the output is a cls (s, t)
> is minimal iff forall £ and s, t the output is a utis (s, t)
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Typical Questions

» Given &
» Is it decidable whether an £-unification problem is solvable?
» What is the unification type of £?

» How can we obtain an efficient £-unification algorithm
or, preferably, a minimal £-unification procedure?
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Classes of £-Unification Problems

» The class of an E-unification problem E U Ex = I s~ t iscalled

> elementary iff sand t contain only symbols occurring in €
> with constants iff sand t may contain additional so-called free constants
> general iff sand t may contain add. function symbols of arbitrary arity
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Unification with Constants: Some Examples

Equational | Unification | Unification | Complexity of the
System Type decidable? | decision problem
Ea infinitary yes NP-hard

Ec finitary yes NP-complete
Eac finitary yes NP-complete
EaG unitary yes polynomial

Eal zero yes NP-hard

Ecri zero no -

EpLs EpR unitary yes polynomial

Ep infinitary ? NP-hard

Epa infinitary no —

ER unitary yes NP-complete
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Additional Remarks

» &-matching problem
EUEx ETOs =g 1O

» Combination problem
Can the results and unification algorithms for £; and £, be combined for
E1 U &E?

» Universal £-unification problem
E-unification problem, where the equational system is part of the input
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Canonical Term Rewriting Systems Revisited

» Let R be a canonical term rewriting system
» So far, we were able to answer questions of the form g = Vs = t
> Rewriting s[u] —-x t iff thereare/ — r € R and 0 such that
u=1I6andt = s[u/ro]
» Now consider £g =3Is =t
> Narrowing s[u] = t iff thereare/ — r € R and 6 such that

u6é =16andt = (sfu/r])o
where u is a non-variable subterm of s

> Please compare narrowing to rewriting and paramodulation!

> Theorem 8
Let R be a canonical term rewriting system with var(/) O var(r) for all
I — r € R. Then narrowing and resolution is sound and complete

> A complete universal £-unification procedure for canonical theories £ can
be built upon narrowing and resolution
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Applications

» databases

» information retrieval

» computer vision

» hatural language processing

» knowledge based systems

» text manipulation systems

» planning and scheduling systems
» pattern directed programming languages
» logic programming systems

» computer algebra systems

» deduction systems

» non-classical reasoning systems
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Multisets

» {e,e,...} or
» X M

My =My

X Em My UM,

X Em M1\M2

Steffen Holldobler

iff
iff
iff

iff

iff

iff

X occurs precisely k times in M
for all X we find X €4 M iff X €4 M

there exist k, | > 0 such that
Xex My, X Maandk+1=m

there exist k, | > 0 such that
either X €y M, X €, Mo,k > landm=k — |
orXex M, Xe My, k< landm=0

there exist k,/ > 0 such that
X €k My, X €/ Mz and m = nin{k, I}

My A My=M,

Equational Logic
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Fluent Terms

v

Consider an alphabet with variables V and set F of function symbols
which contains the binary o (written infix) and the constant 1

> LetF— = F\ {o,1}

» The non-variable elements of 7 (F—, V) are called fluents

» The set of fluent terms is the smallest set satisfying the following conditions
> 1is a fluent term

> Each fluent is a fluent term
> If sand t are fluent terms then s o t is a fluent term as well
> Let €401 = { Xo(YoZ)=(XoY)oZ

XoY=YoX
Xol= X }
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Multisets vs. Fluent Terms

» In the sequel let

> t be a fluent term and
> M be a multiset of fluents

» Consider the following mappings
> -/ (from the set of fluent terms into the set of multisets of fluents)
0 ift=1

t'=1{ {1} if tis a fluent
oV ift=uov

> -~/ (from the set of multisets of fluents into the set of fluent terms)

)1 ifM=0
M _{so./\/'_’ ifM={s} UN
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Matching and Unification Problems

» Submultiset matching problem )
Does there exist a 6 such that M0 C N/, where N/ is ground?

» Submultiset unification problem .
Does there exist a 6 such that M0 C N6?

» Fluent matching problem
Does there exist a 0 such that (s o X)0 ~cq 1,
where t is ground and X does not occur in s?

» Fluent unification problem
Does there exist a 0 such that (s 0 X)0 = ¢ 10,
where X does not occur in s or t?
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Submultiset versus Fluent Unification Problems

» Equivalence of matching problems
(S0 X)0 =aci t iff (s8) Ct and (X0) =t (s6)
» Equivalence of unification problems
(S0 X)0 mac1 16 iff (s8)' C(16)' and (X6)' = (10)'\ (s6)

» Theorem 9 Fluent matching and fluent unification problems are

> decidable
> finitary and
> there always exists a minimal complete set of matchers and unifiers
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Fluent Matching Algorithm

Input A fluent matching problem 30 (s o X)0 = ¢ t?
(where t is ground and X does not occur in s)

Output A solution 8 of the fluent matching problem, if it is solvable;
failure, otherwise

160=¢
2 if s =pc1 1then return 6{X — t}
3 don’t-care non-deterministically select a fluent u from s and remove u from s

4 don’t-know non-deterministically select a fluent v from t such that
there exists a substitution n with un = v

5 if such a fluent exists then apply 7 to s, delete v from t and let 6 := 67,
otherwise stop with failure

6 goto 2
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