TECHNISCHE

COMPLEXITY THEORY

Lecture 2: Turing Machines and Languages

Markus Krötzsch
Knowledge-Based Systems

A Model for Computation

Clear

To understand computational problems we need to have a formal understanding of what an algorithm is.

Example 2.1 (Hilbert's Tenth Problem):

"Given a Diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers." (\rightarrow Wikipedia)

Question

How can we model the notion of an algorithm?

Answer

With Turing machines.
Markus Krötzsch, 11th Oct 2017

Turing Machines

Example 2.3:

- The tape is bounded on the left, but unbounded on the right; the content of the tape is a finite word over Γ, followed by an infinite sequence of \square.
- The head of the machine is at exactly one position of the tape
- The head can read only one symbol at a time
- The head moves and writes according to the transition function δ; the current state also changes accordingly
- The head will stay put when attempting to cross the left tape end

Configurations

Observation: to describe the current step of a computation of a TM it is enough to know

- the content of the tape,
- the current state, and
- the position of the head

Definition 2.4: A configuration of a TM \mathcal{M} is a word uqv such that

- $q \in Q$,
- $u v \in \Gamma^{*}$

Some special configurations:

- The start configuration for some input word $w \in \Sigma^{*}$ is the configuration $q_{0} w$
- A configuration $u q v$ is accepting if $q=q_{\text {accept }}$.
- A configuration $u q v$ is rejecting if $q=q_{\text {reject }}$.

Recognisability and Decidability

Definition 2.5: Let \mathcal{M} be a Turing machine with input alphabet Σ. The

 language accepted by \mathcal{M} is the set$$
\mathcal{L}(\mathcal{M}):=\left\{w \in \Sigma^{*} \mid \mathcal{M} \text { accepts } w\right\} .
$$

A language $\mathcal{L} \subseteq \Sigma^{*}$ is called Turing-recognisable (recursively enumerable) if and only if there exists a Turing machine \mathcal{M} with input alphabet Σ^{*} such that $\mathcal{L}=\mathcal{L}(\mathcal{M})$. In this case we say that \mathcal{M} recognises \mathcal{L}.

A language $\mathcal{L} \subseteq \Sigma^{*}$ is called Turing-decidable (decidable, recursive) if and only if there exists a Turing machine \mathcal{M} such that $\mathcal{L}=\mathcal{L}(\mathcal{M})$ and \mathcal{M} halts on every input. In this case we say that \mathcal{M} decides \mathcal{L}.

Computation

We write

- $C \vdash_{\mathcal{M}} C^{\prime}$ only if C^{\prime} can be reached from C by one computation step of \mathcal{M};
- $C \vdash^{*}{ }_{\mathcal{M}} C^{\prime}$ only if C^{\prime} can be reached from C in a finite number of computation steps of \mathcal{M}.

We say that \mathcal{M} halts on input w if and only if there is a finite sequence of configurations

$$
C_{0} \vdash_{\mathcal{M}} C_{1} \vdash_{\mathcal{M}} \cdots \vdash_{\mathcal{M}} C_{\ell}
$$

such that C_{0} is the start configuration of \mathcal{M} on input w and C_{ℓ} is an accepting or rejecting configuration. Otherwise \mathcal{M} loops on input w.

We say that \mathcal{M} accepts the input w only if \mathcal{M} halts on input w with an accepting configuration.

Example

Claim 2.6: The language $\mathcal{L}:=\left\{\mathrm{a}^{2^{n}} \mid n \geq 0\right\}$ is decidable.
Proof:A Turing machine \mathcal{M} that decides \mathcal{L} is
$\mathcal{M}:=$ On input w, where w is a string

- Go from left to right over the tape and cross off every other 0
- If in the first step the tape contained a single 0 , accept
- If in the first step the number of 0 s on the tape was odd, reject
- Return the head the beginning of the tape
- Go to the first step

Example (cont'd)

Formally, $\mathcal{M}=\left(Q, \Sigma, \Gamma, \delta, q_{1}, q_{\text {accept }}, q_{\text {reject }}\right)$, where

- $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{\text {accept }}, q_{\text {reject }}\right\}$
- $\Sigma=\{a\}, \Gamma=\{a, x, \square\}$
and δ is given by

