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Abstract

Recently, Baumann et al. [2010] provided a com-
prehensive framework for default reasoning about
actions. Alas, the approach was only defined for
a very basic class of domains where all actions
have mere unconditional, local effects. In this
paper, we show that the framework can be sub-
stantially extended to domains with action effects
that are conditional (i.e. are context-sensitive to
the state in which they are applied), non-local (i.e.
the range of effects is not pre-determined by the
action arguments) and even disjunctive (thus non-
deterministic). Notably, these features can be care-
fully added without sacrificing important nice prop-
erties of the basic framework, such as modularity of
domain specifications or existence of extensions.

1 Introduction
Reasoning about actions and non-monotonic reasoning are
two important fields of logic-based knowledge representa-
tion and reasoning. While reasoning about actions deals with
dynamic domains and their evolution over time, default rea-
soning is usually concerned with closing gaps in incomplete
static knowledge bases. Both areas have received consider-
able attention and have reached remarkable maturity by now.
However, a unifying approach that combines the full expres-
siveness of both fields was still lacking, until a recent paper
[Baumann et al., 2010] took an important first step into the di-
rection of uniting these two lines of research. There, a logical
framework was proposed that lifted default reasoning about
a domain to a temporal setting where defaults, action effects
and the frame assumption interact in a well-defined way.

In this paper, we develop a substantial extension of their
work: we significantly generalise the theoretical framework
to be able to deal with a broad class of action domains where
effects may be conditional, non-local and non-deterministic.
As we will show in the paper, extending the approach to con-
ditional effects is straightforward. However, retaining their
construction of defaults leads to counterintuitive conclusions.
Roughly, this is due to eager default application in the pres-
ence of incomplete knowledge about action effects. As an
example, consider the classical drop action that breaks fragile

objects. In the presence of a (simple) state default express-
ing that objects are to be considered not broken unless there
is information to the contrary, this could lead to the follow-
ing reasoning: After dropping an object x of which nothing
further is known, we can apply the default and infer it is not
broken. But this means it cannot have been fragile before
(since otherwise it would be broken). This line of reasoning
violates the principle of causality: while a fragile object will
be broken after dropping it, this does not mean that objects
should be assumed not fragile before dropping them. We will
formally define when such undesired inferences arise and de-
vise a modification to the basic framework that provably dis-
ables them. Interestingly, the counterintuitive consequences
occur already with conditional, local-effect actions; our mod-
ification however prevents them also for actions with non-
deterministic, non-local effects. Since the introduction of ef-
fect preconditions represents our most significant change, we
will prove that it is a proper generalisation of the original
framework: for all action default theories with only uncon-
ditional, local effect actions, the “old” and “new” approach
yield the same results. For the subsequent extensions it will
be straightforward to see that they are proper generalisations.

The paper proceeds as follows. In the next section, we pro-
vide the necessary background. The sections thereafter ex-
tend the basic approach introduced in [Baumann et al., 2010]
by conditional effects (Section 3), non-local effects (Section
4) and disjunctive effects (Section 5). In the penultimate sec-
tion, we prove several desirable properties of the extended
framework; Section 7 discusses related work and concludes.

2 Background
2.1 Unifying Action Calculus
The unifying action calculus (UAC) was proposed in
[Thielscher, 2011] to allow for a treatment of problems in rea-
soning about actions that is independent of a particular calcu-
lus. It is based on a finite, sorted logic language with equality
which includes the sorts FLUENT, ACTION and TIME along
with the predicates < : TIME × TIME, that denotes a (possi-
bly partial) ordering on time points; Holds : FLUENT × TIME,
that is used to state that a fluent is true at a given time point;
and Poss : ACTION × TIME × TIME, expressing that an ac-
tion is possible for given starting and ending time points.

As a most fundamental notion in the UAC, a state formula



Φ[~s ] in ~s is a first-order formula with free TIME variables
~s where (1) for each occurrence of Holds(f, s) in Φ[~s ] we
have s ∈ ~s and (2) predicate Poss does not occur. State for-
mulas allow to express properties of action domains at given
time points. Although this definition is quite general in that
it allows an arbitrary finite sequence of time points, for our
purposes two time points will suffice. For a function A into
sort ACTION, a precondition axiom for A(~x) is of the form

Poss(A(~x), s, t) ≡ πA[s] (1)

where πA[s] is a state formula in s with free variables among
s, t, ~x. The formula πA[s] thus defines the necessary and suf-
ficient conditions for the action A to be applicable for the
arguments ~x at time point s, resulting in t. The UAC also
provides a general form for effect axioms; we however omit
this definition because we only use a special form of effect
axioms here. The last notion we import formalises how ac-
tion domains are axiomatised in the unifying action calculus.

Definition 1. A (UAC) domain axiomatisation consists of a
finite set of foundational axioms Ω defining a time structure,
a set Π of precondition axioms (1) and a set Υ of effect ax-
ioms; the latter two for all functions into sort ACTION; lastly,
it contains uniqueness-of-names axioms for all finitely many
function symbols into sorts FLUENT and ACTION.

The foundational axioms Ω serve to instantiate the UAC
by a concrete time structure, for example the branching sit-
uations with their usual ordering from the situation calcu-
lus. We restrict our attention to domains that make in-
tuitive sense; one of the basic things we require is that
actions actually consume time: A domain axiomatisa-
tion is progressing, if Ω |= (∃s : TIME)(∀t : TIME)s ≤ t and
Ω ∪Π |= Poss(a, s, t) ⊃ s < t. Here, we are only concerned
with progressing domain axiomatisations; we use the macro
Init(t) def= ¬(∃s)s < t to refer to the unique initial time point.

