
Dresden University of Technology
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Computing Minimal EL-Unifiers is Hard

Franz Baader Stefan Borgwardt Barbara Morawska

LTCS-Report 12-03

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Abstract

Unification has been investigated both in modal logics and in descrip-
tion logics, albeit with different motivations. In description logics, unifica-
tion can be used to detect redundancies in ontologies. In this context, it
is not sufficient to decide unifiability, one must also compute appropriate
unifiers and present them to the user. For the description logic EL, which
is used to define several large biomedical ontologies, deciding unifiability is
an NP-complete problem. It is known that every solvable EL-unification
problem has a minimal unifier, and that every minimal unifier is a local
unifier. Existing unification algorithms for EL compute all minimal uni-
fiers, but additionally (all or some) non-minimal local unifiers. Computing
only the minimal unifiers would be better since there are considerably less
minimal unifiers than local ones, and their size is usually also quite small.

In this paper we investigate the question whether the known algorithms
for EL-unification can be modified such that they compute exactly the
minimal unifiers without changing the complexity and the basic nature of
the algorithms. Basically, the answer we give to this question is negative.

1 Introduction

It is well-known that there is a close connection between modal logics (MLs) and
description logics (DLs). In fact, many DLs are syntactic variants of classical MLs.
Unification has been introduced in both areas [4], with the same formal meaning,
but with different applications in mind. In ML, unification [14, 15, 19] was
mainly investigated in the context of the admissibility problem for inference rules
[18, 16, 11]. Unification is simpler than the admissibility problem in the sense that
it can easily be reduced to it, but in some cases (e.g., if the unification problem
is effectively finitary, i.e., finite complete sets of unifiers can be computed) there
is also a reduction in the other direction (see, e.g., [17]). An important open
problem in the area is the question whether unification in the basic modal logic
K, which corresponds to the DL ALC, is decidable. It is only know that relatively
minor extensions of K have an undecidable unification problem [20].

Unification in DLs has been introduced as a novel inference service that can be
used to detect redundancies in ontologies [9]. For example, assume that one
developer of a medical ontology defines the concept of a patient with severe head
injury as

Patient u ∃finding.(Head injury u ∃severity.Severe), (1)

whereas another one represents it as

Patient u ∃finding.(Severe finding u Injury u ∃finding site.Head). (2)

1

Formally, these two concept descriptions are not equivalent, but they are nev-
ertheless meant to represent the same concept. They can obviously be made
equivalent by treating the concept names Head injury and Severe finding as vari-
ables, and substituting the first one by Injury u ∃finding site.Head and the second
one by ∃severity.Severe. In this case, we say that the descriptions are unifiable,
and call the substitution that makes them equivalent a unifier. Intuitively, such
a unifier proposes definitions for the concept names that are used as variables: in
our example, we know that, if we define Head injury as Injury u ∃finding site.Head
and Severe finding as ∃severity.Severe, then the two concept descriptions (1) and
(2) are equivalent w.r.t. these definitions.

Of course, this example was constructed such that the unifier actually provides
sensible definitions for the concept names used as variables. In general, the
existence of a unifier only says that there is a structural similarity between the two
concepts. The developer that uses unification as a tool for finding redundancies
in an ontology or between two different ontologies needs to inspect the unifier(s)
to see whether the definitions it suggests really make sense. Thus, a decision
procedure for unifiability is not sufficient in this context. One needs a procedure
that also produces appropriate unifiers.

Due to the fact that the decidability status of unification in the DL ALC is a
long-standing open problem (at least in its ML variant of unification in K), the
work on unification in DLs has mostly concentrated on sub-Boolean fragments
of K. Originally, unification in DLs has been investigated in [9] for the DL FL0,
which offers the constructors conjunction (u), value restrictions (∀r.C), and the
top-concept (>). However, the usability of unification in this DL is impaired by
the facts that, on the one hand, there are almost no ontologies that use only FL0,
and on the other hand, the complexity of the unification problem is quite high
(ExpTime-complete).

In this paper, we consider unification in the DL EL, which differs from FL0

by offering existential restrictions (∃r.C) in place of value restrictions, and thus
corresponds to the fragment of K that uses only diamond, conjunction, and the
truth constant “true.” EL has recently drawn considerable attention since, on
the one hand, important inference problems such as the subsumption problem
are polynomial in EL [1, 12]. On the other hand, though quite inexpressive, EL
can be used to define biomedical ontologies. For example, both the large medical
ontology Snomed CT and the Gene Ontology1 can be expressed in EL. In [6],
we were able to show that unification in EL is of considerably lower complexity
than unification in FL0: the decision problem for EL is NP-complete. The main
steps in the proof of this statement given in [6] were the following. First, the
inverse subsumption order on concept descriptions was used to define an order
on substitutions:

σ � θ iff σ(X) v θ(X) holds for all variables X,

1see http://www.ihtsdo.org/snomed-ct/ and http://www.geneontology.org/

2

and it was shown that this order is well-founded. As an immediate consequence
of the well-foundedness of �, every solvable unification problem has a minimal
unifier. Second, it was shown that every minimal unifier is a local substitution,
where local substitutions are built from a polynomial number of so-called atoms
determined by the unification problem. Finally, a brute-force “guess and then
test” NP-algorithm was described, which guesses a local substitution and then
checks (in polynomial time) whether it is a unifier.

