Actions and Causality

Steffen Hölldobler International Center for Computational Logic Technische Universität Dresden Germany

- Introduction
- Conjunctive Planning Problems
- ▶ The Fluent Calculus

States, Actions, and Causality

- Rational Agents, Agent Programming Languages, Cognitive Robotics
- ► Situation Calculus McCarthy 1963
- Core Ideas
 - A state is a snapshot of the world and
 - > can only be changed by actions
- A state is specified with the help of fluents
- Problem Each state and each action is only partially known!

General Problems

- Frame problem Which fluents are unaffected by the execution of an action?
- Ramification problem
 Which fluents are really present after the execution of an action?
- Qualification problem Which preconditions have to be satisfied such that an action is executable?
- ► Prediction problem

 How long are fluents present in certain situations?
- All problems have a cognitive as well as a technical aspect
- ▶ Only the frame problem is considered in this lecture

Requirements

- ► McCarthy 1963
- General properties of causality and facts about the possibility and results of actions are given as formulas
- It is a logical consequence of the facts of a state and the general axioms that goals can be achieved by performing certain actions
- The formal descriptions of states should correspond as closely as possible to what people may reasonably be presumed to know about them when deciding what to do

4

Conjunctive Planning Problems

- ▶ Initial state \mathcal{I} : $\{i_1, \ldots, i_m\}$ of ground fluents
- ▶ Goal state \mathcal{G} : $\{g_1, \ldots, g_n\}$ of ground fluents
- ▶ Finite set A of actions of the form

$$\{c_1,\ldots,c_l\}\Rightarrow \{e_1,\ldots,e_k\},$$

where $\{c_1, \ldots, c_l\}$ and $\{e_1, \ldots, e_k\}$ are multisets of fluents called conditions and (direct) effects, respectively

- ► Assumption
 Each variable occurring in the effects of an action occurs also in its conditions
- A conjunctive planning problem is the question of whether there exists a sequence of actions whose execution transforms the initia into the goal state

Actions and Plans

- Let S be a multiset of ground fluents
- $ightharpoonup \mathcal{C} \Rightarrow \mathcal{E}$ is applicable in \mathcal{S} iff there exists θ such that $\mathcal{C}\theta \subseteq \mathcal{S}$
- ▶ The application of $C \Rightarrow \mathcal{E}$ in S leads to $S' = (S \setminus C\theta) \cup \mathcal{E}\theta$
 - \triangleright One should observe that S' is ground
 - S is ground
 - \mapsto $var(\mathcal{E}) \subseteq var(\mathcal{C})$
 - \rightarrow θ is grounding
- A plan is a sequence of actions
- ► A goal *G* is satisfied
 - ${\sf ff}$ there exists a plan ${\sf p}$ which transforms ${\cal I}$ into ${\cal S}$ and ${\cal G} \stackrel{.}{\subseteq} {\cal S}$
 - ▶ Such a plan is called solution for the planning problem

Blocks World

► The pickup action

$$pickup(V): \{clear(V), ontable(V), empty\} \Rightarrow \{holding(V)\}$$

The unstack action

$$\textit{unstack}(\textit{V},\textit{W}): \quad \{\textit{clear}(\textit{V}),\textit{on}(\textit{V},\textit{W}),\textit{empty}\} \Rightarrow \{\textit{holding}(\textit{V}),\textit{clear}(\textit{W})\}$$

The putdown action

$$putdown(V): \dot{\{}holding(V)\dot{\}} \Rightarrow \dot{\{}clear(V), ontable(V), empty\dot{\}}$$

The stack action

$$stack(V, W) : \dot{\{}holding(V), clear(W)\dot{\}} \Rightarrow \dot{\{}on(V, W), clear(V), empty\dot{\}}$$

Sussman's Anomaly

- $\mathcal{I} = \{ontable(a), ontable(b), on(c, a), clear(b), clear(c), empty\}$
- $\mathcal{G} = \{ontable(c), on(b, c), on(a, b), clear(a), empty\}$
- ► Solution
 [unstack(c, a), putdown(c), pickup(b), stack(b, c), pickup(a), stack(a, b)]
- ▶ What happens if we independently search for shortest solutions for the two subgoals on(a, b) and on(b, c)?