For presentation purposes, we will make use of the concept
of fluent formulas, where terms of sort FLUENT play the role
of atomic formulas, and complex formulas can be built us-
ing the usual first-order constructors. For a fluent formula Φ,
we will denote by Φ[s] the state formula that is obtained by
replacing all fluent literals [¬]f in Φ by [¬]Holds(f, s). The
operator |·| will be used to extract the affirmative component
of a fluent literal, that is, |¬f | = |f | = f ; the polarity of a
fluent literal is given by sign(¬f) = − and sign(f) = +.

2.2 Default Logic
Default logic as introduced by [Reiter, 1980] uses defaults to
extend incomplete world knowledge. They are of the form1

α : β

γ
(shorthand: α : β/γ)

Here, α, the prerequisite, the β, the justification, and γ, the
consequent, are first-order formulas. These expressions are to
be read as “whenever we know α and nothing contradicts β,
we can safely conclude γ”. A default is normal if β = γ, that
is, justification and consequent coincide. A default is closed

1Reiter [1980] introduces a more general version of defaults with
an arbitrary number of justifications, which we do not need here.

if its prerequisite, justification and consequent are sentences,
that is, have no free variables; otherwise, it is open.

The semantics of defaults is defined via the notion of exten-
sions for default theories. A default theory is a pair (W,D),
where W is a set of sentences in first-order logic and D is a
set of defaults. A default theory is closed if all its defaults
are closed; otherwise, it is open. For a set T of formulas, we
say that a default α : β/γ is applicable to T iff α ∈ T and
¬β /∈ T ; we say that the default has been applied to T if it is
applicable and additionally γ ∈ T . Extensions for a default
theory (W,D) are deductively closed sets of formulas which
contain all elements ofW , are closed under application of de-
faults from D and which are grounded in the sense that each
formula in them has a non-cyclic derivation. For closed de-
fault theories this is captured by the following definition.
Definition 2 (Theorem 2.1, [Reiter, 1980]). Let (W,D) be
a closed default theory and E be a set of closed formulas.
Define E0

def= W and Ei+1
def= Th(Ei) ∪Di for i ≥ 0, where

Di
def=

{
γ

∣∣∣∣ α : β

γ
∈ D,α ∈ Ei,¬β /∈ E

}
Then E is an extension for (W,D) iff E =

⋃∞
i=0Ei.

We will interpret open defaults as schemata representing
all of their ground instances. Therefore, open default theories
can be viewed as shorthand notation for their closed counter-
parts.2 When we use an extension E or set of defaults D with
an integer subscript, we refer to the Ei and Di from above.
We write (W,D) |≈ Ψ to express that the formula Ψ is con-
tained in each extension of the default theory (W,D).

2.3 Default Reasoning in Action Domains with
Unconditional, Local Effect Actions

The approach of [Baumann et al., 2010] combines default
logic with the unifying action calculus: domain axiomatisa-
tions are viewed as incomplete knowledge bases that are com-
pleted by defaults. It takes as input a description of a particu-
lar action domain with normality statements. This description
comprises the following: (1) a domain signature, that defines
the vocabulary of the domain; (2) a description of the direct
effects of actions; (3) a set of state defaults Φ ψ, constructs
that specify conditions Φ under which a fluent literal ψ nor-
mally holds in the domain.3

The state defaults from the domain description are trans-
lated into Reiter defaults, where the special predicates
DefT(f, s, t) and DefF(f, s, t) are used to express that a flu-
ent f becomes normally true (false) from s to t.4 For each
state default δ, two Reiter defaults are created: δInit, that is
used for default conclusions about the initial time point; and
δReach, that is used for default conclusions about time points
that can be reached via action application.

2Free variables of formulas not in a default will however be im-
plicitly universally quantified from the outside.

3Here, Φ, the prerequisite, is a fluent formula; ψ, the consequent,
being a fluent literal also allows to express that a fluent normally
does not hold in the domain.

4It should be noted that DefF(f, s, t) is not the same as
¬DefT(f, s, t) – the latter only means that f becomes not normally
true from s to t.



Definition 3. Let δ = Φ ψ be a state default.

δInit
def=

Init(t) ∧ Φ[t] : ψ[t]

ψ[t]
(2)

δReach
def=

Preδ(s, t) : Def (ψ, s, t)

Def (ψ, s, t)
(3)

Preδ(s, t) def= Φ[t] ∧ ¬(Φ[s] ∧ ¬ψ[s])

Def (ψ, s, t) def=

{
DefT(ψ, s, t) if ψ = |ψ|
DefF(|ψ| , s, t) otherwise

For a set ∆ of state defaults, the corresponding defaults are

∆Init
def= {δInit | δ ∈ ∆} and ∆Reach

def= {δReach | δ ∈ ∆}.
For the Reach defaults concerning two time points s, t con-
nected via action application, we ensure that the state default
δ was not violated at the starting time point s by requiring
¬(Φ[s] ∧ ¬ψ[s]) in the prerequisite.5 The consequent is then
inferred unless there is information to the contrary.

