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Previously . . .
• A substitution replaces variables by terms, and is applied to terms.• A unifier is a substitution that equates two terms when applied to them.• TheMartelli-Montanari Algorithm decides if a set of pairs of terms hasa unifier and even outputs a (most general) unifier if one exists.• The algorithm is correct (i.e., sound and complete) and terminates.
Example
Consider E0 = { g(x, f ( y)) =̇ g(a, z), f (x) =̇ f (a) }. The algorithm yields:

E1 = { x =̇ a, f ( y) =̇ z, f (x) =̇ f (a) } (decompose)
E2 = { x =̇ a, z =̇ f ( y), f (x) =̇ f (a) } (orient)
E3 = { x =̇ a, z =̇ f ( y), f (a) =̇ f (a) } (apply)
E4 = { x =̇ a, z =̇ f ( y), a =̇ a } (decompose)
E5 = { x =̇ a, z =̇ f ( y) } (decompose)
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Overview

The Logical Language of Programs

The Computation Mechanism: SLD Derivations

Choices and Their Impact
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The Logical Language of Programs
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Atoms, Term Bases, and Herbrand Bases
Definition
Let TUF ,V be a term universe (V Variables, F function symbols) and Π be aranked alphabet of predicate symbols.
The term base TBΠ,F ,V (over Π, F , and V ) is the smallest set of atoms with
1. if p ∈ Π(0) then p ∈ TBΠ,F ,V ;2. if p ∈ Π(n) with n ≥ 1 and t1, . . . , tn ∈ TUF ,V , then p(t1, . . . , tn) ∈ TBΠ,F ,V .
⇝ Usual definition of atoms of first-order predicate logic.
Definition
Let HUF be a Herbrand universe, Π ranked alphabet of predicate symbols.
The Herbrand base HBΠ,F (over Π and F) is given by TBΠ,F ,∅.
⇝ Herbrand base is the set of all variable-free (ground) atoms.
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Queries and Programs
Definition
• A query is a finite sequence B1, . . . ,Bn of atoms.
• The empty query (empty sequence of atoms) is denoted by □.
• A (definite) clause is an expression H← B⃗ where

H is an atom (the head of the clause) and B⃗ is a query (the body of theclause).
• H← B⃗ unit clause (also called: fact)

:⇐⇒ B⃗ is empty (standard notation: H← )
• Horn clause :⇐⇒ clause or negated query
• (definite) logic program :⇐⇒ finite set of clauses
We will mostly use “program” and take it to mean “definite logic program”.
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Clauses and Queries: Examples
Example
Let x, y, z be variables. Then the following expressions are examples for . . .
• an atom:

direct(maui,honolulu)
• a query:

direct(frankfurt, x),direct(x,honolulu)
• a fact:

direct(maui,honolulu)←
• a (definite) clause:

connection(x, y)←direct(x, z), connection(z, y)
Recall
In predicate logic, a clause is a disjunction of literals.
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Logical Reading of Clauses and Queries
Clauses
A clause H←B1, . . . ,Bn can be understood as the formula
∀x1, . . . , xk((B1 ∧ . . . ∧ Bn)→H) (definite clause ∀x1, . . . , xk(¬B1 ∨ . . . ∨ ¬Bn ∨H))
where x1, . . . , xk are the variables occurring in H←B1, . . . ,Bn.
(Thus a unit clause H← encodes ∀x1, . . . , xkH.)
Queries
A query A1, . . . , An can be understood as the formula

∃x1, . . . , xk(A1 ∧ . . . ∧ An) (or: ¬∀x1, . . . , xk(¬A1 ∨ . . . ∨ ¬An))
where x1, . . . , xk are the variables occurring in A1, . . . , An.
(Thus the empty query □ is equivalent to true.)
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What is Being Computed?

▷ A program P can be interpreted as a set of axioms.
▷ A query Q can be interpreted as the request for finding an instance Qθwhich is a logical consequence of P.
▷ A successful derivation provides such a substitution θ.
▷ In this way, the derivation is a proof of Qθ from the set of premises P.
▷ Thus SLD resolution provides a proof theory for programs.
⇝ To be continued in Lecture 4 (Correctness of SLD Resolution), where weintroduce the correspondingmodel theory.
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How Do We Compute?
▷ A computation is a sequence of derivation steps.
▷ In each step an atom A is selected in the current query and a programclause H← B⃗ is chosen.
▷ If A and H are unifiable (in the sense of A =̇ H), then A is replaced by B⃗ andan mgu of A and H is applied to the resulting query.
▷ The computation is successful if it ends with the empty query.
▷ The resulting answer substitution θ is obtained by combining the mgus ofeach step.
Observation
For atoms A and H to be unifiable, they must use the same predicate p ∈ Π(n)and furthermore, for A = p(s1, . . . , sn) and H = p(t1, . . . , tn) the resulting set
E = {s1 =̇ t1, . . . , sn =̇ tn}must have an mgu.
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The Computation Mechanism:
SLD Derivations
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An SLD Derivation Step (No Variables)
Note
SLD = Selection rule driven Linear resolution for Definite clauses
Definition
Consider
– a program P

