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Abstract We give a list of currently unsolved problems in abstract
argumentation. For each of the problems, we motivate why it is interesting
and what makes it (apparently) hard to solve.

1 Introduction

Formal argumentation has established itself as an active subfield of artificial
intelligence [16]. Argumentation is concerned with how conflicts between different
pieces of knowledge, possibly involving preferences among them, can be resolved
in a principled manner. The further subfield of abstract argumentation ignores
the potential internal structure of arguments, and instead concentrates on the
interaction between different arguments. The predominantly used approach is that
by Dung [20], where argumentation scenarios are represented using argumentation
frameworks (AFs) F = (A,R) consisting of a set A of abstract arguments and a
relation R of attacks between these arguments.

This seemingly lightweight formalism has led to a large amount of research
around it. Gerd Brewka is among those who had a lasting impact on the field.
With this paper, we want to honor his contributions and take the opportunity to
point out some avenues for future work.

We do this by collecting together various open problems from different areas
and presenting them all in one place.1 The list we give here is not necessarily
complete, nor is it representative. However, we think that it nicely illustrates
the breadth of abstract argumentation research, and the various connections to
other fields of mathematics and logic that have been discovered. For presentation
purposes, we keep the common background to a minimum, and rather introduce
the necessary background that is needed for each problem individually.

2 Background

In the following we consider a fixed countably infinite set U of arguments, called
universe. Furthermore, we define A = {F | F = (A,R), A ⊆ U , R ⊆ A × A}
containing all AFs w.r.t. U . Instead of (a, b) ∈ R we write a � b and say that

1 Independently, Stefan Woltran had the same idea for his invited talk “Abstract
Argumentation: All Problems Solved?” at ECAI 2014 (as part of the Frontiers of
Artificial Intelligence series). We took up several suggestions for open problems from
that talk and subsequent personal communication with Stefan.



a attacks b. For sets E1, E2 ⊆ A and arguments a, b ∈ A we say that E1 � b
if some a ∈ E1 attacks b, a � E2 if a attacks some b ∈ E2 and E1 � E2 if
some a ∈ E1 attacks some b ∈ E2. An argument a ∈ A is defended by a set
E ⊆ A in F if for each b ∈ A with b � a, E � b. The range E+ of a set of
arguments E is defined by the extension of E with all arguments attacked by E,
i.e. E+ = E ∪ {a ∈ A | E � a}.

A semantics σ is a function which assigns to any F a set of sets of argu-
ments denoted by σ(F ). Each one of them, a so-called σ-extension, is con-
sidered to be acceptable with respect to F (for a recent overview see [1]).
In the following we define conflict-free and admissible sets as well as com-
plete, preferred, semi-stable, stable, naive, stage, grounded, ideal and eager
semantics which will be frequently considered throughout the paper (abbreviated
by cf, adm, com, pr , ss, st ,nai , stg, grd, id, eg). Semantics that are used only once
will be defined in the corresponding sections.

Definition 1. Given an AF F = (A,R). We call a set E ⊆ A
1. E ∈ cf(F ) if for all a, b ∈ E we have a 6� b,
2. E ∈ adm(F ) if E ∈ cf(F ) and for all a� E also E � a,
3. E ∈ com(F ) if E ∈ adm(F ) and for any a ∈ A defended by E in F , a ∈ E,
4. E ∈ pr(F ) if E ∈ adm(F ) and there is no E′ ∈ adm(F ) s.t. E ( E′,
5. E ∈ ss(F ) if E ∈ adm(F ) and there is no E′ ∈ adm(F ) s.t. E+ ( E′+,
6. E ∈ st(F ) if E ∈ cf(F ) and E+ = A,
7. E ∈ nai(F ) if E ∈ cf(F ) and there is no E′ ∈ cf(F ) s.t. E ( E′,
8. E ∈ stg(F ) if E ∈ cf(F ) and there is no E′ ∈ cf(F ) s.t. E+ ( E′+,
9. E ∈ grd(F ) if E ∈ com(F ) and there is no E′ ∈ com(F ) s.t. E′ ( E.