Being true (or false) by default is then built into the effect
axiom by accepting it as a possible “cause” to determine a flu-
ent’s truth value. The other causes are the ones already known
from monotonic formalisms for reasoning about actions: di-
rect action effects, and a notion of persistence that provides a
solution to the frame problem [McCarthy and Hayes, 1969].
Definition 4. Let f : FLUENT and s, t : TIME be variables.
The following macros express that f persists from s to t:

FrameT(f, s, t) def= Holds(f, s) ∧ Holds(f, t) (4)

FrameF(f, s, t) def= ¬Holds(f, s) ∧ ¬Holds(f, t) (5)

LetA be a function into sort ACTION and ΓA be a set of fluent
literals with free variables in ~x that denote the positive and
negative direct effects of A(~x), respectively. The following
pair of macros expresses that f is a direct effect of A(~x):

DirectT(f,A(~x), s, t) def=
∨

F (~x′)∈ΓA, ~x′⊆~x

f = F (~x′) (6)

DirectF(f,A(~x), s, t) def=
∨

¬F (~x′)∈ΓA, ~x′⊆~x

f = F (~x′) (7)

An effect axiom with unconditional effects, the frame assump-
tion and normal state defaults is of the form

Poss(A(~x), s, t) ⊃
(∀f)(Holds(f, t) ≡ CausedT(f,A(~x), s, t)) ∧
(∀f)(¬Holds(f, t) ≡ CausedF(f,A(~x), s, t)) (8)

where

CausedT(f,A(~x), s, t) def= DirectT(f,A(~x), s, t) ∨
FrameT(f, s, t) ∨ DefT(f, s, t) (9)

CausedF(f,A(~x), s, t) def= DirectF(f,A(~x), s, t) ∨
FrameF(f, s, t) ∨ DefF(f, s, t) (10)

5The reason for this is to prevent application of initially definitely
violated state defaults through irrelevant actions. A default violation
occurs when the prerequisite Φ[s] of a state default δ is known to be
met, yet the negation of the consequent prevails, ¬ψ[s].

Note that a default conclusion of a state property in a non-
initial state crucially depends on an action execution leading
to that state. Hence, whenever it is definitely known that
Holds(f, t) after Poss(a, s, t), it follows from the effect ax-
iom that ¬DefF(f, s, t); a symmetrical argument applies if
¬Holds(f, t). This means that definite knowledge about a flu-
ent inhibits the opposite default conclusion. But observe that
the addition of DefT and DefF as “causes” to the effect ax-
iom weakened the solution to the frame problem established
earlier. The following definition ensures that the persistence
assumption is restored in its full generality.
Definition 5. Let ∆ be a set of state defaults, ψ be a fluent
literal and s, t be variables of sort TIME. The default closure
axiom for ψ with respect to ∆ is ∧

Φ ψ∈∆

¬PreΦ ψ(s, t)

 ⊃ ¬Def (ψ, s, t) (11)

For a fluent literal ψ not mentioned as a consequent in ∆
the default closure axiom is just > ⊃ ¬Def (ψ, s, t). Given
a domain axiomatisation Σ and a set ∆ of state defaults, we
denote by Σ∆ the default closure axioms with respect to ∆
and the fluent signature of Σ.

The fundamental notion of the solution to the state default
problem by [Baumann et al., 2010] is now a default theory
where the incompletely specified world consists of a UAC
domain axiomatisation augmented by suitable default closure
axioms. The default rules are the automatic translations of
user-specified, domain-dependent state defaults. For a do-
main axiomatisation Σ and a set ∆ of state defaults, the cor-
responding domain axiomatisation with state defaults is the
pair (Σ ∪ Σ∆,∆Init ∪∆Reach). We use a well-known example
domain [Reiter, 1991] to illustrate the preceding definitions.
To ease the presentation, in this example we instantiate the
UAC to the branching time structure of situations.
Example 1 (Breaking Objects). Imagine a robot that can
move around and carry objects, among them a vase. When
the robot drops an object x, it does not carry x any more and
additionally x is broken. Usually, however, objects are not
broken unless there is information to the contrary.

The fluents that we use to describe this domain are
Carries(x) (the robot carries x) and Broken(x) (x is broken);
the only function of sort ACTION is Drop(x). Dropping an
object is possible if and only if the robot carries the object:

Poss(Drop(x), s, t) ≡
Holds(Carries(x), s) ∧ t = Do(Drop(x), s)

The effects of dropping an object x are given by the set
ΓDrop(x) = {¬Carries(x),Broken(x)}

The set of state defaults ∆break = {> ¬Broken(x)} says
that objects are normally not broken. Applying the defini-
tions from above to this specification results in the domain ax-
iomatisation with defaults (Σbreak ∪ Σbreak

∆ ,∆break
Init ∪∆break

Reach),
where Σbreak contains effect axiom (8) and the above precon-
dition axiom for Drop, the set ∆break

Init contains only
Init(t) : ¬Holds(Broken(x), t)

¬Holds(Broken(x), t)



and the defaults ∆break
Reach for action application consist of

¬Holds(Broken(x), s) : DefF(Broken(x), s, t)

DefF(Broken(x), s, t)

Finally, the default closure axioms for the fluent Broken
are Holds(Broken(x), s) ⊃ ¬DefF(Broken(x), s, t) and
¬DefT(Broken(x), s, t), and ¬Def (ψ, s, t) for all other fluent
literals ψ. With S1

def= Do(Drop(Vase), S0), the default
theory sanctions the sceptical conclusions that the vase is
initially not broken, but is so after dropping it:

(Σbreak ∪ Σbreak
∆ ,∆break

Init ∪∆break
Reach) |≈

¬Holds(Broken(Vase), S0) ∧ Holds(Broken(Vase), S1)

One of the main theoretical results of [Baumann et al., 2010]
was the guaranteed existence of extensions for the class of do-
main axiomatisations with defaults considered there. As we
will see later on, a similar result holds for our generalisation
of the theory.
Proposition 1 (Theorem 4, [Baumann et al., 2010]). Let
Σ be a domain axiomatisation and ∆ be a set of state de-
faults. Then the corresponding domain axiomatisation with
state defaults (Σ ∪ Σ∆,∆Init ∪∆Reach) has an extension. If
furthermore Σ is consistent, then so are all extensions for
(Σ ∪ Σ∆,∆Init ∪∆Reach).

