Actions and Causality

Steffen Hölldobler

International Center for Computational Logic Technische Universität Dresden

Germany

- Introduction
- Conjunctive Planning Problems
- The Fluent Calculus

States, Actions, and Causality

- Rational Agents, Agent Programming Languages, Cognitive Robotics
- Situation Calculus McCarthy 1963
- Core Ideas
\triangleright A state is a snapshot of the world and
\triangleright can only be changed by actions
- A state is specified with the help of fluents
- Problem Each state and each action is only partially known!

General Problems

- Frame problem

Which fluents are unaffected by the execution of an action?

- Ramification problem

Which fluents are really present after the execution of an action?

- Qualification problem

Which preconditions have to be satisfied such that an action is executable?

- Prediction problem

How long are fluents present in certain situations?

- All problems have a cognitive as well as a technical aspect
- Only the frame problem is considered in this lecture

Requirements

- McCarthy 1963
- General properties of causality and facts about the possibility and results of actions are given as formulas
- It is a logical consequence of the facts of a state and the general axioms that goals can be achieved by performing certain actions
- The formal descriptions of states should correspond as closely as possible to what people may reasonably be presumed to know about them when deciding what to do

Conjunctive Planning Problems

- Initial state $\mathcal{I}:\left\{i_{1}, \ldots, i_{m}\right\}$ of ground fluents
- Goal state $\mathcal{G}:\left\{g_{1}, \ldots, g_{n}\right\}$ of ground fluents
- Finite set \mathcal{A} of actions of the form

$$
\left.\dot{\{ } c_{1}, \ldots, c_{l}\right\} \Rightarrow\left\{e_{1}, \ldots, e_{k} \dot{\}}\right.
$$

where $\left\{c_{1}, \ldots, c_{l}\right\}$ and $\left\{e_{1}, \ldots, e_{k}\right\}$ are multisets of fluents called conditions and (direct) effects, respectively

- Assumption

Each variable occurring in the effects of an action occurs also in its conditions

- A conjunctive planning problem is the question of whether there exists a sequence of actions whose execution transforms the initia into the goal state

Actions and Plans

- Let \mathcal{S} be a multiset of ground fluents
- $\mathcal{C} \Rightarrow \mathcal{E}$ is applicable in \mathcal{S} iff there exists θ such that $\mathcal{C} \theta \subseteq \mathcal{S}$
- The application of $\mathcal{C} \Rightarrow \mathcal{E}$ in \mathcal{S} leads to $\mathcal{S}^{\prime}=(\mathcal{S} \dot{\mathcal{C}} \theta) \dot{\cup} \mathcal{E} \theta$
\triangleright One should observe that \mathcal{S}^{\prime} is ground
$\rightarrow \mathcal{S}$ is ground
$\rightarrow \operatorname{var}(\mathcal{E}) \subseteq \operatorname{var}(\mathcal{C})$
$\rightarrow \theta$ is grounding
- A plan is a sequence of actions
- A goal \mathcal{G} is satisfied iff there exists a plan \boldsymbol{p} which transforms \mathcal{I} into \mathcal{S} and $\mathcal{G} \subseteq \mathcal{S}$
\triangleright Such a plan is called solution for the planning problem

Blocks World

- The pickup action

$$
\operatorname{pickup}(V): \quad \dot{\{ } \operatorname{clear}(V), \text { ontable }(V), \text { empty }\} \Rightarrow \dot{\{ } \operatorname{holding}(V)\}
$$

- The unstack action

$$
\text { unstack }(V, W): \quad \dot{\{ } \operatorname{clear}(V), \text { on }(V, W), \text { empty }\} \Rightarrow \dot{\{ } \operatorname{holding}(V), \text { clear }(W)\}
$$

- The putdown action

$$
\text { putdown }(V): \quad \dot{\{ } \text { holding }(V)\} \Rightarrow \dot{\{ } \text { clear }(V), \text { ontable }(V), \text { empty } \dot{\}}
$$

- The stack action

$$
\operatorname{stack}(V, W): \quad\{\dot{h o l d i n g}(V), \operatorname{clear}(W)\} \Rightarrow\{\dot{\{ }(V, W), \text { clear }(V), \text { empty }\}
$$

Sussman's Anomaly

- $\mathcal{I}=\{$ ontable (a), ontable (b), on (c, a), clear (b), clear (c), empty $\}$
- $\mathcal{G}=\{\operatorname{ontable}(c)$, on (b, c), on (a, b), clear $(a), e m p t y\}$
- Solution
[unstack(c, a), putdown(c), pickup(b), stack(b, c), pickup(a), stack (a,b)]
- What happens if we independently search for shortest solutions for the two subgoals on (a, b) and on (b, c) ?