– a query A⃗,B, C⃗
– a clause c = B← B⃗ ∈ P

• B is the selected atom
• The resulting query A⃗, B⃗, C⃗ is called the SLD resolvent
• Notation: A⃗,B, C⃗

c
A⃗, B⃗, C⃗
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Example Ground Program and Query:

(1) happy :- sun, holidays.
(2) happy :- snow, holidays.
(3) snow :- cold, precipitation.
(4) cold :- winter.
(5) precipitation :- holidays.
(6) winter.
(7) holidays.

| ?- happy.

. . .
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An SLD Derivation Step (General Case)
Definition
Consider
– a program P

– a query A⃗,B, C⃗
– a clause c ∈ P

– a variant H← B⃗ of c that is variable disjoint with the query
– an mgu θ of B and H
• SLD resolvent of A⃗,B, C⃗ and c w.r.t. B with mgu θ :⇐⇒ (A⃗, B⃗, C⃗)θ
• SLD derivation step :⇐⇒ A⃗,B, C⃗ θ

c
(A⃗, B⃗, C⃗)θ

• input clause :⇐⇒ variant H← B⃗ of c
We say: “Clause c is applicable to atom B.”
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Example Program and Query:

(1) add(X,0,X).
(2) add(X,s(Y),s(Z)) :- add(X,Y,Z).

(3) mul(X,0,0).
(4) mul(X,s(Y),Z) :- mul(X,Y,U), add(X,U,Z).

| ?- mul(s(s(0)),s(s(0)),V).

| ?- mul(V,W,s(s(0))).

. . .
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The 4 Steps of Resolving Query and Clause

1. Selection Select an atom in the query.

2. Renaming Rename the clause (if necessary).

3. Instantiation Instantiate query and clause by an mgu of the
selected atom and the head of the clause.

4. Replacement Replace the instance of the selected atom by
the instance of the body of the clause.
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SLD Derivations
Definition
A maximal sequence of SLD derivation steps

Q0 θ1
c1 Q1 · · · Qn

θn+1
cn+1 Qn+1 · · ·

is an SLD derivation of P∪ {Q0} :⇐⇒
• Q0, . . . ,Qn+1, . . . are queries, each empty or with one atom selected in it;
• θ1, . . . , θn+1, . . . are substitutions;
• c1, . . . , cn+1, . . . are clauses of P;
• for every SLD derivation step, standardization apart holds.
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Standardization Apart

Definition
For a sequence of SLD derivation steps as before, let Qi–1 θi

ci
Qi be the i-th

SLD derivation step for all i ≥ 1 and c′
i
be the input clause used in that step.Then standardization apart holds (for the i-th step)

:⇐⇒ Var(c′i ) ∩
Var(Q0)∪

i–1⋃
j=1

(
Var(θj)∪ Var(c′j )

) = ∅

Intuitively: The input clause is variable disjoint from the initial query andfrom the substitutions and input clauses used at earlier steps.
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Result of a Derivation

Definition
Let ξ = Q0 θ1

Q1 · · · θn

Qn be a finite SLD derivation.
• ξ successful :⇐⇒ Qn = □

• ξ failed :⇐⇒ Qn ̸= □ and no clause is applicable to selected atom of Qn

Definition
Let ξ be successful.
• computed answer substitution (cas) of Q0 (w.r.t. ξ) := (θ1 · · · θn)|Var(Q0)• computed instance of Q0 := Q0θ1 · · · θn
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Choices and Their Impact
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Choices
In each SLD derivation step the following four choices are made:
1 Choice of the renaming
2 Choice of the most general unifier
3 Choice of the selected atom in the query
4 Choice of the program clause

How do they influence the result?
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Choices

1 Choice of the renaming

2 Choice of the most general unifier

3 Choice of the selected atom in the query
4 Choice of the program clause
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Resultants: What is proved after a step?
Definition
The resultant associated with Q θ

Q1 is the implication Qθ ← Q1.
Definition
Consider
– a program P

– a resultant R = Q ← A⃗,B, C⃗
– a clause c
– a variant H ← B⃗ of c that is variable disjoint with R
– an mgu θ of B and H
SLD resolvent of resultant R and c w.r.t. B with mgu θ := (Q ← A⃗, B⃗, C⃗)θ
SLD resultant step := Q ← A⃗,B, C⃗ θ

c
(Q ← A⃗, B⃗, C⃗)θ

SLD Resolution (Lecture 3)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 23 of 41 Computational
Logic ∴ Group