3 Conditional Effects
We first investigate how the default reasoning framework of
[Baumann et al., 2010] can be extended to conditional effect
actions. As we will show, there is subtle interdependence be-
tween conditional effects and default conclusions, which re-
quires a revision of the defaults constructed in Definition 3.
We begin by formalising how to represent conditional effects
in the domain specification language. Recall that in the un-
conditional case, action effects were just literals denoting the
positive and negative effects. In the case of conditional ef-
fects, theses literals are augmented with a fluent formula that
specifies the conditions under which the effect materialises.
Definition 6. A conditional effect expression is of the form
Φ/ψ, where Φ is a fluent formula and ψ a fluent lit-
eral. Φ/ψ is called positive if sign(ψ) = + and negative if
sign(ψ) = −. For an action A and sequence of variables ~x
matching A’s arity, a conditional effect expression ε is called
local for A(~x) iff all free variables in ε are among ~x.

Throughout the paper, we will assume given a set ΓA(~x) of
conditional effect expressions for each function A into sort
ACTION with matching sequence of variables ~x. Such a set
ΓA(~x) is called local-effect if all ε ∈ ΓA(~x) are local forA(~x).
By Γ+

A(~x) we refer to the positive, by Γ−A(~x) to the negative
elements of ΓA(~x).

With this specification of action effects, it is easy to express
the implication “effect precondition implies effect” via suit-
able formulas. For this purpose, we introduce the new predi-
cates DirT and DirF. Intuitively, DirT(f, a, s, t) says that f
is a direct positive effect of action a from s to t; symmetri-
cally, DirF(f, a, s, t) says that f is a direct negative effect.6

6Notice that these new predicates are in contrast to Definition 4,
where DirectT and DirectF are merely syntactic sugar.

Definition 7. Let ε = Φ/ψ be a conditional effect expression
and f : FLUENT and s, t : TIME be variables. The following
macro expresses that ε has been activated for f from s to t:7

Activatedε(f, s, t) def= (f = |ψ| ∧ Φ[s])

Let A be a function into sort ACTION with a set of condi-
tional effect expressions ΓA(~x) that is local-effect. The direct
positive and negative effect formulas for A(~x) are

DirT(f,A(~x), s, t) ≡
∨

ε∈Γ+
A(~x)

Activatedε(f, s, t) (12)

DirF(f,A(~x), s, t) ≡
∨

ε∈Γ−
A(~x)

Activatedε(f, s, t) (13)

An effect axiom with conditional effects, the frame assump-
tion and normal state defaults is of the form (8), where

CausedT(f,A(~x), s, t) def= DirT(f,A(~x), s, t) ∨
FrameT(f, s, t) ∨ DefT(f, s, t) (14)

CausedF(f,A(~x), s, t) def= DirF(f,A(~x), s, t) ∨
FrameF(f, s, t) ∨ DefF(f, s, t) (15)

The only difference between the effect axioms of [Bau-
mann et al., 2010] and the effect axioms defined here is the re-
placement of their macros DirectT,DirectF for unconditional
direct effects with the predicates DirT,DirF for conditional
effects. In the following, we will understand domain axioma-
tisations to contain – for each action – effect axioms of the
form (8) along with the respective direct positive and neg-
ative effect formulas. To ease notation, for predicates with
an obvious polarity (like DirT,DirF), we use a neutral ver-
sion (like Dir) with fluent literals L, where Dir(L, a, s, t)
denotes DirF(F, a, s, t) if L = ¬F for some fluent F and
DirT(L, a, s, t) otherwise.

While this extended definition of action effects is straight-
forward, it severely affects the correctness of default reason-
ing in the action theory: as the following example shows, one
cannot naı̈vely take this updated version of the effect axioms
and use the Reiter defaults as before.
Example 1 (Continued). We add a unary fluent Fragile
with the obvious meaning and modify the Drop action
such that dropping only breaks objects that are fragile:
ΓDrop(x) = {>/¬Carries(x), Fragile(x)/Broken(x)}. As-
sume that all we know is that the robot initially carries the
vase, Holds(Carries(Vase), S0). As before, the effect axiom
tells us that the robot does not carry the vase any more at
S1. Additionally, since we do not know whether the vase
was fragile at S0, there is no reason to believe that it is
broken after dropping it, hence ¬Broken(Vase) still holds by
default at S1. But now, due to the presence of conditional
effects, the effect axiom for Drop(Vase) clearly entails
¬Holds(Broken(Vase), S1) ⊃ ¬Holds(Fragile(Vase), S0),8

7The second time argument t of macro Activatedε(f, s, t) will
only be needed later when we introduce non-deterministic effects.