8

Sussman's Anomaly – Solution

9

A Fluent Calculus Implementation – Actions and Causality

▶ An action $C \Rightarrow \mathcal{E}$ is represented by $action(C^{-1}, name, \mathcal{E}^{-1})$, where *name* is a term identifying the action

```
action(clear(V) \circ ontable(V) \circ empty, \ pickup(V), \ holding(V)) \\ action(clear(V) \circ on(V, W) \circ empty, \ unstack(V, W), \ holding(V) \circ clear(W)) \\ action(holding(V), \ putdown(V), \ clear(V) \circ ontable(V) \circ empty) \\ action(holding(V) \circ clear(W), \ stack(V, W), \ on(V, W) \circ clear(V) \circ empty) \\ \end{aligned}
```

Causality is expressed by causes(s, p, s'), where s and s' are fluent terms and p is a list of actions representing a plan

```
\begin{array}{cccc} \textit{causes}(\textit{X}, [], \textit{Y}) & \leftarrow & \textit{X} \approx \textit{Y} \circ \textit{Z} \\ \textit{causes}(\textit{X}, [\textit{V}|\textit{W}], \textit{Y}) & \leftarrow & \textit{action}(\textit{P}, \textit{V}, \textit{Q}) \\ & & \land \textit{P} \circ \textit{Z} \approx \textit{X} \\ & & \land \textit{causes}(\textit{Z} \circ \textit{Q}, \textit{W}, \textit{Y}) \\ \textit{X} \approx \textit{X} \end{array}
```

A Fluent Calculus Implementation – The Planning Problem

- ▶ Let \mathcal{K}_A be the set of facts representing actions
- Let K_C be the set of clauses representing causality
- ▶ The planning problem (with intial and goal state \mathcal{I} and \mathcal{G} , respectively) is the problem whether

$$\mathcal{K}_{A} \cup \mathcal{K}_{C} \cup \mathcal{E}_{AC1} \cup \mathcal{E}_{\approx} \models (\exists P) \ causes(\mathcal{I}^{-I}, P, \mathcal{G}^{-I})$$

holds

SLDE-Resolution

- Let
 - ho ${\cal K}$ be a set of definite clauses not containing pprox in their heads
 - $\triangleright \ \mathcal{E}$ be an equational system and
 - ▶ G a goal clause
- ▶ Question Does $\mathcal{K} \cup \mathcal{E} \cup \mathcal{E}_{\approx} \models \neg \forall G \text{ hold?}$
- ▶ Let C be a new variant $H \leftarrow A_1 \land \ldots \land A_m$ of a clause in $\mathcal{K} \cup \{X \approx X\}$, G the goal clause $\leftarrow B_1 \land \ldots \land B_n$, and $\mathsf{UP}_{\mathcal{E}}$ an \mathcal{E} -unification procedure. If H and B_i , $i \in [1, n]$, are \mathcal{E} -unifiable with $\theta \in \mathsf{UP}_{\mathcal{E}}(H, B_i)$ then

$$\leftarrow (B_1 \wedge \ldots \wedge B_{i-1} \wedge A_1 \wedge \ldots \wedge A_m \wedge B_{i+1} \wedge \ldots \wedge B_n)\theta$$

is called SLDE-resolvent of C and G

- ▶ Theorem 4.10
 - ightharpoonup SLDE-resolution is sound if UP $_{\mathcal{E}}$ is sound
 - \triangleright SLDE-resolution is complete if UP_E is complete
 - ▶ The selection of the literal B_i is don't care non-deterministic

A Solution to Sussman's Anomaly (1)

- (1) \leftarrow causes(ontable(a) \circ ontable(b) \circ on(c, a) \circ clear(b) \circ clear(c) \circ empty, W, ontable(c) \circ on(b, c) \circ on(a, b) \circ clear(a) \circ empty).
- (2) \leftarrow action(P_1 , V_1 , Q_1) \land $P_1 \circ Z_1 \approx$ ontable(a) \circ ontable(b) \circ on(c, a) \circ clear(b) \circ clear(c) \circ empty \land causes($Z_1 \circ Q_1$, W_1 , ontable(c) \circ on(b, c) \circ on(a, b) \circ clear(a) \circ empty).
- (3) \leftarrow clear(V_2) \circ on(V_2 , W_2) \circ empty \circ $Z_1 \approx$ ontable(a) \circ ontable(b) \circ on(c, a) \circ clear(b) \circ clear(c) \circ empty \wedge causes($Z_1 \circ$ holding(V_2) \circ clear(W_2), W_1 ,
 ontable(c) \circ on(c) \circ on(c) \circ clear(c) \circ empty).
- (4) \leftarrow causes(ontable(a) \circ ontable(b) \circ clear(b) \circ clear(a) \circ holding(c), W_1 , ontable(c) \circ on(b, c) \circ on(a, b) \circ clear(a) \circ empty).