An obvious disadvantage of this brute-force algorithm is that it blindly guesses
a local substitution and only afterwards checks whether the guessed substitution
is a unifier. Thus, in general many substitutions will be generated that only in
the subsequent check turn out not to be unifiers. In contrast, the SAT reduction
presented in [7] is such that only unifiers are generated. To be more precise, it was
shown in [7] how a given unification problem Γ can be translated in polynomial
time into a propositional formula φΓ such that the satisfying valuations of φΓ

correspond to the local unifiers of Γ. The translation into SAT allows us to
employ existing highly optimized state-of-the-art SAT solvers for implementing
the unification algorithm. While this yields a quite efficient decision procedure
for unifiability, the fact that all local unifiers, rather than only minimal ones, are
generated turned out to be problematic if one wants to show the unifiers to the
user. In fact, even very small unification problems can have hundreds of local
unifiers, many of which do not make sense in the application. The set of all
minimal unifiers is a subset of the set of all local unifiers, whose cardinality is
usually much smaller.2 Another advantage of minimal unifiers is that they are
usually of smaller size (where the size of a substitution is the sum of the sizes of
the concept terms substituted for the variables), and are thus easier to read and
comprehend.

In [8] we describe a goal-oriented unification algorithm for EL, in which nonde-
terministic decisions are only made if they are triggered by “unsolved parts” of
the unification problem. By construction, this algorithm can only compute local
unifiers, and it is shown in [8] that all minimal ones are among the ones com-
puted by it. Though in our initial tests the number of unifiers computed by the
goal-oriented algorithm turned out to be usually much smaller than of the ones
computed by the SAT reduction, the goal-oriented algorithm is not guaranteed
to compute only minimal unifiers.

Following the assumption that it is desirable to compute only minimal unifiers
rather than all (or some additional non-minimal) local ones, this paper asks the
question whether the NP decision procedures for unification in EL presented
in [7] and [8] can be appropriately modified such that the successful runs of
the procedure produce exactly the minimal unifiers of the given EL-unification
problem. We show in Section 4 that the answer to this question is negative if

2 In the above example, the unifier we have described is the only minimal unifier, but the
SAT-translation computes 64 local unifiers, albeit first the minimal one.

3

Name Syntax Semantics

concept name A AI ⊆ ∆I

role name r rI ⊆ ∆I ×∆I

top-concept > >I = ∆I

conjunction C uD (C uD)I = CI ∩DI

existential restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

Table 1: Syntax and semantics of EL.

we use a slightly more general definition of the order �, where the subsumption
test σ(X) v θ(X) can be restricted to a subset of all variables. This restriction
is justified by the fact that the user may be interested only in the substitution-
images of some of the variables. In fact, the algorithms in [7] and [8] first flatten
the input problem, which introduces auxiliary variables. These auxiliary variables
are internal to the unification procedure and are not shown to the user.

All three EL-unification algorithms mentioned above (the brute-force algorithm,
the goal-oriented algorithm, and the one based on a reduction to SAT) actually
do not directly compute local unifiers, but so-called acyclic assignments, which
can be seen as compact representations of local unifiers. In Section 3 we ask
what properties of the acyclic assignment make the induced unifiers small. To
this purpose, we introduce a natural order on acyclic assignments and compare
it with the order � on the induced unifiers.

2 Unification in EL

Starting with a finite set NC of concept names and a finite set NR of role names,
EL-concept descriptions are built using the concept constructors top-concept (>),
conjunction (C uD), and existential restriction (∃r.C for every r ∈ NR).

An interpretation I = (∆I , ·I) consists of a nonempty domain ∆I and an inter-
pretation function ·I that assigns binary relations on ∆I to role names and subsets
of ∆I to concept descriptions, as shown in the semantics column of Table 1.

The concept description C is subsumed by the concept description D (written
C v D) iff CI ⊆ DI holds for all interpretations I. We say that C is equivalent
to D (written C ≡ D) iff C v D and D v C, i.e., iff CI = DI holds for all
interpretations I.

We will also need the notion of an acyclic TBox T , which is a finite set of con-
cept definitions of the form A ≡ C, where A is a concept name and C a concept
description, that is unambiguous and acyclic (see [3] for details). The interpre-
tation I is a model of T iff it satisfies all concept definitions in T , i.e., AI = CI

4

holds for all A ≡ C in T . The concept description C is subsumed by the concept
description D w.r.t. the acyclic TBox T (written C vT D) iff CI ⊆ DI holds for
all models I of T .

An EL-concept description is an atom if it is an existential restriction or a con-
cept name. The atoms of an EL-concept description C are the subdescriptions
of C that are atoms, and the top-level atoms of C are the atoms occurring in
the top-level conjunction of C. Obviously, any EL-concept description is the con-
junction of its top-level atoms, where the empty conjunction corresponds to the
top-concept >.