8This is just the contrapositive of the implication expressed by
the effect axiom.



and thus we can draw the conclusion

(Σbreak ∪ Σbreak
∆ ,∆break

Init ∪∆break
Reach) |≈
¬Holds(Fragile(Vase), S0)

This is undesired as it lets us conclude something about the
present (S0) using knowledge about the future (S1) which we
could not conclude using only knowledge and default knowl-
edge about the present (there is no default that could conclude
¬Fragile(Vase)).

The flaw with this inference is that it makes default conclu-
sions about a fluent whose truth value is affected by an action
at the same time. This somewhat contradicts our intended
usage of defaults about states: we originally wanted to ex-
press reasonable assumptions about fluents whose values are
unknown.

Generalising the example, the undesired behaviour occurs
whenever there exists a default ΦD  ψ with conclusion ψ
whose negation ¬ψ might be brought about by a conditional
effect ΦC/¬ψ. The faulty inference then goes like this:

ΦD[t] ⊃ Def (ψ, s, t) ⊃ ψ[t] ⊃ ¬Dir(¬ψ, s, t) ⊃ ¬ΦC [s]

Obviously, this inference is only undesired if there is no in-
formation about the effect’s precondition at the starting time
point of the action. This motivates our formal definition of
the conditions under which a so-called conflict between an
action effect and a default conclusion arises.
Definition 8. Let (Σ,∆) be a domain axiomatisation with
defaults, E be an extension for (Σ,∆), α be a ground action
and δ = Φ ψ be a ground state default. We say that there
is a conflict between α and δ in E iff there exist ground time
points σ and τ such that for some i ≥ 0 we have

1. (a) Ei 6|= Poss(α, σ, τ) ⊃ ¬Dir(¬ψ, α, σ, τ)

(b) Ei 6|= Def (ψ, α, σ, τ)

2. (a) Ei+1 |= Poss(α, σ, τ) ⊃ ¬Dir(¬ψ, α, σ, τ)

(b) Ei+1 |= Def (ψ, σ, τ)

In words, a conflict arises in an extension if up to some stage
i, before we make the default conclusion ψ, we cannot con-
clude the effect ¬ψ will not occur (1); after concluding ψ by
default, we infer that ¬ψ cannot occur as direct effect (2). We
can now go back to the example seen earlier and verify that
the counter-intuitive conclusion drawn there was indeed due
to a conflict in the sense of the above definition.
Example 1 (Continued). Consider the only extension Ebreak

for (Σbreak ∪ Σbreak
∆ ,∆break

Init ∪∆break
Reach). Before applying any

defaults whatsoever, we know that dropping the vase is
possible: Ebreak

0 |= Poss(Drop(Vase), S0, S1); but we do
not know if the vase is fragile and hence Ebreak

0 6|=
¬DirT(Broken(Vase),Drop(Vase), S0, S1) (item 1). Af-
ter applying all the defaults, we know that the vase is
not broken at S1: Ebreak

1 |= DefF(Broken(Vase), S0, S1).
Hence, it cannot have been broken by dropping it in S0,
that is, Ebreak

1 |= ¬DirT(Broken(Vase),Drop(Vase), S0, S1)
(item 2), thus cannot have been fragile in the initial situation.

In the following, we will modify the definition of Reiter
defaults from [Baumann et al., 2010] to eliminate the pos-
sibility of such conflicts. The underlying idea is to apply a

default only if it is known that a conflict cannot arise, that is,
if it is known that the contradictory direct effect cannot ma-
terialise. To this end, we extend the original default prereq-
uisite Preδ(s, t) = Φ[t] ∧ ¬(Φ[s] ∧ ¬ψ[s]) that only requires
the precondition to hold and the default not to be violated
previously: we will additionally stipulate that any action a
happening at the same time cannot create a conflict.
Definition 9. Let δ = Φ ψ be a state default and s, t :
TIME be variables.

Safeδ(s, t)
def= (∀a)(Poss(a, s, t) ⊃ ¬Dir(¬ψ, a, s, t))

δPoss
def=

Preδ(s, t) ∧ Safeδ(s, t) : Def (ψ, s, t)

Def (ψ, s, t)
(16)

For a set ∆ of state defaults, ∆Poss
def= {δPoss | δ ∈ ∆}.

In the example domain, applying the above definition
yields the following.

Example 1 (Continued). For the state default δbreak saying
that objects are usually not broken, we have Safeδbreak (s, t) =
(∀a)(Poss(a, s, t) ⊃ ¬DirT(Broken(x), a, s, t)). This ex-
presses that the state default can be safely applied from s to
t whenever for any action a happening at the same time, it is
known that a does not cause a violation of this default at the
ending time point t. The resulting default δbreak

Poss is
¬Holds(Broken(x), s) ∧ Safeδbreak (s, t) : DefF(Broken(x), s, t)

DefF(Broken(x), s, t)

As we will see later (Theorem 3), the default closure
axioms ¬PreΦ ψ(s, t) ⊃ ¬Def (ψ, s, t) for preserving the
commonsense principle of inertia in the presence of inappli-
cable defaults need not be modified. With our new defaults,
we can now redefine the concept of a domain axiomatisation
with defaults for conditional effect actions.
Definition 10. Let Σ be a domain axiomatisation where the
effect axioms are given by Definition 7 and let ∆ be a set
of state defaults. The corresponding domain axiomatisation
with defaults is the pair (Σ ∪ Σ∆,∆Init ∪∆Poss).