Markus Krötzsch, 11th Oct 2017
Complexity Theory
slide 9 of 26

The Church-Turing Thesis

It turns out that Turing-machines are equivalent to a number of formalisations of the intuitive notion of an algorithm

- λ-calculus
- while-programs
- μ-recursive functions
- Random-Access Machines

Because of this it is believed that Turing-machines completely capture the intuitive notion of an algorithm. \leadsto Church-Turing Thesis:
"A function on the natural numbers is intuitively computable if and only if it can be computed by a Turing machine."
$(\rightarrow$ Wikipedia: Church-Turing Thesis)

Problems as Languages

Observation

- Languages can be used to model computational problems.
- For this, a suitable encoding is necessary
- TMs must be able to decode the encoding

Example 2.7 (Graph-Connectedness): The question whether a graph is connected or not can be seen as the word problem of the following language

$$
\text { GCONN }:=\{\langle G\rangle \mid G \text { is a connected graph }\},
$$

where $\langle G\rangle$ is (for example) the adjacency matrix encoded in binary.
Notation 2.8: The encoding of objects O_{1}, \ldots, O_{n} we denote by
$\left\langle O_{1}, \ldots, O_{n}\right\rangle$.

Variations of Turing-Machines

It has also been shown that deterministic, single-tape Turing machines are equivalent to a wide range of other forms of Turing machines:

- Multi-tape Turing machines
- Nondeterministic Turing machines
- Turing machines with doubly-infinite tape
- Multi-head Turing machines
- Two-dimensional Turing machines
- Write-once Turing machines
- Two-stack machines
- Two-counter machines
- ...

Multi-Tape Turing Machines

k-tape Turing machines are a variant of Turing machines that have k tapes.

Multi-Tape Turing Machines

Theorem 2.10: Every multi-tape Turing machine has an equivalent singletape Turing machine.

Proof: Let M be a k-tape Turing machine. Simulate M with a single-tape TM S by

- keeping the content of all k tapes on a single tape, separated by \#
- marking the positions of the individual heads using special symbols

Multi-Tape Turing Machines

Definition 2.9: Let $k \in \mathbb{N}$. Then a (deterministic) k-tape Turing machine is a tuple $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$, where

- $Q, \Sigma, \Gamma, q_{0}, q_{\text {accept }}, q_{\text {reject }}$ are as for TMs
- δ is a transition function for k tapes, i.e.,

$$
\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{\mathrm{L}, \mathrm{R}, \mathrm{~N}\}^{k}
$$

Running M on input $w \in \Sigma^{*}$ means to start M with the content of the first tape being w and all other tapes blank.

The notions of a configuration and of the language accepted by M are defined analogously to the single-tape case.

Multi-Tape Turing Machines

$$
S:=\text { On input } w=w_{1} \ldots w_{n}
$$

- Format the tape to contain the word

$$
\# \dot{w}_{1} w_{2} \ldots w_{n} \# \dot{\square} \# \dot{\square} \# \ldots \#
$$

- Scan the tape from the first \# to the $(k+1)$-th \# to determine the symbols below the markers.
- Update all tapes according to M 's transition function with a second pass over the tape; if any head of M moves to some previously unread portion of its tape, insert a blank symbol at the corresponding position and shift the right tape contents by one cell
- Repeat until the accepting or rejection state is reached.

Nondeterministic Turing Machines

Goal
Allow transitions to be nondeterministic.
Approach
Change transition function from

$$
\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}
$$

to

$$
\delta: Q \times \Gamma \rightarrow 2^{Q \times \Gamma \times(L, R)} .
$$

The notions of accepting and rejecting computations are defined accordingly. Note: there may be more than one or no computation of a nondeterministic TM on a given input.
A nondeterministic TM M accepts an input w if and only if there exists some accepting computation of M on input w.

Nondeterministic Turing Machines

Sketch of D :

input tape simulation tape address tape

Let b be the maximal number of choices in δ, i.e.,

$$
b:=\max \{|\delta(q, x)| \mid q \in Q, x \in \Gamma\} .
$$

Nondeterministic Turing Machines

Theorem 2.11: Every nondeterministic TM has an equivalent deterministic TM.