10. E ∈ id(F ) if E ∈ adm(F ), E ⊆
⋂
P∈pr(F ) P and there is no E′ ∈ adm(F )

satisfying E′ ⊆
⋂
P∈pr(F ) P s.t. E ( E′,

11. E ∈ eg(F ) if E ∈ adm(F ), E ⊆
⋂
P∈ss(F) P and there is no E′ ∈ adm(F )

satisfying E′ ⊆
⋂
P∈ss(F) P s.t. E ( E′.

3 Open Problems

1. Given an AF, can all implicit conflicts (pairs of arguments that do not occur
jointly in any extension) be made explicit (by adding one or two attacks
between them)?

2. What are the signatures (sets of extension-sets that can be realized by AFs
under a semantics) of complete, cf2 and resolution-based grounded semantics?

3. What is the precise computational complexity of credulous acceptance with
respect to ideal semantics?

4. What is the maximal number of complete extensions in an AF with n
arguments?

5. Is there a closed-form expression for the average number of stable extensions
of AFs with n arguments and x attacks?

6. What is the (σ, Φ)-characteristic of semi-stable semantics?
7. What is the (stable, semi-stable, preferred)-spectrum?
8. How can normal deletion equivalence in case of stage, semi-stable, eager,

preferred, ideal and naive semantics be characterized?



3.1 Explicit-conflict conjecture

The fundamental building blocks of Dung’s AFs are arguments. The fundamental
means of expression, however, are attacks between arguments, as these ultimately
influence which arguments can be accepted together. An attack between two
arguments a and b is an explicit manifestation of a conflict between the two.
But in addition to such syntactic, explicit conflicts, incompatibilities between
arguments may also arise on the semantical level, that is, whenever two arguments
never occur in an extension together. In such a case, we will speak about an
implicit conflict. Clearly, for semantics based on conflict-freeness, each explicit
conflict leads to an implicit conflict. But it is also possible to have implicit
conflicts that are not explicit, as we show below in Figure 1. To make matters
more formal, consider the following definition. Roughly, for a set X of sets of
arguments (say, extensions), PairsX captures which arguments co-occur in at
least one of the elements of X. This relation directly yields implicit conflicts,
and can be used to figure out whether there are implicit conflicts that are not
explicit.

Definition 2. Let X ⊆ 2U and PairsX = {(a, b) | exists E ∈ X s.t. {a, b} ⊆ E}.
An AF F = (A,R) is conflict-explicit under semantics σ iff for each a, b ∈ A
such that (a, b) /∈ Pairsσ(F ), we find (a, b) ∈ R or (b, a) ∈ R (or both).

In words, a framework is conflict-explicit under σ if any two arguments of the
framework that do not occur jointly in a σ-extension are explicitly conflicting,
that is, there is an attack one way or the other.

c a b d

Figure 1: An argumentation framework that is not conflict-explicit under stable
semantics. Observe that st(F ) = {{a, d}, {b, c}} and (c, d) /∈ PairsS but (c, d) /∈ R
as well as (d, c) /∈ R. If we add attacks (c, d) or (d, c) we obtain an equivalent
(under stable semantics) conflict-explicit (under stable semantics) AF.

The open problem now consists of proving or disproving whether every AF
F has a conflict-explicit AF F ′ over the same arguments with the same stable
extensions.

Conjecture 1 For each AF F = (A,R) there exists an AF F ′ = (A,R′) which
is conflict-explicit under the stable semantics such that st(F ) = st(F ′).