When defining unification in EL, we assume that the set of concept names is
partitioned into a set Nv of concept variables (which may be replaced by sub-
stitutions) and a set Nc of concept constants (which must not be replaced by
substitutions). A substitution σ is a mapping from Nv into the set of all EL-
concept descriptions. This mapping is extended to concept descriptions in the
usual way, i.e., by replacing all occurrences of variables in the description by their
σ-images. Unification tries to make concept descriptions equivalent by applying
a substitution.

Definition 1. An EL-unification problem is of the form Γ = {C1 ≡? D1, . . . ,
Cn ≡? Dn}, where C1, D1, . . . Cn, Dn are EL-concept descriptions. The substitu-
tion σ is a unifier (or solution) of Γ iff σ(Ci) ≡ σ(Di) for i = 1, . . . , n. In this
case, Γ is called solvable or unifiable.

We will sometimes use the subsumption C v? D as abbreviation for the equiv-
alence C u D ≡? C. Obviously, the substitution σ solves this subsumption iff
σ(C) v σ(D).

Flattening

As mentioned before, the algorithms in [7] and [8] first flatten the unification
problem. An atom is called flat if it is a concept name or an existential restriction
of the form ∃r.A for a concept name A. The unification problem Γ is called flat
if it contains only flat subsumptions of the form C1 u · · · uCn v? D, where n ≥ 0
and C1, . . . , Cn, D are flat atoms.3

Let Γ be a unification problem. By introducing auxiliary variables, Γ can be
transformed in polynomial time into a flat unification problem Γ′ such that the
unifiability status remains unchanged, i.e., Γ has a unifier iff Γ′ has a unifier. More
precisely, it can be shown that, restricted to the variables of Γ, every unifier of Γ′

is also a unifier of Γ. Conversely, every unifier of Γ can be extended to a unifier

3If n = 0, then we have an empty conjunction on the left-hand side, which as usual stands
for >.

5

of Γ′ by defining appropriate images for the auxiliary variables. Thus, we may
assume without loss of generality that our input EL-unification problems are flat.

Local unifiers

Let Γ be a flat unification problem. The atoms of Γ are the atoms of all the
concept descriptions occurring in Γ. We define

At := {C | C is an atom of Γ} and

Atnv := At \Nv (non-variable atoms).

Every assignment S of subsets SX of Atnv to the variables X in Nv induces the
following relation >S on Nv: >S is the transitive closure of

OS := {(X, Y) ∈ Nv ×Nv | Y occurs in an element of SX}.

We call the assignment S acyclic if >S is irreflexive (and thus a strict partial
order). Any acyclic assignment S induces a unique substitution σS, which can be
defined by induction along >S:

• If X is a minimal element of Nv w.r.t. >S, then we define σS(X) :=d
D∈SX D.

• Assume that σS(Y) is already defined for all Y such that X >S Y . Then
we define σS(X) :=

d
D∈SX σS(D).

We call a substitution σ local if it is of this form, i.e., if there is an acyclic
assignment S such that σ = σS. If the unifier σ of Γ is a local substitution, then
we call it a local unifier of Γ.

Theorem 2 ([6]). Let Γ be a flat unification problem. If Γ has a unifier, then it
also has a local unifier.

The theorem shows that, in order to decide unifiability of Γ, it is sufficient to
guess an acyclic assignment and then check whether the induced substitution is a
unifier. The remaining problem is that the induced unifier may be of exponential
size. However, in order to check whether a given acyclic assignment S induces a
unifier of Γ, one does not need to construct the unifier σS explicitly. In fact, S
can be turned into an acyclic TBox

TS := {X ≡
l

D∈SX

D | X ∈ Nv},

and it is easy to see that the following holds for arbitrary concept descriptions
E,F : σS(E) v σS(F) iff E vTS F . Since unification in EL w.r.t. acyclic TBoxes

6

can be decided in polynomial time [1], this obviously yields a way for checking,
in polynomial time, whether σS solves all equations of Γ.

The original proof of Theorem 2 in [6] was based on the notion of a minimal
unifier, though subsequent simpler proofs [7, 2] no longer need this notion.

For readers familiar with unification theory [10], it should be pointed out that
the order we use to define minimality of local unifiers (see below) is not the
instantiation pre-order on substitutions. In fact, it is an easy consequence of the
definition of local substitutions that they are ground (i.e., the images of variables
under these substitutions do not contain variables), and thus there is no further
instantiation possible.

Minimal unifiers

Given a set of variables X ⊆ Nv, we define

σ �X θ iff σ(X) v θ(X) holds for all variables X ∈ X ,

σ �X θ iff σ �X θ and θ 6�X σ.

We say that the unifier σ of Γ is X -minimal iff there is no unifier θ of Γ such that
σ �X θ. We say that two substitutions σ, θ are equivalent (σ ≡ θ) iff σ(X) ≡ θ(X)
holds for all X ∈ Nv. Note that we have σ ≡ θ iff σ �Nv θ and θ �Nv σ.