Resultants and SLD derivations
Definition
Consider an SLD derivation

ξ = Q0 θ1
c1 Q1 · · · Qn

θn+1
cn+1 Qn+1 · · ·

For i ≥ 0,
Ri := Q0θ1 · · · θi ← Qi

is called the resultant of level i of ξ.
The resultant Ri describes what is proved after i derivation steps.In particular:
• R0 = Q0 ← Q0• Rn = Q0θ1 · · · θn, if Qn = □ (because □ =̂ “true”)
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Propagation (1)

Definition
The selected atom of a resultant Q ← Qi is the atom that is selected in Qi.
Lemma 3.12
Suppose that R θ

c
R1 and R′ θ′

c
R′1 are two SLD resultant steps where

– R is an instance of R′,
– in R and R′ atoms in the same positions are selected.
Then R1 is an instance of R′1.
Proof: [Apt97, page 55]
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Propagation (2)

Corollary
Suppose that Q θ

c
Q1 and Q′ θ′

c
Q′1 are two SLD derivation steps where

– Q is an instance of Q′,
– in Q and Q′ atoms in the same positions are selected.
Then Q1 is an instance of Q′1.
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Similar SLD derivations
Definition
Consider two (initial fragments of) SLD derivations

ξ = Q0 θ1
c1 Q1 · · ·Qn

θn+1
cn+1 Qn+1

ξ
′ = Q

′0
θ′1
c1 Q

′1 · · ·Q′n
θ′
n+1
cn+1 Q

′
n+1

We say that ξ and ξ ′ are similar
:⇐⇒

• length(ξ)= length(ξ ′),
• Q0 and Q′0 are variants,• in Qi and Q′i atoms in the same positions are selected (i ∈ [0,n])
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A Theorem on Variants
Theorem 3.18
Consider two similar SLD derivations ξ, ξ ′. For every i ≥ 0, the resultants Riand R′

i
of level i of ξ and ξ ′, respectively, are variants of each other.

Proof.
By induction on i.
Base Case (i = 0): R0 = Q0 ← Q0 and R′0 = Q′0 ← Q′0 are variants of eachother.
Inductive Case (i⇝ i + 1): Consider Ri θi+1

ci+1 Ri+1 and R′i θ′
i+1
ci+1 R′

i+1.
Ri variant of R′i (induction hypothesis)implies Ri instance of R′i and vice versaimplies Ri+1 instance of R′i+1 and vice versa (Lemma 3.12)implies Ri+1 variant of R′i+1
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Answer Substitutions of similar derivations

Corollary
Consider two similar successful SLD derivations of Q0 with computedanswer substitutions θ and η. Then Q0θ and Q0η are variants of each other.
Proof.
By Theorem 3.18 applied to the final resultants Q0θ← □ and Q0η← □ ofthese SLD derivations.

This shows that choice 1 (choice of a renaming) and choice 2(choice of an mgu) have no influence – modulo renaming – onthe statement proved by a successful SLD derivation.
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Choices

1 Choice of the renaming
2 Choice of the most general unifier
3 Choice of the selected atom in the query

4 Choice of the program clause
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Selecting Atoms in Queries

Definition
Let INIT be the set of all initial fragments of all possible SLD derivations inwhich the last query is non-empty.
• A selection rule is a function which for every ξ< ∈ INIT yields anoccurrence of an atom in the last query of ξ<.
• An SLD derivation ξ is via a selection rule R

:⇐⇒
for every initial fragment ξ< of ξ ending with a non-empty query Q, theselected atom of Q is exactly R(ξ<).

PROLOG employs the simple selection rule “select the leftmost atom.”
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Switching Lemma
Lemma 3.32
Consider an SLD derivation ξ = Q0 θ1

c1 Q1 · · ·Qn

θn+1
cn+1 Qn+1 θn+2

cn+2 Qn+2 · · ·where • Qn includes two atoms A1 and A2,
• A1 is the selected atom of Qn,
• A2θn+1 is the selected atom of Qn+1.

Then the SLD derivation ξ ′ = Q0 θ1
c1 Q1 · · ·Qn

θ′
n+1
cn+2 Q′

n+1
θ′
n+2
cn+1 Qn+2 · · ·

for some Q′
n+1, θ′n+1, and θ′n+2 is such that:

• A2 is the selected atom of Qn
• A1θ′n+1 is the selected atom of Q′

n+1• θ′
n+1θ′n+2 = θn+1θn+2.