While formulating this conjecture is reasonably straightforward (it is perhaps
the “easiest” conjecture of this paper, in terms of required background), Baumann
et al. [13] have illustrated in a series of examples that the problem itself is far from
easy. Clearly, given an argumentation framework F that is not conflict-explicit,
our first try at making it conflict-explicit would be to add, for each conflict that



is implicit but not explicit, an attack (or two). However, as Figure 2 shows, we
cannot choose attacks to add at random. This creates a combinatorial problem,
since for each of k non-explicit implicit conflicts, we have three possibilities of
how to deal with it, thus 3k possibilities in total. Even worse, just adding attacks

s a1 a2
a3

x1 x2 x3 y

Figure 2: Orientation of attacks due to previously non-explicit conflicts matters:
First observe that st(F ) = {{a1 , a2 , x3}, {a1 , a3 , x2}, {a2 , a3 , x1}, {s, y}}. Next,
Pairsst(F) yields one pair of arguments a1 and s whose conflict is not explicit by
F , that is, (a1, s) /∈ Pairsst(F), but (a1, s), (s, a1) /∈ RF . Now adding the attack
(a1, s) to F would create the additional stable extension {a1, a2, a3} /∈ st(F ). On
the other hand, by adding the attack (s, a1), we get the conflict-explicit AF F ′

with st(F ) = st(F ′).

does not suffice in the general case. In an example that is too large to reproduce
here, Baumann et al. [13] show that there are cases where one has to modify
parts of the framework that are not directly involved in the implicit conflicts.

3.2 Signatures of complete, cf2 and resolution-based grounded
semantics

Given an argumentation semantics σ, the signature of σ is the set

Σσ = {σ(F ) | F is an AF } .

That is, the signature of a semantics collects all sets of sets of arguments that
can possibly arise as extension-set of some argumentation framework. This is a
quite fundamental concept, since it provides a bird’s eye view on capabilities and
limitations of the semantics. For example, the signature of the grounded semantics
clearly contains only (and all) singleton sets, since the grounded semantics is
unique for any given AF, but an arbitrary singleton {E} is realized by the AF
(E, ∅).

The notion of signature has been defined and studied by Dunne et al. [24,25],
who also provide characterizations of the signatures for conflict-free, naive, stage,
admissible, preferred and stable semantics. A characterization of Σσ consists of
necessary and sufficient conditions that allow to decide (in a more sophisticated
way than using brute force), given a set X of desired extensions, whether there
exists an AF F such that σ(F ) = X. For example, for the grounded semantics,



the property of X being a singleton is both necessary and sufficient; therefore,
the easily checkable singleton property precisely characterizes Σgrd. For stable
semantics, it is a necessary condition that X is a ⊆-antichain, but this condition
is not sufficient as the extension-set X = {{a, b} , {a, c} , {b, c}} is not stable-
realizable [25] (while being a ⊆-antichain).

However, for several semantics, precise characterizations of their signatures
are as yet unknown. Among these are the complete, cf2 and resolution-based
grounded semantics. We will first recall some additional necessary technical
prerequisites to formulate the open problems. However, for a lack of space, we
have to refer the reader to [4] for details on the cf2 semantics.2 The resolution-
based family of semantics is defined as follows [2]: for an AF F = (A,R), a
resolution of F is any AF F ′ = (A,R′) such that R′ ⊆ R, (a, a) ∈ R implies
(a, a) ∈ R′, (a, b) ∈ R with a 6= b implies either (a, b) ∈ R′ or (b, a) ∈ R′ (but not
both). Denoting the set of all resolutions of F by γ(F ), for a semantics σ, its
resolution-based version σ∗ is defined by

σ∗(F ) = min
⊆

 ⋃
G∈γ(F )

σ(G)


The resolution-based grounded semantics is then the grounded instance of this
general scheme, that is, rbg = grd∗.

Now we can sketch the current state of knowledge and formulate the open
problems: For complete semantics, we have Σadm ( Σcom [25]. For cf2, the
current knowledge only says that Σnai ( Σcf2 ( Σstg.3 For the resolution-based
grounded semantics, we know that Σrbg ( Σpr and that Σrbg is incomparable to
the signatures of naive, stage and stable semantics [26]. Thus the open problem
is this:

Open Problem 2 What are exact characterizations of Σcom, Σcf2 , Σrbg?