Lemma 3 ([8]). Let Γ be a flat unification problem.

1. If Γ is solvable, then it also has an Nv-minimal unifier.

2. Every Nv-minimal unifier is equivalent to a local unifier.

The first part of the lemma is an immediate consequence of the fact [8] that �Nv
is well-founded, whereas the proof of the second part in [8] is rather long and
intricate. Theorem 2 is an immediate consequence of Lemma 3.

3 Minimal unifiers versus minimal assignments

As mentioned before, we are interested in computing only the Nv-minimal uni-
fiers rather than all local unifiers of a given unification problem. All three EL-
unification algorithms mentioned in the introduction (the brute-force algorithm,
the goal-oriented algorithm, and the one based on a reduction to SAT) actually
compute acyclic assignments rather than directly local unifiers. Thus, one can
ask what properties of the assignment make unifiers small w.r.t. �Nv . To answer
this question, we define an order similar to �Nv on acyclic assignments. Let S, T

7

be acyclic assignments of subsets SX , TX of Atnv to the variables X in Nv. We
define

S ≥ T iff SX ⊇ TX holds for all X ∈ Nv.

Smaller assignments indeed yield smaller unifiers.

Lemma 4. If S ≥ T , then σS �Nv σT .

Proof. Obviously, S ≥ T implies OS ⊇ OT , and thus >S ⊇ >T . We show
σS(X) v σT (X) for all X ∈ Nv by induction along >S.

If X is a minimal element of Nv w.r.t. >S, then it is also a minimal element of
Nv w.r.t. >T since >S ⊇ >T . Thus, σS(X) =

d
D∈SX D and σT (X) =

d
E∈TX E.

Consequently, SX ⊇ TX implies that σS(X) v σT (X).

Assume that σS(Y) v σT (Y) holds for all Y such that X >S Y . Since >S ⊇ >T ,
this implies that σS(Z) v σT (Z) holds for all Z such that X >T Z. Since the
concept constructors of EL are monotonic w.r.t. subsumption and SX ⊇ TX , this
implies

σS(X) =
l

D∈SX

σS(D) v
l

D∈TX

σS(D) v
l

D∈TX

σT (D) = σT (X).

This completes the proof of the lemma.

As an easy consequence of this lemma we obtain that minimal unifiers are induced
by minimal acyclic assignments.

Theorem 5. Let Γ be a flat unification problem. Then the set

{σS | σS is a unifier of Γ and there is no acyclic assignment T for Γ
such that σT is a unifier of Γ and S > T}

contains all Nv-minimal unifiers of Γ up to equivalence.

Proof. Let θ be an Nv-minimal unifier of Γ. By Lemma 3, θ is (equivalent to)
a local unifier, and thus there exists an acyclic assignment T such that θ ≡ σT .
Let S be minimal among all assignments that induce a substitution equivalent to
θ, i.e., θ ≡ σS and there is no acyclic assignment T for Γ such that σT ≡ θ and
S > T .

We claim that this implies that there is no acyclic assignment T for Γ such that
σT is a unifier of Γ and S > T . Assume that such an assignment T exists. Then
Lemma 4 implies that σS �Nv σT . Minimality of S among all assignments that
induce a unifier equivalent to θ implies that σS 6≡ σT , and thus σS �Nv σT . This
contradicts the assumption that θ ≡ σS is Nv-minimal.

8

Thus, if one wants to generate all minimal unifiers, it is enough to generate only
the minimal acyclic assignments yielding unifiers. If the converse of Lemma 4
were true, we could also show that these assignments yield only minimal unifiers.
Unfortunately, the converse of Lemma 4 is not true, as demonstrated by the
following example.

Example 6. Let

Γ := {X ≡? ∃r.Y,X ≡? ∃r.Z, Y ≡? A,Z ≡? A}.

Consider the acyclic assignments S, T with

SX := {∃r.Y }, SY := {A}, SZ := {A};
TX := {∃r.Z}, TY := {A}, TZ := {A}.

Then σS(Y) = A = σT (Y), σS(Z) = A = σT (Z), and σS(X) = ∃r.A = σT (X),
i.e., σS = σT and this substitution is a unifier of Γ. In particular, this implies
σS �Nv σT . However, S ≥ T obviously does not hold since SX 6⊇ TX .

It is easy to see that S and T are minimal among the acyclic assignments generat-
ing unifiers of Γ. This shows that the same Nv-minimal unifier can be generated
by different minimal assignments.

We can also use a unifier σ of Γ to define an acyclic assignment Sσ:

SσX := {D ∈ Atnv | σ(X) v σ(D)}.

As shown in [2], this assignment is indeed acyclic.

Surprisingly, the analog of Lemma 4 does not hold: going from unifiers to the
induced acyclic assignments is neither monotone nor antitone.