Proof: [Apt97, page 65]
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Independence of Selection Rule

Theorem 3.33
Let ξ be a successful SLD derivation of P∪ {Q0}.Then for every selection rule R there exists a successful SLD derivation ξ ′ of
P∪ {Q0} via R such that
• cas of Q0 (w.r.t. ξ) = cas of Q0 (w.r.t. ξ ′),• ξ and ξ ′ are of the same length.

This shows that choice 3 (choice of a selected atom) has noinfluence in case of successful queries.
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Proof Sketch of Theorem 3.33.
Consider an SLD derivation ξ = Q0 θ1

c1 · · · θn

cn
Qn = □ that is not via R.

Then there is a smallest i ≥ 1 such that:
• ξ is via R up to Qi–1.• R selects A in Qi.• Aθi+1 · · · θi+j is the selected atom of Qi+j in ξ for some j ≥ 1 (ξ is successful).

ξ = Q0 · · · Qi · · · Qi+j–1 θi+j
ci+j Qi+j θi+j+1

ci+j+1 Qi+j+1 · · · Qn

Apply Switching Lemma once:
ξ = Q0 · · · Qi · · · Qi+j–1

θ′
i+j

ci+j+1 Q
′
i+j

θ′
i+j
ci+j Qi+j+1 · · · Qn

Apply Switching Lemma further j – 1 times.
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Choices

1 Choice of the renaming
2 Choice of the most general unifier
3 Choice of the selected atom in the query
4 Choice of the program clause
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SLD Trees visualize Search Space
Definition
SLD Tree for P∪ {Q0} via selection rule R :⇐⇒
• the branches are SLD derivations of P∪ {Q0} via R;
• every node Q with selected atom A has exactly one descendant for everyclause c of P which is applicable to A. This descendant is a resolvent of Qand c w.r.t. A.
Definition
• SLD tree successful :⇐⇒ tree contains the node □.
• SLD tree finitely failed :⇐⇒ tree is finite and not successful.
SLD tree via “leftmost selection rule” corresponds to Prolog’s search space.
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SLD Trees: Example
(1) happy :- sun, holidays.
(2) happy :- snow, holidays.
(3) snow :- cold, precipitation.
(4) cold :- winter.
(5) precipitation :- holidays.
(6) winter.
(7) holidays.

| ?- happy.

happy

sun, holidays

(1)
snow, holidays

(2)

cold, precipitation, holidays

(3)

winter, precipitation, holidays

(4)

precipitation, holidays

(6)

holidays, holidays
(5)

holidays
(7)

□

(7)
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Variant Independence

Definition
A selection rule R is variant independent

:⇐⇒
in all initial fragments of SLD derivations that are similar (cf. Slide 27), Rchooses the atom in the same position in the last query.
Example
• The selection rule “select leftmost atom” is variant independent.
• The selection rule “select leftmost atom if query contains variable x,otherwise select rightmost atom” is variant dependent.
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The Branch Theorem

Theorem 3.38
Consider an SLD tree T for P∪ {Q0} via a variant independent selectionrule R. Then every SLD derivation of P∪ {Q0} via R is similar to a branch in T.

This shows that choice 4 (choice of a program clause) has noinfluence on the search space as a whole.
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Proof Sketch of Theorem 3.38

Let ξ = Q0 Q1 Q2 . . . be an SLD derivation of P∪ {Q0} via R.
By induction on i ≥ 0 “find” branch Q′0,Q′1,Q′2, . . . in T similar to ξ:
• Q′0 = Q0 (in particular they are variants).• By definition of T: The existence of Q′

i
implies the existence of Q′

i+1 (applythe same clause as to Qi).• Now Q0 . . . Qi and Q′0 . . . Q′
i
are similar.

• By variant independence of R, in Qi and Q′i atoms in the same positionsare selected.
• Thus Q0 . . . Qi+1 and Q′0 . . . Q′

i+1 are also similar.
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Conclusion
Summary
• A proof theory for (definite) logic programs is given by SLD resolution.
• A query is resolved with a (variant of a) program clause to another query.
• There are choices to be made (renaming of clause, mgu of query atomand clause, selected atom in query, program clause) with consequences.
• The search space can be visualized by (selection rule-induced) SLD trees.
Suggested action points:
• Clarify the relationship of SLD resolution and “ordinary” FOL resolution.
• Obtain SLD resolutions (with mgus) for the examples on Slide 15.
• Use Prolog’s trace predicate to check your results.

SLD Resolution (Lecture 3)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 41 of 41 Computational
Logic ∴ Group


	The Logical Language of Programs
	The Computation Mechanism: SLD Derivations
	Choices and Their Impact