3.3 Computational complexity of ideal semantics

The ideal semantics was introduced by Dung, Mancarella and Toni [21]. It covers
an important middle ground between the grounded semantics (that is sometimes
too restrictive) and sceptical reasoning over the preferred semantics (that is
sometimes too permissive). As an illustration, consider Figure 3, an example taken
from [22]. Recall that formally, for an argumentation framework F = (A,R), a set
S ⊆ A is an ideal set if it is admissible and a subset of each preferred extension.
Furthermore, S is the ideal extension if it is the ⊆-maximal ideal set. Thus
arises the question of the computational complexity of ideal semantics, that is,

2 Roughly, the computation of cf2 semantics proceeds along the strongly connected
components of AFs. Naive extensions are determined in all components in the order
of their dependence on one another, and statuses of arguments in previous SCCs are
propagated to subsequent SCCs.

3 Stefan Woltran, personal communication.



F1:

x
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F2:
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Figure 3: Two argumentation frameworks F1, F2. In both, the grounded extension
is empty, and argument w is contained in every preferred extension. The ideal
semantics can distinguish between the two, since in F1 argument w cannot defend
itself (ideal extension ∅) while in F2 it can (ideal extension {w}).

whether its attractive properties (from a semantical standpoint) are (somewhat
negatively) reflected in a high computational cost.

As a quick recapitulation [31], recall that the complexity class NP contains
all problems L that have polytime-computable witness relation; that is, L ∈ NP
iff there are WL ∈ P and k ∈ N such that: x ∈ L iff there is a y such that
(x, y) ∈WL and |y| ≤ |x|k. (Intuitively y is the polynomial-size witness proving
that x ∈ L.) The class coNP contains all languages L whose complement L is in
NP. The complexity class ΘP2 = PNP

‖ contains all problems that are decidable in
deterministic polynomial time using polynomially many non-adaptive calls to
an NP oracle. An NP oracle call can be understood as having a constant-time
decision subroutine for NP problems. Non-adaptive means that the oracle calls
are independent of each other, that is, the answer to one oracle call may not
influence a latter query to the oracle. (In the class ∆P

2 , on the other hand, oracle
calls can build upon one another.) There is a special subclass of ΘP2 , the class
DP = DP

2 , where the number of oracle calls is exactly two. We clearly find that
NP ⊆ DP

2 ⊆ ΘP2 = PNP
‖ ⊆ PNP = ∆P

2 .

Dunne [22] studies the following decision problems for ideal semantics:4

CAI Given F = (A,R) and a ∈ A, is a contained in the ideal extension of F?
INE Given F = (A,R), is its ideal extension non-empty?
VIE Given F = (A,R) and S ⊆ A, is S the ideal extension?

Theorem 1 ([22, Theorem 1]). CAI is coNP-hard; INE is NP-hard; VIE
is DP-hard.

Dunne [22] later provides conditional completeness results, dependent on
knowing the exact complexity of CAI:

Theorem 2 ([22, Theorem 6]).

– If CAI is NP-hard, then CAI is PNP
‖ -complete.

– If CAI is in coNP, then INE is NP-complete.
– If CAI is in coNP, then VIE is DP-complete.

4 The paper contains many more results, but for the purpose of this paper we are only
interested in the open problems.



Thus many of the open problems rest on resolving whether CAI is NP-hard
or CAI is in coNP. Currently, there is strong evidence that CAI is not in
coNP. This evidence rests on the (open) complexity of the unique satisfiability
problem (given a propositional formula ϕ, is there exactly one model for ϕ?),
and randomised reductions [22]. Dunne [22] shows that with high probability:

Conjecture 1. CAI, INE and VIE are PNP
‖ -complete.

Dunne et al. [23] observed that the ideal semantics can be parameterized with
respect to base semantics. They also conjecture the gap between the complexity
of credulous and skeptical acceptance for preferred extensions to be a major
influence on the difficulty in determining the precise complexity of ideal semantics.

3.4 Maximal number of complete extensions

In [14] the authors presented a first analytical and empirical study of the maximal
and average numbers of extensions in case of abstract argumentation frameworks.
The study was restricted to the case of stable semantics. In particular, it was shown
that for any AF possessing n arguments the maximal number of stable extensions
does not exceed 3

n
3 . Interestingly, the authors reduced the problem of determining

the maximal number of stable extensions in argumentation frameworks to the
problem of determining the maximal number of maximal independent sets in
undirected graphs. The latter was already solved by John W. Moon and Leo
Moser in 1965 [29].