Lemma 7. In general, θ �Nv σ implies neither Sθ ≥ Sσ nor Sσ ≥ Sθ, even if σ
and θ are equivalent to local unifiers of the given unification problem Γ.

Proof. Consider the unification problem

Γ := {A v? X, ∃r.X v? Y, Y v? ∃r.X ′}.

The following substitutions are obviously unifiers of Γ:

σ := {X 7→ >, X ′ 7→ >, Y 7→ ∃r.>},
θ := {X 7→ A,X ′ 7→ >, Y 7→ ∃r.>}.

and they satisfy θ �Nv σ.

The non-variable atoms of Γ are A, ∃r.X, and ∃r.X ′, and thus

SσX = ∅, SσX′ = ∅, SσY = {∃r.X,∃r.X ′},
SθX = {A}, SθX′ = ∅, SθY = {∃r.X ′}.

9

Since SσY 6⊆ SθY , we do not have Sθ ≥ Sσ; and since SθX 6⊆ SσX we do not have
Sσ ≥ Sθ.

Finally, note that (up to equivalence) σ and θ are local since they are the substi-
tutions respectively induced by Sσ and Sθ, i.e., σ ≡ σSσ and θ ≡ σSθ .

The example constructed in the above proof actually strengthens Example 6 in
the sense that it shows that the converse of Lemma 4 is not even true if we assume
σS �Nv σT rather than σS �Nv σT . Just take S = Sθ and T = Sσ. Indeed, we
have σSθ �Nv σSσ , but Sθ 6≥ Sσ.

A similar example can be used to show that the set

{σS | σS is a unifier of Γ and there is no acyclic assignment T for Γ
such that σT is a unifier of Γ and S > T}

may in general contain unifiers that are not Nv-minimal.

Example 8. Let

Γ := {A v? X, Y ≡? ∃r.X, ∃r.A v? Y }.

The non-variable atoms of Γ are A, ∃r.X, and ∃r.A. The acyclic assignments

SX = ∅, SY = {∃r.X},
TX = {A}, TY = {∃r.A}

generate the unifiers σS = {X 7→ >, Y 7→ ∃r.>} and σT = {X 7→ A, Y 7→ ∃r.A}
of Γ. We have σT �Nv σS, and thus σT is not Nv-minimal. However, it is easy to
see that there is no acyclic assignment U < T such that σU is a unifier of Γ.

In fact, assume that U < T . If UY = ∅, then σU(Y) = >, and thus σU does not
solve the equivalence Y ≡? ∃r.X independent of whether UX = {A} or UX =
∅. Consequently, we must have UY = {∃r.A} = TY , and thus σU(Y) = ∃r.A.
However, then U < T implies UX = ∅, i.e., σU(X) = >. But then σU again does
not solve the equivalence Y ≡? ∃r.X.

This example shows that, even if we only generate minimal acyclic assignments
that induce unifiers, this may yield additional local unifiers that are not Nv-
minimal.

We finish this section by investigating what happens if we compose the two trans-
formations S 7→ σS and σ 7→ Sσ.

Lemma 9. Let S be an assignment and σ a substitution. Then SσS ≥ S and
σ �Nv σSσ . If σ is a local substitution, then we even have σ ≡ σSσ .

10

Proof. If D ∈ SX , then σS(D) is a top-level conjunct of σS(X), and thus σS(X) v
σS(D), which shows D ∈ SσSX .

We show the other inequality by induction along >Sσ . If X is minimal, then
no variables occur in SσX , and thus σ(D) = D for all D ∈ SσX . This yields
σSσ(X) =

d
D∈SσX

D w σ(X) since all D ∈ SσX satisfy σ(X) v σ(D) = D.

Assume that for all Y ∈ Nv with X >Sσ Y we have σSσ(Y) w σ(Y). Consider
σSσ(X) =

d
D∈SσX

σσS(D). Since D ∈ SσX contains only variables that are smaller

than X w.r.t. >Sσ and the concept constructors of EL are monotone w.r.t. sub-
sumption, the induction assumption yields

l

D∈SσX

σσS(D) w
l

D∈SσX

σ(D).

Finally, since all D ∈ SσX satisfy σ(X) v σ(D), we have
l

D∈SσX

σ(D) w σ(X).

Since the subsumption relation is transitive, this completes the proof that σ �Nv
σSσ .

Finally, assume that σ is local, i.e., there is an acyclic assignment T such that
σ = σT . We must show σSσ �Nv σ. Because of the first statement of the lemma,
we have SσT ≥ T , and thus σSσ = σSσT �Nv σT = σ by Lemma 4.

4 The complexity of computing exactly the min-

imal unifiers

The three EL-unification algorithms mentioned in the introduction (the brute-
force algorithm, the goal-oriented algorithm, and the one based on a reduction
to SAT) are NP-decision procedures for unifiability that additionally compute
local unifiers in the following sense: each successful run of the nondeterministic
algorithm generates an acyclic assignment that induces a unifier. The brute-force
algorithm and the SAT-based algorithm generate all local unifiers, whereas the
goal-oriented algorithm generates all Nv-minimal unifiers, but may also generate
some additional, non-minimal local unifiers. In this section we investigate the
question whether there can exist an NP-algorithm that produces exactly the
minimal unifiers in this sense, i.e., where the successful runs yield a set of acyclic
assignments that induces exactly the set of minimal unifiers. For the general case
of X -minimality for an arbitrary subset X of Nv, we give a negative answer to
this question.

