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Outline

Level mappings

Generally terminating programs: Recurrent programs

Left terminating programs: Acceptable programs
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Does this Program Terminate?

wine(riesling, chicken).
wine(riesling, veal).
wine(kerner, veal).

diff(riesling, kerner).
diff(kerner, riesling).

interchangeable(X, Y) :- wine(X, Z), wine(Y, Z), diff(X, Y).
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Do these two Terminate?

edge(a, b).
edge(b, c).
edge(d, e).
path(X, Y) :- edge(X, Y).
path(X, Y) :- edge(X, Z), path(Z, Y).

arc(a, b).
arc(b, c).
arc(d, e).
connected(X, Y) :- arc(X, Y).
connected(X, Y) :- connected(X, Z), arc(Z, Y).
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And this one?

edge(a, b).
edge(b, c).
edge(d, e).
edge(c, a).

path(X, Y) :- edge(X, Y).
path(X, Y) :- edge(X, Z), path(Z, Y).
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What About this one?

edge(a, b).
edge(b, c).
edge(d, e).
edge(c, a).

dpath(X, Y, _) :- edge(X, Y).
dpath(X, Y, Depth) :- 
 Depth > 0,
 edge(X, Z), 
 Depth1 is Depth – 1,
 dpath(Z, Y, Depth1).

path(X, Y) :- dpath(X, Y, 10).
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A Difficult one ...

jump(1).

jump(N) :-
 N > 1, N mod 2 =:= 1, N1 is 3*N + 1, jump(N1).

jump(N) :-
 N > 1, N mod 2 =:= 0, N1 is N // 2, jump(N1).
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Termination May Depend on the Query

app([], X, X).
app([X|Y], Z, [X|U]) :- app(Y, Z, U).

The query app([a,b], Y, Z) terminates.

The query app(X, Y, [c,d]) terminates.

The query app(X, [e,f], Z) does not terminate.

How can we prove that certain programs and queries terminate?
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General vs. PROLOG Termination

app([], X, X).
app([X|Y], Z, [X|U]) :- app(Y, Z, U).

app3(X, Y, Z, U) :- app(X, Y, V), app(V, Z, U).

Query app3([a], [b], [c], U) has an infinite SLD-derivation.

However, PROLOG terminates.
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Multisets

multiset (written bag(a1, ..., an))

:Û

unordered sequence a1, ..., an

Á           (on finite multisets of natural numbers)

:Û

X Á           Y iff X = (Y – bag(a))  Z

 for some a  Y and Z such that b  Z. b < a

We write old(X, Y) :Û a and new(X, Y) :Û Z.

Note: Á           is irreflexive and antisymmetric
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Multiset Ordering

transitive closure of a relation R on a set A

:Û

smallest transitive relation on A that contains R

multiset ordering (Á          m) :Û transitive closure of Á          

Theorem 6.4

The multiset ordering Á          m is well-founded.
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Two Helpful Observations

Lemma 6.2

An infinite, finitely branching tree has an infinite branch.

Note 6.3

An irreflexive, antisymmetric relation is well-founded iff its transitive closure is 
well-founded.

Thus finiteness of an SLD-tree (hence, termination) can be proved by finding a 
suitable multiset assignment for queries.
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Level Mappings

level mapping for program P :Û function | | : HBP # ℕ

level of ground atom A :Û |A|

clause c recurrent w.r.t. | |

:Û

for every ground instance A ← B of c and every B  B:

 |A| > |B|

program P recurrent :Û for some level mapping | |,

 each c  P is recurrent w.r.t. | |
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Example (I)

 member(x, [x|y]) ←

 member(x, [y|z]) ← member(x, z)

With | member(s, t) | :Û “listsize” of t, the clauses are recurrent.

 subset([x|y], z) ← member(x, z), subset(y, z)

 subset([ ], x) ←

Define | subset(s, t) | :Û listsize(s) + listsize(t).