We recapitulate the main theorem. The upper bound is presented as a function
in the number of arguments denoted by σmax(n).

Theorem 3 ([14, Theorem 1]). In the case of stable sematics, the function
σmax : N→ N is given by

σmax(n) =


1, if n = 0 or n = 1,

3s, if n ≥ 2 and n = 3s,

4 · 3s−1, if n ≥ 2 and n = 3s+ 1,

2 · 3s, if n ≥ 2 and n = 3s+ 2.

Recently, it was shown that σmax(n) also serves as the maximal number of
semi-stable, preferred, stage as well as naive extensions [25].

Why is it interesting to study the maximal number of extensions? The
obtained results can be used to provide lower bounds for the minimal realizability
of certain sets of extensions (cf. [13] for a detailed analysis). Furthermore, the
results may yield upper bounds for algorithms computing extensions. Last but not
least, the maximal number of extensions is simply a further criterion (or better,
fundamental property) which helps to classify the plethora of argumentation
semantics. This line of research was motivated and initiated by Pietro Baroni
and Massimiliano Giacomin [3].

In case of admissible and conflict-free sets we may only state the naive
bound 2n in case of n arguments. This is due to the fact that for any set A and



its associated AF FA = (A, ∅) we have cf(F ) = adm(F ) = 2A. Up to now we
were not able to find a proof for the maximal number of complete extensions.

Open Problem 3 What is σmax in case of complete semantics?

We as well as our colleagues from Vienna, Thomas Linsbichler and Stefan
Woltran, conjecture the following.

Conjecture 4 In case of complete semantics σmax : N→ N is given by

σmax(n) =


1, if n = 0 or n = 1,

3
n
2 , if n ≥ 2 and n even,

4 · 3n−3
2 , otherwise.

To see that the maximal number is at least as large as conjectured consider
the AFs En and On for even or odd n, respectively:

En =
({
ai, bi | 1 ≤ i ≤

n

2

}
,
{

(ai, bi), (bi, ai) | 1 ≤ i ≤
n

2

})
C3 = ({a, b, c} , {(a, b), (b, a), (a, c), (c, a), (b, c), (c, b)})

On = C3 ∪
({

ai, bi | 1 ≤ i ≤
n− 3

2

}
,
{

(ai, bi), (bi, ai) | 1 ≤ i ≤
n

2

})
Obviously, for even n, com(En) = 3

n
2 and for odd n ≥ 3, com(On) = 4 · 3n−3

2 .
To prove Conjecture 4, it would thus suffice to show that the given values are
also upper bounds for the maximal number of complete extensions.

3.5 Average number of stable extensions

What is the average number of extensions for an AF possessing n arguments and
k attacks? This means, we are interested in an expectation value without actually
inspecting the AF except for determining the parameters n and k, which can be
done in linear time. This problem was firstly tackled in [14] for the case of stable
semantics. The authors presented some precise values, denoted by σ(n, k), given
that the number of attacks k is close to 0 or close to n2.

Proposition 1 ([14, Proposition 3]). For any suitable5 n ∈ N, we have

σ(n, 0) = 1 σ(n, n2 − 3) =
3 · (n2 − n− 1)

(n+ 1) · (n2 − 2)

σ(n, 1) = 1− 1

n
σ(n, n2 − 2) =

2

n+ 1

σ(n, 2) = 1− 2n− 2

n2 + n
σ(n, n2 − 1) =

1

n

5 Note that AFs do not possess negative numbers of attacks. Consequently, the con-
sidered n’s have to ensure that the second argument of σ is non-negative.