To this purpose, we consider the following decision problem, which we call the
minimal unifier containment problem:

11

Given: A flat EL-unification problem Γ, a set X ⊆ Nv, a concept constant
A ∈ Nc, and a concept variable X ∈ X .

Question: Is there an X -minimal unifier σ of Γ such that σ(X) v A?

Theorem 10. The minimal unifier containment problem is Σp
2-complete.

Proof. Containment in Σp
2 is easy to see. Guess an acyclic assignment S of Γ

and check (in polynomial time, using TS) whether it induces a unifier σS of Γ
that satisfies σS(X) v A. If this check succeeds, then use an NP-oracle to check
whether σS is X -minimal. In fact, an NP procedure for testing whether σS is not
X -minimal guesses an acyclic assignment T , and then uses subsumption tests
w.r.t. TS to check whether σS �X σT .

To show Σp
2-hardness, we use a reduction from the minimal model deduction

problem:

Given: A propositional formula φ in conjunctive normal form and a propositional
variable x.

Question: Is there a minimal model M of φ such that M |= x?

Here, minimality of propositional models is defined w.r.t. the following order on
propositional valuations: V ′ ≥ V iff for all propositional variables x, V |= x
implies V ′ |= x. Σp

2-completeness of the minimal model deduction problem is an
immediate consequence of Lemma 3.1 in [13].

In order to reduce the minimal model deduction problem (as specified above) to
the minimal unifier containment problem, we adapt the proof of NP-hardness of
EL-matching given in [5]. Let φ = φ1 ∧ · · · ∧ φm be a propositional formula in
conjunctive normal form and let {x1, . . . , xn} be the propositional variables of
this problem. Assume without loss of generality that x = x1.

For the propositional variables, we introduce the concept variables

{X1, . . . , Xn, X1, . . . , Xn},

which encode xi and ¬xi, respectively. In addition, we introduce concept variables
{Y1, . . . , Yn}, which are used for minimization, i.e.,

X = {Y1, . . . , Yn}.

Furthermore, we need concept constants A and B (encoding the truth values) and
a role name r. The unification problem Γφ,x constructed from the given minimal
model deduction problem consists of the equations introduced below.

First, we specify equations that ensure that A,B encode the truth values. For all
i, 1 ≤ i ≤ n, we add the equation

∃r.Xi u ∃r.X i ≡? ∃r.A u ∃r.B.

12

Obviously, any solution of this equation replaces

• either Xi by a concept description equivalent to A and X i by a concept
description equivalent to B (corresponding to xi = true),

• or Xi by a concept description equivalent to B and X i by a concept de-
scription equivalent to A (corresponding to xi = false).

In order to encode φ, we introduce an equation for every conjunct φj of φ, where
we view φj as the set of its disjuncts:

B u
l

xi∈φj

Xi u
l

¬xi∈φj

X i ≡? A uB

For example, if φj = x1 ∨ x2 ∨ x3 ∨ x4, then the corresponding equation is B u
X1 uX2 uX3 uX4 ≡? A u B. The above equation ensures that, among all the
concept variables occurring on the left-hand side, at least one must be replaced
by a concept description equivalent to A. This corresponds to the fact that, in
the conjunct φj, there must be at least one literal that evaluates to true. Note
that we need the concept name B on the left-hand side to cover the case where
all the variables occurring in it are substituted with A.

It is easy to see that (up to equivalence) the unifiers of the equations introduced
until now (which do not contain the variables in X) correspond exactly to the
propositional models of φ. Given a propositional valuation V of φ, we define the
corresponding substitution σV as follows:

• if V |= xi, then σV (Xi) := A and σV (X i) := B;

• if V |= ¬xi, then σV (Xi) := B and σV (X i) := A.

According to our observations above, V is a model of φ iff σV is a unifier of
the equations introduced above. In addition, any unifier of these equations is
equivalent to a unifier of the form σM for a model M of φ.

It remains to express minimal models as X -minimal unifiers. For this purpose,
we add the equations

A uB ≡? B uX i u Yi (3)

for all i, 1 ≤ i ≤ n. This completes the description of the unification problem
Γφ,x.

The effect of equation (3) is the following:

• If Xi is substituted with a concept description equivalent to A (correspond-
ing to xi being evaluated to true), then X i is substituted with a concept
description equivalent to B, and thus Yi must be substituted by a concept
description equivalent to A or A u B. In an X -minimal unifier, it is thus
substituted with a concept description equivalent to A.

13

• If Xi is substituted with a concept description equivalent to B (correspond-
ing to xi being evaluated to false), then X i is substituted with a concept
description equivalent to A, and thus Yi can be substituted by a concept
description equivalent to >, A, B, or A uB. In an X -minimal unifier, it is
thus substituted with a concept description equivalent to >.