This shows that the entire program is recurrent.

Incidentally, the program always terminates for ground queries.
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Example (II)

 app([ ], x, x) ←

 app([x|y], z, [x|u]) ← app(y, z, u)

 rev([ ], [ ]) ←

 rev([x|y], z) ← rev(y, u), app(u, [x], z)

This program is not recurrent.

Incidentally, it does not always terminate for ground queries.

 rev([a, b], c) � rev([b], u1), app(u1, [a], c)

 � rev([ ], u2), app(u2, [b], u1), app(u1, [a], c)

 � rev([ ], u2), app(y3, [b], u3), app(u1, [a], c)

 � ...
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Bounded Queries

atom A bounded w.r.t. | |

:Û for some k  ℕ we have |A'|  k for all A'  ground(A)

level |A| of bounded atom A :Û max{|A'| | A'  ground(A)}

query bounded w.r.t. | | :Û all its atoms are bounded w.r.t. | |

query A1, ..., An bounded by k :Û |Ai|  k for i = 1, ..., n

level |Q| of bounded query Q = A1, ..., An

:Û bag(|A1|, ..., |An|)



17Foundations of Logic Programming Termination of Programs

Boundedness Lemma for Recurrent Programs

Lemma 6.8

Let P be a recurrent (w.r.t. | |) program. If Q1 is a query 
bounded w.r.t. | | and Q2 an SLD-resolvent of Q1, then 

Q2 is bounded w.r.t. | |

|Q2| Ám |Q1|

Proof:

1. Any instance Q' of Q is bounded and satisfies |Q'| ¹m |Q|.
2. An instance of a recurrent clause is recurrent.

3. For every recurrent H ← B and every bounded A, H, C,

 A, B, C is bounded and satisfies |A, B, C| Ám |A, H, C|.
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Finiteness for Recurrent Programs

Corollary 6.9

Let P be a recurrent program and Q a bounded query.

Then all SLD-derivations of P  {Q} are finite.
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Verifying Termination

listsize of a term t (|t|)

:Û

|[s|t]| = |t| + 1 

|f(t1, ..., tn)| = 0 if f  [•|•]

 list([ ]) ←

 list([x|y]) ← list(y)

Defining |list(t)| :Û |t|

shows that this program is recurrent,

hence always terminating for bounded queries.
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Importance of Choice of Level Mapping

 app([ ], x, x) ←

 app([x|y], z, [x|u]) ← app(y, z, u)

 

These clauses are recurrent w.r.t. |app(x, y, z)|1 :Û |x|

 and also w.r.t.  |app(x, y, z)|2 :Û |z|.

In each case we obtain different bounded queries.

E.g., app([a, b], y, z) is bounded w.r.t. | |1 but not w.r.t. | |2
 app(x, y, [c, d]) is bounded w.r.t. | |2 but not w.r.t. | |1

Both these queries are bounded w.r.t.

  |app(x, y, z)|3 :Û min(|x|, |z|)
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Limitations: General SLD vs. Prolog (I)

edge(a, b).
edge(b, c).
edge(d, e).
path(X, Y) :- edge(X, Y).
path(X, Y) :- edge(X, Z), path(Z, Y).

arc(a, b).
arc(b, c).
arc(d, e).
connected(X, Y) :- arc(X, Y).
connected(X, Y) :- connected(X, Z), arc(Z, Y).

Neither program is recurrent.

However, all LD-derivations for the first program are finite.
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Limitations: General SLD vs. Prolog (II)

 app([ ], x, x) ←

 app([x|y], z, [x|u]) ← app(y, z, u)

 app3(x, y, z, u) ← app(x, y, v), app(v, z, u)

 |app(x, y, z)| :Û min(|x|, |z|)

 |app3(x, y, z, u)| :Û |x| + |u| + 1

shows that the program is recurrent.

But app3([a], [b], [c], u) is not bounded w.r.t. | | and indeed has an infinite derivation.