The reason why the authors did not present a closed-form function is the
enourmus combinatorial blowup which has to be handled efficently. Nevertheless,
the achieved results can be used to show that the average number of stable
extensions in the case of very small numbers of attacks approaches from below
to 1. In the case of very large numbers of attacks we have a convergence to 0
from above. What happens in the middle ground? With an increasing number of
attacks, does the average number of stable extensions just decrease in a monotone
fashion? It turns out that while the number of attacks linearly increases, the
average number of extensions first decreases, then increases and then decreases
again. This observation is not restricted to a specific number of arguments (cf. [14,
Figures 1 and 2, Table 1]). The main open problem of this section is a sufficiently
precise specification of the function σ(n, k).

Open Problem 5 What is σ(n, k)?

In this regard we present two conjectures supported by the analytical and
empirical results in [14]. The first conjecture claims that the average number of
stable extensions of AFs is always located in between 0 and 1.

Conjecture 6 For any natural numbers n and k with 0 < k < n2 we have:

0 < σ(n, k) < 1.

The second conjecture claims that the local maximum always coincides with
n2 − n. This conjecture is precisely verified for AFs possessing at most 10
arguments (cf. [14, Table 1]).

Conjecture 7 Let n ∈ N and define σn(k) : N→ R where σn(k) = σ(n, k). Then,

σn(k) possesses a local maximum at kmax = n2 − n.

3.6 Minimal change problem for semi-stable semantics

More recently several problems regarding dynamic aspects of abstract argumenta-
tion have been addressed in the literature [18,19,17,27]. One much cited problem
among these concerns the acceptability of certain arguments and is called enfor-
cing problem [10]. This is, in brief, the question whether it is possible, given a
specific set of allowed operations, to modify a given AF such that a desired set
of arguments becomes an extension or a subset of an extension of the modified
AF. Several sufficient conditions under which enforcements are (im)possible were
identified.

Consider the following snapshot of a dialogue among agents A and B depicted
in Figure 4. Assume it is A’s turn and her desired set of arguments is E =
{a1, a2, a3}. Furthermore, A and B are discussing under preferred semantics.

In order to enforce E agent A may come up with new arguments (for example
through introducing an argument which attacks b2 and b3) and/or question old
arguments or attacks between them, respectively (for example through questioning
the self-attack of c). Please note that firstly, in this scenario enforcing is possible



a1 a2 a3

b1 b2 b3

c

jkj jkjklll
c b2 b3

d

?

Figure 4: Snapshot of a Dialogue

and secondly, there are at least two different possibilities to achieve that. This
observation leads to the more general problem of minimal change [7]. That is, in
brief, i) is it possible to enforce a desired set of arguments, and if so, ii) what
is the minimal number of modifications (additions or removals of attacks) to
reach such an enforcement. This value, called (σ, Φ)-characteristic, depends on
the underlying semantics σ and type of allowed modifications Φ. Here is the
precise definition taken from [7].

Definition 3. Given a semantics σ, an AF F = (A,R) and a relation Φ ⊆ A×A.
The (σ, Φ)-characteristic of a set C ⊆ A is a natural number or infinity defined
by the following function

NF
σ,Φ : 2A → N∞

C 7→


0, ∃C ′ : C ⊆ C ′ and C ′ ∈ σ(F )

k, k = min{d(F,G) | (F,G) ∈ Φ,NG
σ,Φ(C) = 0}

∞, otherwise.

The distance function d(F,G) is defined as the number of added or removed
attacks needed to transform F to G.

Quite surprisingly, it was shown that, in case of stable, preferred, complete
and admissible semantics there are local criteria to determine the characteristic,
although infinitely many possibilities to modify a given AF exist (see [9] for
detailled explanations including all proofs). Let us consider again the dialouge
depicted in Figure 4. Using the results in [7] one may show that the characteristic
equals 1 if we allow arbitrary modifications, 2 if the deletion of former attacks
is forbidden and ∞ (i.e. it is impossible to enforce {a1, a2, a3}) if A only can
come up with weaker arguments. These are fresh arguments which do not attack
previous arguments.

Let F be an AF and Φ be a certain modification type. Due to the fact that any
stable extension is a semi-stable one and furthermore, any semi-stable extension is
preferred we have, NF

st,Φ ≥ NF
ss,Φ ≥ NF

pr ,Φ ([7, Corollary 3]). Whereas NF
st,Φ and

NF
pr ,Φ are already computable a characterization in case of semi-stable semantics

remains an open problem.