We extend the definition of the substitution σV induced by a propositional valu-
ation V by setting:

• if σV (Xi) = A, then σV (Yi) := A;

• if σV (Xi) = B, then σV (Yi) := >.

We claim that the minimal models of φ correspond to the X -minimal unifiers of
Γφ,x.

Let M be a minimal model of φ, and σM the corresponding unifier of Γφ,x, as
defined above. Assume that σM is not X -minimal. Then there is an X -minimal
unifier θ of Γφ,x such that σM �X θ. Define the propositional valuation U
by setting U(xi) := true iff θ(Xi) ≡ A. We claim that θ ≡ σU . For X ∈
{X1, . . . , Xn, X1, . . . , Xn}, we clearly have θ(X) ≡ σU(X). For X ∈ {Y1, . . . , Yn},
θ(X) ≡ σU(X) is a consequence of the fact that, for a X -minimal unifier θ,
θ(Yi) ≡ A iff θ(Xi) ≡ A and θ(Yi) ≡ > iff θ(Xi) ≡ B. Since θ is a unifier of Γφ,x,
the same is true for σU , and thus U is a model of φ. However, it is easy to see
that σM �X θ ≡ σU implies that M > U , which contradicts minimality of M .
In fact, assume that U |= xi, i.e., σU(Xi) = A. Then σU(Yi) = A, which implies
σM(Yi) = A (due to σM �X σU), and thus M |= xi. This shows M ≥ U . Since
σM �X σU , there is an index i such that σM(Yi) @ σU(Yi). This is only possible if
σM(Yi) = A and σU(Yi) = >. But then σM(Xi) = A and σU(Xi) = B, and thus
M |= xi and U 6|= xi. This yields M > U . To sum up, we have shown:

If M is a minimal model of φ, then σM is an X -minimal unifier of Γφ,x.

Conversely, assume that θ is a minimal unifier of Γφ,x. As shown above, the
propositional valuation U defined as U(xi) := true iff θ(Xi) ≡ A is such that U is
a model of φ and θ ≡ σU . We claim that U is a minimal model of φ. Assume that
M is a model of φ such that U > M . First, note that U ≥M implies σU �X σM ,
i.e., σU(Yi) v σM(Yi) for all i, 1 ≤ i ≤ n. To see this, it is enough to show that
σM(Yi) = A implies σU(Yi) = A. However, σM(Yi) = A implies σM(Xi) = A,
which in turn implies M |= xi. But then U ≥ M yields U |= xi, and thus
σU(Xi) = A, which finally implies σU(Yi) = A. Since U > M , there is an index i
such that U |= xi, but M 6|= xi. But then σU(Yi) = A and σM(Yi) = >, and thus
σU(Yi) @ σM(Yi). This shows σU �X σM , which contradicts the X -minimality of
θ ≡ σU . To sum up, we have shown:

14

If θ is an X -minimal unifier of Γφ,x, then there is a minimal model M of φ
such that θ ≡ σM .

To finish the proof of the theorem, first assume that there is a minimal model
M of φ such that M |= x1. Then the X -minimal unifier σM of Γφ,x satisfies
σM(Y1) = A, and thus σM(Y1) v A. Conversely, assume that there is an X -
minimal unifier θ of Γφ,x such that θ(Y1) v A. Then there is a minimal model M
of φ such that θ ≡ σU . But then σU(Y1) ≡ θ(Y1) v A yields σU(Y1) = A, which
implies M |= x1.

To sum up, we have described a polynomial-time reduction of the minimal model
deduction problem to the minimal unifier containment problem. Since the former
problem is known to be Σp

2-hard, this shows Σp
2-hardness of the latter problem.

As an immediate consequence of this theorem, we can show that there cannot
be an NP-algorithm that generates exactly the minimal unifiers of the given EL-
unification problem.

Corollary 11. Unless the polynomial hierarchy collapses, there cannot exist an
NP-decision procedure for unifiability in EL that, given a flat EL-unification prob-
lem Γ and a subset X of the concept variables occurring in Γ, not only decides
unifiability of Γ, but additionally computes exactly the X -minimal unifiers of Γ
in the following sense:

• each successful run of the nondeterministic procedure generates an acyclic
assignment S such that the induced local unifier σS is an X -minimal unifier
of Γ, and

• for every X -minimal unifier θ of Γ there is a successful run of the non-
deterministic procedure that generates an acyclic assignment S such that
σS ≡ θ.