The direct effect formulas that determine DirT and DirF
will be redefined twice in this paper. We will understand the
above definition to be retrofitted with their latest version. The
extension to conditional effects is a proper generalisation of
the original approach of Section 2.3 for the special case of
unconditional effect actions, as is shown below.
Theorem 2. Consider a domain axiomatisation with only un-
conditional action effects and a set ∆ of state defaults. Let
Ξ1 = (Σ ∪Σ∆,∆Init ∪∆Reach) be the corresponding domain
axiomatisation with defaults of [Baumann et al., 2010], and
let Ξ2 = (Σ′ ∪Σ∆,∆Init ∪∆Poss) be the domain axiomatisa-
tion with defaults according to Definition 10. For a state for-
mula Ψ and time point τ , we have Ξ1 |≈ Ψ[τ ] iff Ξ2 |≈ Ψ[τ ].

Proof sketch. For unconditional effects, a ground Dir atom is
by Definition 7 equivalent to the corresponding Direct macro,
hence the effect axioms of the two approaches are equivalent.
Furthermore, the truth values of ground DirT and DirF atoms
are always fixed, and consequently each Reiter default (16)
defined above is applicable whenever the original Reach de-
fault (3) of [Baumann et al., 2010] is applicable.



4 Non-Local Effects
Up to here, conditional effect expressions for an action A(~x)
were restricted to contain only variables among ~x. Consider-
ing a ground instance A(~ς) of an action, this means that the
set of objects that can possibly be affected by this action is al-
ready fixed to ~ς . This is a restriction because it can make the
specification of certain actions at least cumbersome or utterly
impossible, for example actions that affect a vast number of
(or all of the) domain elements at once.

The gain in expressiveness when allowing non-local action
effects comes at a relatively low cost: it suffices to allow ad-
ditional free variables ~y in the conditional effect expressions.
They represent the objects that may be affected by the action
without being among the action arguments ~x.
Definition 11. Let A be a function into sort ACTION and
~x a sequence of variables matching A’s arity. Let ε be
a conditional effect expression of the form Φ/F (~x′, ~y) or
Φ/¬F (~x′, ~y) with free variables ~x′, ~y, where ~x′ ⊆ ~x and ~y
is disjoint from ~x.

For variables f : FLUENT and s, t : TIME, the following
macro expresses that ε has been activated for f from s to t:

Activatedε(f, s, t) def= (∃~y)(f = F (~x′, ~y) ∧ Φ[s])

The direct positive and negative effect formulas are of the
form (12) and (13).

Note that according to this definition, free variables ~y are
quantified existentially when they occur in the context Φ and
universally when they occur in the consequence ψ. They thus
not only express non-local effects but also non-local contexts.
Example 2 (Exploding Bomb [Reiter, 1991]). In this do-
main, objects might get broken not by getting dropped,
but because a bomb in their proximity explodes:
ΓDetonate(b) = {Bomb(b) ∧ Near(b, x)/Broken(x)}. Def. 11
yields the direct effect formulas DirT(f,Detonate(b), s, t) ≡
(∃x)(f = Broken(x) ∧ Holds(Near(x, b), s)) and
DirF(f,Detonate(b), s, t) ≡ ⊥.

In this example, the defaults from Definition 9 also pre-
vented conflicts possibly arising from non-local effects. We
will later see that this is the case for all domains with local
and non-local effect actions.

Like the original framework, our extension implements a
particular preference ordering between causes that determine
a fluent’s truth value. This means that whenever two causes
are in conflict – for example, a state default says an object
is not broken, and an action effect says it is – the preferred
cause takes precedence. The preferences are

direct effects < default conclusions < persistence,
where a < b means “a is preferred to b”. The theorem below
proves that this preference ordering is indeed established.
Theorem 3. Let Σ be a domain axiomatisation, ∆ be a set
of state defaults, δ = Φ ψ ∈ ∆ be a state default, E be
an extension for the domain axiomatisation with state de-
faults (Σ ∪ Σ∆,∆Init ∪∆Poss), ϕ be a ground fluent, and
E |= Poss(α, σ, τ) for ground action α and time points σ, τ .

1. Effects override everything:

Φ/(¬)ϕ ∈ Γα and E |= Φ[σ] imply E |= (¬)ϕ[τ ].

2. Defaults override persistence:
(A) Let Φ′′/ψ,Φ′′/¬ψ /∈ Γα for all Φ′′;
(B) for each δ′ = Φ′ ¬ψ ∈ ∆, let δ′ be not applica-

ble to E; and
(C) E |= Preδ(σ, τ) ∧ Safeδ(σ, τ).
Then E |= ψ[τ ].

3. The frame assumption is correctly implemented:
For all fluent formulas Φ′′, let Φ′′/ψ,Φ′′/¬ψ /∈ Γα and
for all state defaults δ′ with consequent ψ or ¬ψ, let
E |= ¬Preδ′(σ, τ). Then E |= ψ[σ] ≡ ψ[τ ].

Proof sketch. Similar to the proof of Theorem 3 in [Baumann
et al., 2010], adapted to our definition of Reiter defaults.