Open Problem 8 Are there local criteria determining NF
ss,Φ?

The main reason why semi-stable semantics has defied any attempt of solving
is the requirement of range-maximization which cannot be decided by looking at
the candidate set only. On a final note, we want to mention that neither NF

st,Φ

nor NF
pr ,Φ coincide with NF

ss,Φ in general (cf. examples at the end of Sections 4.1,
4.2 and 4.3 in [7]).

3.7 Spectra and Fibres

An at first glance more theoretical problem is the so-called spectrum problem [11].
The name was chosen because of its similarity with the famous Spektralproblem
in model theory [32].6 Given a certain semantics σ and a modification type Φ,
the question is whether there is, for a given natural number n, an AF F and
a set of arguments E such that n is the (σ, Φ)-characteristic of E with respect
to F . In other words, we ask for the set of natural numbers which may occur
as (σ, Φ)-characteristics, the so-called (σ, Φ)-spectrum. More generally, one may
ask for n-tuples of characteristics representing several semantics simultaneously.
Here is the definition of the (st , ss, pr ,Φ)-spectrum.7

Definition 4. Let Φ ⊆ A × A. The (st , ss, pr ,Φ)-spectrum is a set of triples
(so-called fibres) defined as follows:

S(st,ss,pr ,Φ) = {(k, l,m) | ∃ AF F = (A,R) ∃ C ⊆ A, s.t.

NF
st,Φ = k,NF

ss,Φ = l and NF
pr ,Φ = m}.

The first open problem is related to the spectrum w.r.t. to weak expansions,
denoted by S(st,ss,pr ,W ). In case of weak expansion the addition of weaker ar-
guments, i.e. arguments which do not attack previous arguments, is allowed. In
case of stable and preferred semantics it is already shown [7, Theorem 6] that
there are only two possibilities, namely either a desired set is already contained
in an extension, i.e. the characteristic equals zero, or the set is unenforceable,
i.e. the characteristic equals infinity. Interestingly, semi-stable semantics does
possess values between zero and infinity. Here is an example.

F : a1 a2 a3

Figure 5: NF
ss,W ({a1}) = 2

In [11, Section 3.2] it is formally shown that NF
ss,W ({a1}) = 2 holds, indeed.

Morever, the AF F and the set {a1} justify (∞, 2, 0) ∈ S(st,ss,pr ,W ). Unfortu-
nately, up to now, there are no characterization theorems for semi-stable semantics

6 Roughly speaking, Scholz investigated the possible sizes finite models of a first-order
sentence may have.

7 A more general definition including arbitrary n-tuples is given in [11, Definition 2].



(see Problem 8). Nevertheless, several results are already achieved and it turns
out that a complete classification of S(st,ss,pr ,W ) can be given provided that the
following problem is solved.

Open Problem 9 For any natural number n ≥ 2, (∞, n, 0) ∈ S(st,ss,pr ,W )?

Conjecture 10 Yes!

The reason why we believe Yes! is the following proposition stating that there
are infinitely many numbers n between 2 and ∞, i.e. (∞, n, 0) is a fibre of the
(st , ss, pr ,W )-spectrum.

Proposition 2 ([11, Proposition 6]). For any natural number n ∈ N there
exists k ∈ N, such that n ≤ k ≤ 2n and (∞, k, 0) ∈ S(st,ss,pr ,W ).

The second open problem regarding spectra and fibres is with respect to
arbitrary modifications, so-called updates [8, Definition 5]. More precisely, what
are the fibres of the corresponding (st , ss, pr)-spectrum, denoted by S(st,ss,pr ,U ).

Open Problem 11 What is S(st,ss,pr ,U )?

It is already shown that (k, l,m) ∈ S(st,ss,pr ,U ) implies k ≥ l ≥ m [11, Propos-
ition 7]. This property is called m.d.s. – standing for “monotonic decreasing
sequence”. We conjecture that the considered spectrum is even m.d.s.-complete,
i.e. for any k ≥ l ≥ m we have (k, l,m) ∈ S(st,ss,pr ,U ).