Proof. Assume that there exists an NP-decision procedure for unifiability in EL
that computes exactly the X -minimal unifiers of Γ in the sense introduced above.
Then we could decide the minimal unifier containment problem within NP. In
fact, the NP-procedure for deciding this problem is obtained by using the one that
computes exactly the X -minimal unifiers, but for every successful path of that
procedure checks whether the generated acyclic assignment S satisfies X vTS A.
This test can be performed in polynomial time, and it yields the same result
as testing whether σS(X) v A. Since the acyclic assignments generated by the
original NP-procedure correspond exactly to the X -minimal unifiers, there is a
successful path of the extended NP-procedure iff there is an X -minimal unifier
θ satisfying θ(X) v A. Thus, this extended procedure decides the minimal
unifier containment problem within NP. Obviously, membership of a Σp

2-complete
problem in NP would imply Σp

2 = NP . It is well-known that this would imply
that the whole polynomial hierarchy collapses.

15

5 Conclusion

The results of this paper indicate that it is not easy to compute all and only the
minimal unifiers of a given EL-unification problem. On the one hand, while it
is sufficient to compute only minimal acyclic assignment to obtain all minimal
unifiers, this restriction does not guarantee that only minimal unifiers are gener-
ated. On the other hand, NP-procedures cannot generate exactly the X -minimal
unifiers for subsets X of the set of all variables. It is an open problem whether
this last fact is also true if X is required to be the set of all variables.

References

[1] Franz Baader. Terminological cycles in a description logic with existential
restrictions. In Georg Gottlob and Toby Walsh, editors, Proc. of the 18th Int.
Joint Conf. on Artificial Intelligence (IJCAI’03), pages 325–330, Acapulco,
Mexico, 2003. Morgan Kaufmann.

[2] Franz Baader, Stefan Borgwardt, and Barbara Morawska. Extending unifi-
cation in EL towards general TBoxes. In Proc. KR’12. AAAI Press, 2012.
Short paper. To appear.

[3] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

[4] Franz Baader and Silvio Ghilardi. Unification in modal and description
logics. Logic Journal of the IGPL, 19(6):705–730, 2011.

[5] Franz Baader and Ralf Küsters. Matching in description logics with existen-
tial restrictions. In Proc. of the 7th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’00), pages 261–272, 2000.

[6] Franz Baader and Barbara Morawska. Unification in the description logic EL.
In Ralf Treinen, editor, Proc. of the 20th Int. Conf. on Rewriting Techniques
and Applications (RTA’09), volume 5595 of Lecture Notes in Computer Sci-
ence, pages 350–364. Springer-Verlag, 2009.

[7] Franz Baader and Barbara Morawska. SAT encoding of unification in EL.
In C. Fermüller and A. Voronkov, editors, Proc. of the 17th Int. Conf. on
Logic for Programming and Automated Reasoning (LPAR’10), volume 6397
of Lecture Notes in Computer Science, pages 97–111, Yogyakarta (Indonesia),
2010. Springer-Verlag.

[8] Franz Baader and Barbara Morawska. Unification in the description logic
EL. Logical Methods in Computer Science, 6(3), 2010.

16

[9] Franz Baader and Paliath Narendran. Unification of concept terms in de-
scription logics. J. of Symbolic Computation, 31(3):277–305, 2001.

[10] Franz Baader and Wayne Snyder. Unification theory. In J.A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, Volume I, pages
447–533. Elsevier Science Publishers, 2001.

[11] Sergey Babenyshev, Rybakov Vladimir, Renate Schmidt, and Dmitry
Tishkovsky. A tableau method for checking rule admissibility in S4. In Proc.
of the 6th Workshop on Methods for Modalities (M4M-6), Copenhagen, 2009.

[12] Sebastian Brandt. Polynomial time reasoning in a description logic with
existential restrictions, GCI axioms, and—what else? In Ramon López
de Mántaras and Lorenza Saitta, editors, Proc. of the 16th Eur. Conf. on
Artificial Intelligence (ECAI’04), pages 298–302, 2004.

[13] Thomas Eiter and Georg Gottlob. Propositional circumscription and ex-
tended closed world reasoning are ΠP

2 -complete. Theoretical Computer Sci-
ence, 114(2):231–245, 1993.

[14] Silvio Ghilardi. Unification through projectivity. Journal of Logic and Com-
putation, 7(6):733–752, 1997.

[15] Silvio Ghilardi. Unification in intuitionistic logic. Journal of Symbolic Logic,
64(2):859–880, 1999.

[16] Rosalie Iemhoff and George Metcalfe. Proof theory for admissible rules. Ann.
Pure Appl. Logic, 159(1-2):171–186, 2009.

[17] Marcus Kracht. Modal consequence relations. In Patrick Blackburn, Johan
van Benthem, and Frank Wolter, editors, The Handbook of Modal Logic,
pages 491–545. Elsevier, 2006.

[18] Vladimir V. Rybakov. Admissibility of logical inference rules, volume 136
of Studies in Logic and the Foundations of Mathematics. North-Holland
Publishing Co., Amsterdam, 1997.

[19] Vladimir V. Rybakov. Multi-modal and temporal logics with universal for-
mula - reduction of admissibility to validity and unification. Journal of Logic
and Computation, 18(4):509–519, 2008.

[20] Frank Wolter and Michael Zakharyaschev. Undecidability of the unification
and admissibility problems for modal and description logics. ACM Trans.
Comput. Log., 9(4), 2008.

17