Proof: Let N be a nondeterministic TM. We construct a deterministic TM D that is equivalent to N, i.e., $\mathcal{L}(N)=\mathcal{L}(D)$.
Idea

- D deterministically traverses in breath-first order the tree of configuration of N, where each branch represents a different possibility for N to continue.
- For this, successively try out all possible choices of transitions allowed by N.

Nondeterministic Turing Machines

D works as follows:
(1) Start: input tape contains input w, simulation and address tape empty
(2) Copy w to the simulation tape and initialize the address tape with 0.
(3) Simulate one finite computation of N on w on the simulation tape.

- Interpret the address tape as a list of choices to make during this computation.
- If a choice is invalid, abort simulation.
- If an accepting configuration is reached at the end of the simulation, accept.
(4) Increment the content of the address tape, considered as a number in base b, by 1 . Go to step 2 .

Enumerators

Definition 2.12: A multi-tape Turing machine M is an enumerator if

- M has a designated write-only output-tape on which a symbol, once written, can never be changed and where the head can never move left;
- M has a marker symbol \# separating words on the output tape.

We define the language generated by M to be the set $\mathcal{G}(M)$ of all words that eventually appear between two consecutive \# on the output tape of M when started on the empty word as input.

Enumerators

Let $\mathcal{L}=\mathcal{L}(\mathcal{M})$ for some TM M, and let s_{1}, s_{2}, \ldots be an enumeration of Σ^{*}.
Then the following enumerator \mathcal{E} enumerates \mathcal{L} :
$\mathcal{E}:=$ Ignore the input.

- Repeat for $i=1,2,3, \ldots$
- Run M for i steps on each input $s_{1}, s_{2}, \ldots, s_{i}$
- If any computation accepts, print the corresponding s_{j} followed by \#

Theorem 2.14: If \mathcal{L} is Turing-recognisable, then there exists an enumerator for \mathcal{L} that prints each word of \mathcal{L} exactly once.

Enumerators

Theorem 2.13: A language \mathcal{L} is Turing-recognisable if and only if there exists some enumerator E such that $\mathcal{G}(E)=\mathcal{L}$.

Proof: Let E be an enumerator for \mathcal{L}. Then the following TM accepts \mathcal{L} :

$$
\mathcal{M}:=\text { On input } w
$$

- Simulate E on the empty input. Compare every string output by E with w
- If w appears in the output of E, accept

Enumerators

Theorem 2.15: A language \mathcal{L} is decidable if and only if there exists an enumerator for \mathcal{L} that outputs exactly the words of \mathcal{L} in some order of nondecreasing length

Proof: Suppose \mathcal{L} to be decidable, and let M be a TM that decides \mathcal{L}.

- Define a TM M^{\prime} that generates, on some scratch tape, all words over Σ in some order of non-decreasing length. (Exercise!)
- For each word w thus generated, simulate M on w_{i}. If M accepts w, then M^{\prime} prints w followed by \#.

Then M^{\prime} enumerates exactly the words of \mathcal{L} in some order of non-decreasing length.

Enumerators

Now suppose \mathcal{L} can be enumerated by some TM \mathcal{E} in some order of non-decreasing length.

- If \mathcal{L} is finite, then \mathcal{L} is accepted by a finite automaton.
- If \mathcal{L} is infinite, then we define a decider \mathcal{M} for it as follows.
$\mathcal{M}:=$ On input w
- Simulate \mathcal{E} until it either outputs w or some word longer than w
- If \mathcal{E} outputs w, then accept, else reject.

Observation: since \mathcal{L} is infinite, for each $w \in \Sigma^{*}$ the TM \mathcal{E} will eventually generate w or some word longer than w. Therefore, \mathcal{M} always halts and thus decides \mathcal{L}

Summary and Outlook

Turing Machines are a simple model of computation
Recognisable (semi-decidable) = recursively enumerable

Decidable $=$ computable $=$ recursive

Many variants of TMs exist - they normally recognise/decide the same languages

What's next?

- A short look into undecidability
- Recursion and self-referentiality
- Actual complexity classes