Conjecture 12 S(st,ss,pr ,U ) is m.d.s.-complete.

To verify this conjecture one has to present witnessing AFs Fk,l,m together

with a certain set of arguments C, s.t. N
Fk,l,m

st,U (C) = k, N
Fk,l,m

ss,U (C) = l and

N
Fk,l,m

pr ,U (C) = m. Due to the multitude of possibilities to modify a certain
argumentation scenario together with the lack of local criteria to determine the
semi-stable characteristic (Problem 8) we were unable to find a proof so far.

The determination of spectra yields interesting insights into how particular
semantics are related. For instance, the fact that S(st,ss,pr ,U ) is m.d.s. simply
means that whenever enforcing is possible for all of them it is at least as difficult
using stable (semi-stable) semantics as it is using semi-stable (preferred) semantics.
If it is indeed m.d.s.-complete we know in addition that it can in fact be arbitrarily
more difficult.

3.8 Characterizing Normal Deletion Equivalence

Notions of equivalence which guarantee intersubstitutability w.r.t. further modi-
fications have received considerable interest in nonmonotonic reasoning (see
[28,34,33] among others). Quite recently this topic emerged in abstract argu-
mentation. In the following we list the notions considered in the literature in
chronological order (see [15,12] for recent overviews).

1. expansion and local expansion equivalence [30]8

8 In [30] the authors used the term strong equivalence instead of expansion equivalence.
Due to the different notions defined later, expansion equivalence became similarly
popular since the term precisely characterizes the considered modifications.



2. weak expansion equivalence [5]
3. normal and strong expansion equivalence [6]
4. minimal change equivalence [7]
5. update, deletion, local deletion and normal deletion equivalence [8]

Much work has been done to characterize the mentioned equivalence notions.
Many characterization theorems rely on kernels which are purely syntactical
concepts. Quite surprisingly, so-called context-sensitive kernels originally intro-
duced to characterize strong expansion equivalence even serve as parts of the
characterizations of normal deletion equivalence w.r.t. admissible, complete and
grounded semantics [8, Theorem 16]. Unfortunalety, further standard semantics
have defied any characterization attempts.

Open Problem 13 How to characterize normal deletion equivalence in case of
stage, semi-stable, eager, preferred, ideal and naive semantics?

We proceed with the precise definition togehter with an example.

Definition 5. Two AFs F = (A,R) and G = (B,S) are normal deletion
equivalent w.r.t. σ (denoted by F ≡σND G) iff for any set of argumens C,
σ(F \ C) = σ(G \ C). Hereby F \ C def=

(
(A,R)|A\C

)
.

Roughly speaking, normal deletion equivalent frameworks cannot be semantic-
ally distinguished by forgetting arguments together with their corresponding
attacks.

Example 1. Consider the following two AFs F and G.

aF : b c aG : b c

Although both possess the unique preferred extension {a} the AFs are not
normal deletion equivalent w.r.t. preferred semantics. This can be seen as follows.
If we retract the argument c, then {b} becomes preferred in G \ {c} but still not
in F \ {c}. Consequently, F 6≡pr

ND G.

aF \ {c} : b aG \ {c} : b

As a final note we mention that it is already checked that none of the existing
kernels can contribute anything to solving Open Problem 13. This means, if
kernels play a decisive role, then new kernel definitions are required.

4 Conclusion

We presented eight open problems in abstract argumentation, one of Gerd’s
major research areas in the last decade. For each of the problems, we tried to
motivate why the problem is important, gave a formal problem statement and
explained why the problem is (or at least seems to be) hard to solve. Some of the
problems stem directly from work that Gerd was personally involved in, while
others are inspired by his work.
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24. Paul E. Dunne, Wolfgang Dvořák, Thomas Linsbichler, and Stefan Woltran. Char-
acteristics of multiple viewpoints in abstract argumentation. In Proceedings of
DKB, pages 16–30, 2013.
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