Sussman's Anomaly - Solution

A Fluent Calculus Implementation - Actions and Causality

- An action $\mathcal{C} \Rightarrow \mathcal{E}$ is represented by action $\left(\mathcal{C}^{-1}\right.$, name, $\left.\mathcal{E}^{-1}\right)$, where name is a term identifying the action
action (clear (V) ○ ontable($(V) \circ$ empty, pickup (V), holding (V))
action (clear $(V) \circ$ on $(V, W) \circ$ empty, $u n s t a c k(V, W)$, holding $(V) \circ$ clear $(W))$ action(holding (V), putdown (V), clear $(V) \circ$ ontable $(V) \circ$ empty)
action(holding $(V) \circ$ clear $(W), \operatorname{stack}(V, W)$, on $(V, W) \circ$ clear $(V) \circ$ empty $)$
- Causality is expressed by causes $\left(s, p, s^{\prime}\right)$, where s and s^{\prime} are fluent terms and p is a list of actions representing a plan

```
causes(X,[],Y) \leftarrow X 
causes(X,[V|W],Y) \leftarrow action(P,V,Q)
    A}\circZ\approx
    ^causes(Z ○Q,W,Y)
X}\approx
```


A Fluent Calculus Implementation - The Planning Problem

- Let \mathcal{K}_{A} be the set of facts representing actions
- Let \mathcal{K}_{C} be the set of clauses representing causality
- The planning problem (with intial and goal state \mathcal{I} and \mathcal{G}, respectively) is the problem whether

$$
\mathcal{K}_{A} \cup \mathcal{K}_{C} \cup \mathcal{E}_{A C 1} \cup \mathcal{E} \approx \vDash(\exists P) \operatorname{causes}\left(\mathcal{I}^{-I}, P, \mathcal{G}^{-I}\right)
$$

holds

SLDE-Resolution

- Let
$\triangleright \mathcal{K}$ be a set of definite clauses not containing \approx in their heads
$\triangleright \mathcal{E}$ be an equational system and
\triangleright G a goal clause
- Question Does $\mathcal{K} \cup \mathcal{E} \cup \mathcal{E} \approx \vDash \neg \forall G$ hold?
- Let C be a new variant $H \leftarrow A_{1} \wedge \ldots \wedge A_{m}$ of a clause in $\mathcal{K} \cup\{X \approx X\}$, G the goal clause $\leftarrow B_{1} \wedge \ldots \wedge B_{n}$, and $\mathrm{UP}_{\mathcal{E}}$ an \mathcal{E}-unification procedure. If H and $B_{i}, i \in[1, n]$, are \mathcal{E}-unifiable with $\theta \in \operatorname{UP} \mathcal{E}_{\mathcal{E}}\left(H, B_{i}\right)$ then

$$
\leftarrow\left(B_{1} \wedge \ldots \wedge B_{i-1} \wedge A_{1} \wedge \ldots \wedge A_{m} \wedge B_{i+1} \wedge \ldots \wedge B_{n}\right) \theta
$$

is called SLDE-resolvent of C and \boldsymbol{G}

- Theorem 4.10
\triangleright SLDE-resolution is sound if $\mathrm{UP}_{\mathcal{E}}$ is sound
\triangleright SLDE-resolution is complete if $\mathrm{UP}_{\mathcal{\varepsilon}}$ is complete
\triangleright The selection of the literal B_{i} is don't care non-deterministic

A Solution to Sussman's Anomaly (1)

(1) \leftarrow causes $($ ontable $(a) \circ$ ontable $(b) \circ$ on $(c, a) \circ$ clear $(b) \circ$ clear $(c) \circ$ empty, W, ontable $(c) \circ$ on $(b, c) \circ$ on $(a, b) \circ$ clear $(a) \circ$ empty $).$
(2) $\leftarrow \operatorname{action}\left(P_{1}, V_{1}, Q_{1}\right) \wedge$
$P_{1} \circ Z_{1} \approx$ ontable $(a) \circ$ ontable $(b) \circ$ on $(c, a) \circ$ clear $(b) \circ$ clear $(c) \circ$ empty \wedge causes $\left(Z_{1} \circ Q_{1}, W_{1}\right.$, ontable $(c) \circ$ on $(b, c) \circ$ on $(a, b) \circ$ clear $(a) \circ$ empty $)$.
(3) $\leftarrow \operatorname{clear}\left(V_{2}\right) \circ$ on $\left(V_{2}, W_{2}\right) \circ$ empty $\circ Z_{1} \approx$ ontable $(a) \circ$ ontable $(b) \circ$ on $(c, a) \circ$ clear $(b) \circ$ clear $(c) \circ$ empty \wedge causes $\left(Z_{1} \circ\right.$ holding $\left(V_{2}\right) \circ$ clear $\left(W_{2}\right)$,
W_{1},
ontable $(c) \circ$ on $(b, c) \circ$ on $(a, b) \circ$ clear $(a) \circ$ empty $).$
(4) \leftarrow causes $($ ontable $(a) \circ$ ontable $(b) \circ$ clear $(b) \circ$ clear $(a) \circ$ holding (c), W_{1}, ontable $(c) \circ$ on $(b, c) \circ$ on $(a, b) \circ$ clear $(a) \circ$ empty $).$