:

A Solution to Sussman's Anomaly (2)

```
(7)
        \leftarrow causes(ontable(a) \circ ontable(b) \circ clear(b) \circ
                       clear(a) \circ clear(c) \circ ontable(c) \circ empty, W_4
                       ontable(c) \circ on(b, c) \circ on(a, b) \circ clear(a) \circ empty).
(10)
        \leftarrow causes(ontable(a) \circ clear(c) \circ ontable(c) \circ clear(a) \circ holding(b), W_7,
                       ontable(c) \circ on(b, c) \circ on(a, b) \circ clear(a) \circ empty).
(14)
        \leftarrow causes(ontable(a) \circ ontable(c) \circ clear(a) \circ on(b, c) \circ clear(b) \circ empty, W_{10},
                       ontable(c) \circ on(b, c) \circ on(a, b) \circ clear(a) \circ empty).
(16)
        \leftarrow causes(ontable(c) \circ on(b, c) \circ clear(b) \circ holding(a), W_{13},
                       ontable(c) \circ on(b, c) \circ on(a, b) \circ clear(a) \circ empty).
(19)
        \leftarrow causes(ontable(c) \circ on(b, c) \circ clear(a) \circ on(a, b) \circ empty, W_{16},
                       ontable(c) \circ on(b, c) \circ on(a, b) \circ clear(a) \circ empty).
(20)
```

Solving the Frame Problem

- In the fluent calculus the frame problem is mapped onto fluent matching and fluent unification problems
- For example, let

$$s = ontable(a) \circ ontable(b) \circ on(c, a) \circ clear(b) \circ clear(c) \circ empty$$

$$t = clear(c) \circ on(c, a) \circ empty$$

then

$$\theta = \{Z \mapsto ontable(a) \circ ontable(b) \circ clear(b)\}$$

is a most general \mathcal{E} -matcher for the \mathcal{E} -matching problem

$$\mathcal{E}_{AC1} \cup \mathcal{E}_{\approx} \models (\exists Z) s \approx t \circ Z$$

Consequently, unstack(c, a) can be applied to s yielding

$$s' = ontable(a) \circ ontable(b) \circ clear(b) \circ clear(a) \circ holding(c)$$

Why are States not Modelled by Sets?

- ▶ Let $\mathcal{E}_{ACI1} = \mathcal{E}_{AC1} \cup \{X \circ X \approx X\}$
- ▶ In this case the E-matching problem

$$\mathcal{E}_{ACH} \cup \mathcal{E}_{\approx} \models (\exists Z) s \approx t \circ Z$$

has an additional solution, viz.

$$\eta = \{Z \mapsto ontable(a) \circ ontable(b) \circ clear(b) \circ empty\}$$

 θ and η are independent wrt $\mathcal{E}_{AC/1}$

Computing the successor state in this case yields

$$s'' = ontable(a) \circ ontable(b) \circ clear(b) \circ clear(a) \circ holding(c) \circ empty$$

which is not intended because the arm of the robot cannot be empty and holding an object at the same time

Remarks (1)

- Some people even believed that the frame problem cannot be solved within first order logic
- Forward versus backward planning
- Many extensions
 - ▶ Incomplete specifications of initial situation, e.g.

```
 \begin{array}{l} (\exists X,P,Y) \\ \textit{causes}(\textit{ontable}(b) \circ Y, \\ P, \\ \textit{ontable}(c) \circ \textit{on}(b,c) \circ \textit{on}(a,b) \circ \textit{clear}(a) \circ \textit{empty} \circ X) \end{array}
```

- Indeterminate effects
- Specificity
- Ramification and qualification problem

Remarks (2)

- ▶ Fluent calculus versus linear logic versus linear connection method
- Fluent calculus versus situation calculus versus event calculus
- Planning problems can be reduced to SAT-problems if the length of a plan is restricted