5 Disjunctive Effects
The next and final addition to effect axiom (8) is the step of
generalising purely deterministic action effects. Disjunctive
action effects have been studied in the past [Kartha, 1994;
Shanahan, 1997; Giunchiglia et al., 1997; Thielscher, 2000].
Our contribution in this paper is two-fold. First, we express
disjunctive effects by building them into the effect axiom in-
spired by work on nonmonotonic causal theories [Giunchiglia
et al., 2004]. This works without introducing additional func-
tion symbols – called determining fluents [Shanahan, 1997]
– for which persistence is not assumed and that are used to
derive indeterminate effects via conditional effects. The sec-
ond and more important contribution is the combination of
non-deterministic effects with state defaults. We claim that
it brings a significant representational advantage: Disjunc-
tive effects can explicitly represent potentially different out-
comes of an action of which none is necessarily predictable.
At the same time, state defaults can be used to model the
action effect that normally obtains. For example, dropping
an object might not always completely break it, but most of
the time only damage it. This can be modelled in our frame-
work by specifying “broken or damaged” as disjunctive effect
of the drop action, and then including the default “normally,
dropped objects are damaged” to express the usual outcome.

Next, we define how disjunctive effects are declared by the
user and accommodated into the theory. The basic idea is to
allow disjunctions of fluent literals ψ1 ∨ . . . ∨ ψn in the effect
part of a direct effect expression. The intended meaning of
these disjunctions is that after action execution, at least one
of the effects ψi holds.
Definition 12. Let Φ be a fluent formula and
Ψ = ψ1 ∨ . . . ∨ ψn be a disjunction of fluent literals.
The pair Φ/Ψ is called a conditional disjunctive effect
expression (or cdee).

Firstly, we want to guarantee that at least one effect out
of ψ1 ∨ . . . ∨ ψn occurs. To this end, we say for each ψi
that non-occurrence of all the other effects ψj with j 6= i is
a sufficient cause for ψi to occur. We build into the effect
axiom (in the same way as before) the n implications

Φ[s] ∧ ¬ψ2[t] ∧ . . . ∧ ¬ψn[t] ⊃ Caused(ψ1, a, s, t)

...
Φ[s] ∧ ¬ψ1[t] ∧ . . . ∧ ¬ψn−1[t] ⊃ Caused(ψn, a, s, t)



This, together with the persistence assumption, is in effect
an exclusive or where only exactly one effect occurs (given
that no other effects occur simultaneously). Thus we add, for
each literal, its truth as sufficient cause for itself being true:

Φ[s] ∧ ψ1[t] ⊃ Caused(ψ1, a, s, t)

...
Φ[s] ∧ ψn[t] ⊃ Caused(ψn, a, s, t)

This makes every interpretation where at least one of the
mentioned literals became true a model of the effect axiom.
For the next definition, we identify a disjunction of literals
Ψ = ψ1 ∨ . . . ∨ ψn with the set of literals {ψ1, . . . , ψn}.
Definition 13. Let ε = Φ/Ψ be a conditional disjunctive ef-
fect expression, ψ ∈ Ψ and f : FLUENT and s, t : TIME be
variables. The following macro expresses that effect ψ of cdee
ε has been activated for f from s to t:

Activatedε,ψ(f, s, t) def=

f = |ψ| ∧ Φ[s] ∧

 ∧
ψ′∈Ψ\{ψ}

¬ψ′[t]

 ∨ ψ[t]


Let A be a function into sort ACTION and ΓA be a set of
conditional disjunctive effect expressions with free variables
in ~x that denote the direct conditional disjunctive effects of
A(~x). The direct positive and negative effect formulas are

DirT(f,A(~x), s, t) ≡
∨

Φ/Ψ∈ΓA(~x),

ψ∈Ψ, sign(ψ)=+

Activatedε,ψ(f, s, t) (17)

DirF(f,A(~x), s, t) ≡
∨

Φ/Ψ∈ΓA(~x),

ψ∈Ψ, sign(ψ)=−

Activatedε,ψ(f, s, t) (18)

The implementation of the example sketched above illus-
trates the definition.

Example 1 (Continued). We once again modify the action
Drop(x). Now a fragile object that is dropped becomes
not necessarily completely broken, but might only get dam-
aged. To this end, we record in the new fluent Dropped(x)
that the object has been dropped and write the state de-
fault δ = Dropped(x) Damaged(x) saying that dropped
objects are usually damaged. Together, these two express
the normal outcome of the action drop. Formally, the ac-
tion effects are ΓDrop(x) = { >/¬Carries(x), >/Dropped(x),
Fragile(x)/Broken(x) ∨ Damaged(x)}. Constructing the di-
rect effect formulas as per Definition 13 yields

DirT(f,Drop(x), s, t) ≡
f = Dropped(x)
∨ (f = Broken(x) ∧ Holds(Fragile(x), s) ∧

(¬Holds(Damaged(x), t) ∨ Holds(Broken(x), t)))
∨ (f = Damaged(x) ∧ Holds(Fragile(x), s) ∧

(¬Holds(Broken(x), t) ∨ Holds(Damaged(x), t)))

Since the effect axiom of Drop(x) is itself not determined
about the status of Broken(x) and Damaged(x) (but is deter-

mined about Damaged(x) not being among its negative ef-
fects), the default δPoss is applicable and we conclude

(Σbreak ∪ Σbreak
∆ ,∆break

Init ∪∆break
Poss ) |≈

Holds(Carries(Vase), S0) ∧ Holds(Damaged(Vase), S1)

If we now observe that the vase is broken after all –
Holds(Broken(Vase), S1) – and add this information to the
knowledge base, we will learn that this was an action effect:

(Σbreak ∪ Σbreak
∆ ,∆break

Init ∪∆break
Poss ) |≈

Holds(Broken(Vase), S1) ⊃
DirT(Broken(Vase),Drop(Vase), S0, S1)

Furthermore, the observation allows us to rightly infer that
the vase was fragile at S0.