A Solution to Sussman's Anomaly (2)

\leftarrow causes $($ ontable $(a) \circ$ ontable $(b) \circ$ clear $(b) \circ$
\quad clear $(a) \circ$ clear $(c) \circ$ ontable $(c) \circ$ empty, W_{4},

ontable $(c) \circ$ on $(b, c) \circ$ on $(a, b) \circ$ clear $(a) \circ$ empty $).$
(10) \leftarrow causes $\left(\right.$ ontable $(a) \circ$ clear $(c) \circ$ ontable $(c) \circ$ clear $(a) \circ$ holding $(b), W_{7}$, ontable $(c) \circ$ on $(b, c) \circ$ on $(a, b) \circ$ clear $(a) \circ$ empty $).$
(14) \leftarrow causes $\left(\right.$ ontable $(a) \circ$ ontable $(c) \circ$ clear $(a) \circ$ on $(b, c) \circ$ clear $(b) \circ$ empty, W_{10}, ontable $(c) \circ$ on $(b, c) \circ$ on $(a, b) \circ$ clear $(a) \circ$ empty $)$.
(16) \leftarrow causes(ontable (c) \circ on $(b, c) \circ$ clear (b) \circ holding (a), W_{13}, ontable $(c) \circ$ on $(b, c) \circ$ on $(a, b) \circ$ clear $(a) \circ$ empty $)$.
(19) $\leftarrow \operatorname{causes}\left(\right.$ ontable $(c) \circ$ on $(b, c) \circ$ clear $(a) \circ$ on $(a, b) \circ$ empty, W_{16}, ontable $(c) \circ$ on $(b, c) \circ$ on $(a, b) \circ$ clear $(a) \circ$ empty $).$

Solving the Frame Problem

- In the fluent calculus the frame problem is mapped onto fluent matching and fluent unification problems
- For example, let

$$
\begin{gathered}
s=\text { ontable }(a) \circ \text { ontable }(b) \circ \text { on }(c, a) \circ \text { clear }(b) \circ \text { clear }(c) \circ \text { empty } \\
\qquad t=\text { clear }(c) \circ \text { on }(c, a) \circ \text { empty }
\end{gathered}
$$

then

$$
\theta=\{Z \mapsto \text { ontable }(a) \circ \text { ontable }(b) \circ \text { clear }(b)\}
$$

is a most general \mathcal{E}-matcher for the \mathcal{E}-matching problem

$$
\mathcal{E}_{A C 1} \cup \mathcal{E} \approx \vDash(\exists Z) s \approx t \circ Z
$$

- Consequently, unstack (c,a) can be applied to syielding

$$
s^{\prime}=\text { ontable }(a) \circ \text { ontable }(b) \circ \text { clear }(b) \circ \text { clear }(a) \circ \text { holding }(c)
$$

Why are States not Modelled by Sets?

- Let $\mathcal{E}_{A C 11}=\mathcal{E}_{A C 1} \cup\{X \circ X \approx X\}$
- In this case the \mathcal{E}-matching problem

$$
\mathcal{E}_{A C / 1} \cup \mathcal{E}_{\approx} \vDash(\exists Z) s \approx t \circ Z
$$

has an additional solution, viz.

$$
\eta=\{Z \mapsto \text { ontable }(a) \circ \text { ontable }(b) \circ \text { clear }(b) \circ \text { empty }\}
$$

θ and η are independent wrt $\mathcal{E}_{A C / 1}$

- Computing the successor state in this case yields

$$
s^{\prime \prime}=\text { ontable }(a) \circ \text { ontable }(b) \circ \text { clear }(b) \circ \text { clear }(a) \circ \text { holding }(c) \circ \text { empty }
$$

which is not intended because the arm of the robot cannot be empty and holding an object at the same time

Remarks (1)

- Some people even believed that the frame problem cannot be solved within first order logic
- Forward versus backward planning
- Many extensions
\triangleright Incomplete specifications of initial situation, e.g.

```
( }\existsX,P,Y
causes(ontable(b) ○ Y,
    P,
    ontable(c) ○ on (b, c) ○on (a, b) ○ clear (a) ○ empty ○X)
```

\triangleright Indeterminate effects
\triangleright Specificity
\triangleright Ramification and qualification problem

Remarks (2)

- Fluent calculus versus linear logic versus linear connection method
- Fluent calculus versus situation calculus versus event calculus
- Planning problems can be reduced to SAT-problems if the length of a plan is restricted