It is worth noting that for a cdee Φ/Ψ with deterministic ef-
fect Ψ = {ψ}, the macro ActivatedΦ/Ψ,ψ(f, s, t) expressing
activation of this effect is equivalent to ActivatedΦ/ψ(f, s, t)
from Definition 7 for activation of the conditional effect;
hence the direct effect formulas (17) for disjunctive effects
are a generalisation of (12), the ones for deterministic effects.
We have considered here only local non-deterministic effects
to keep the presentation simple. Of course, the notion can be
extended to non-local effects without harm.

6 Properties of the Extended Framework
We have already seen in previous sections that the approach
to default reasoning about actions presented here has certain
nice properties: it is a generalisation of the basic approach
[Baumann et al., 2010] and it implements a particular prefer-
ence ordering among causes. While those results were mostly
straightforward adaptations, the theorem below is novel. It
states that conflicts between conditional effects and default
conclusions in the sense of Definition 8 cannot occur.
Theorem 4. Let (Σ,∆) be a domain axiomatisation with
defaults, E be an extension for (Σ,∆) and δ = Φ  ψ
be a state default. Furthermore, let i ≥ 0 be such that
Def (ψ, σ, τ) /∈ Ei and Def (ψ, σ, τ) ∈ Ei+1. Then for all
ground actions α, Poss(α, σ, τ) ⊃ ¬Dir(¬ψ, α, σ, τ) ∈ Ei.

Proof. According to Def. 2, we have Ei+1 = Th(Ei) ∪∆i;
hence, Def (ψ, σ, τ) ∈ Ei+1 can have two possible reasons:

1. Def (ψ, σ, τ) ∈ Th(Ei) \ Ei. By construction, this can
only be due to effect axiom (8), more specifically, we
have (1) Ei |= Caused(ψ, α, σ, τ) ∧ ¬Frame(ψ, σ, τ) ∧
¬Dir(ψ, σ, τ) and (2) Ei |= ¬Caused(¬ψ, α, σ, τ),
whence Ei |= ¬Dir(¬ψ, α, σ, τ) proving the claim.

2. Def (ψ, σ, τ) ∈ ∆i. By definition of δPoss in Def. 9,
Preδ(σ, τ) ∧ Safeδ(σ, τ) ∈ Ei, whereby we can con-
clude Poss(α, σ, τ) ⊃ ¬Dir(¬ψ, α, σ, τ) ∈ Ei.

Note that conflicts already arise with conditional, local ef-
fects; the framework however makes sure there are no con-
flicts even for conditional, non-local, disjunctive effects.

Finally, the existence of extensions for domain axiomati-
sations with state defaults can still be guaranteed for the ex-
tended framework.



Theorem 5. Let Σ be a domain axiomatisation and ∆ be a set
of state defaults. Then the corresponding domain axiomatisa-
tion with defaults (Σ ∪ Σ∆,∆Init ∪∆Poss) has an extension.
If furthermore Σ is consistent, then so are all extensions for
(Σ ∪ Σ∆,∆Init ∪∆Poss).

Proof. Existence of an extension is a corollary of Theorem
3.1 in [Reiter, 1980] since the defaults in ∆Init ∪ ∆Poss are
still normal. If Σ is consistent, then so is Σ ∪ Σ∆ by the ar-
gument in the proof of Theorem 4 in [Baumann et al., 2010].
Consistency of all extensions then follows from Corollary 2.2
in [Reiter, 1980].

Additionally, it is easy to see that the domain specifica-
tions provided by the user are still modular: different parts of
the specifications, such as conditional effect expressions and
state defaults, are completely independent of each other from
a user’s point of view. Yet, the intricate semantic interactions
between them are correctly dealt with.

7 Discussion
We have presented an extension to a recently introduced
framework for default reasoning in theories of actions and
change. The extension increases the range of applicability of
the framework while fully retaining its desirable properties:
we can now express context-dependent effects of actions, ac-
tions with a potentially global effect range and indeterminate
effects of actions – all the while domain descriptions have not
become significantly more complex, and default extensions of
the framework still provably exist.

There is not much related work concerning the kind of de-
fault reasoning about actions we consider here. [Denecker
and Ternovska, 2007] enriched the situation calculus [Reiter,
2001] with inductive definitions. While they provide a non-
monotonic extension of an action calculus, the intended usage
is to solve the ramification problem rather than to do the kind
of defeasible reasoning we are interested in this work. [Lake-
meyer and Levesque, 2009] provide a progression-based se-
mantics for state defaults in a variant of the situation calculus,
but without looking at nondeterministic actions. In an earlier
paper [Strass and Thielscher, 2009], we explored default ef-
fects of nondeterministic actions, albeit in a much more re-
stricted setting: there, actions had only unconditional effects
– either deterministic or disjunctive of the form f ∨¬f –, and
defaults had only atomic components, that is, they were of the
form (¬)Holds(f, t) : (¬)Holds(g, t)/(¬)Holds(g, t). Most
recently, [Michael and Kakas, 2011] gave an argumentation-
based semantics for propositional action theories with state
defaults. While being more flexible in terms of preferences
between causes, their approach is constricted to a linear time
structure built into the language and does not make a clear
ontological distinction between fluents and actions.
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