However, all LD-derivations of P  {app3([a], [b], [c], u)} are finite.
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Acceptable Programs

clause c acceptable w.r.t. level mapping | | and interpretation I

:Û

I model of c,

for every ground instance A ← A, B, B of c and every B such that I ╞ A:

 |A| > |B|

program P acceptable

:Û for some level mapping | | and interpretation I, each c  P is acceptable 

 w.r.t. | | and I
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Example (I)

app([ ], x, x) ←

app([x|y], z, [x|u]) ← app(y, z, u)

rev([ ], [ ]) ←

rev([x|y], z) ← rev(y, u), app(u, [x], z)

 |app(x, y, z)| :Û min(|x|, |z|)

 |rev(x, y)| :Û |x|

 I :Û {app(x, y, z) | |x| + |y| = |z|}

  {rev(x, y) | |x| = |y|}

shows that the program is acceptable.
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Example (II)

app([ ], x, x) ←

app([x|y], z, [x|u]) ← app(y, z, u)

app3(x, y, z, u) ← app(x, y, v), app(v, z, u)

 |app(x, y, z)| :Û |x|

 |app3(x, y, z, u)| :Û |x| + |y| + 1

 I :Û {app(x, y, z) | |x| + |y| = |z|}

  ground(app3(x, y, z, u))

shows that the program is acceptable.
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Acceptability vs. Recurrence

Note 6.21

A program is recurrent w.r.t. | |

iff it is acceptable w.r.t. | | and HB.
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An Extended Notion of Boundedness (I)

Let | | be a level mapping, I an interpretation, k  ℕ.

query Q bounded by k w.r.t. | | and I

:Û

for every ground instance A, B, B of Q such that I ╞ A,

 |B|  k

query Q bounded w.r.t. | | and I

:Û Q bounded by some k w.r.t. | | and I
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Example

app([ ], x, x) ←

app([x|y], z, [x|u]) ← app(y, z, u)

app3(x, y, z, u) ← app(x, y, v), app(v, z, u)

 |app(x, y, z)| :Û |x|

 |app3(x, y, z, u)| :Û |x| + |y| + 1

 I :Û {app(x, y, z) | |x| + |y| = |z|}

  ground(app3(x, y, z, u))

The program is acceptable (w.r.t. | | and I),

and app3([a], [b], [c], u) is bounded (by k = 3) w.r.t. | | and I.
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A Notational Convention

max: P(ℕ) # ℕ  {} with

max S: 
⇔{0 if S=Ø

n if S is finite but not empty and with maximum n
 if S is infinite
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An Extended Notion of Boundedness (II)

Let Q be a query consisting of n  1 atoms.

Then for every i = 1, ..., n and every interpretation I,

 |Q|  :Û {|Ai| : A1, ..., An ground instance of Q

 I ╞ A1, ..., Ai–1}

If Q is bounded w.r.t. some | | and I, then

 |Q|I :Û bag(max |Q|  , ..., max |Q|  )

I
i

l

1

l

n
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Example

app([ ], x, x) ←

app([x|y], z, [x|u]) ← app(y, z, u)

app3(x, y, z, u) ← app(x, y, v), app(v, z, u)

 |app(x, y, z)| :Û |x|

 |app3(x, y, z, u)| :Û |x| + |y| + 1

 I :Û {app(x, y, z) | |x| + |y| = |z|}

  ground(app3(x, y, z, u))

 |app3([a], [b], [c], u)|I = bag(3)

 |app([a], [b], v1), app(v1, [c], u)|I = bag(1, 2)
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Boundedness Lemma for Acceptable Programs

Lemma 6.23

Let P be an acceptable (w.r.t. | | and I) program. If Q1 is a query 
bounded w.r.t. | | and I, and if Q2 is an LD-resolvent of Q1, then 

Q2 is bounded w.r.t. | | and I

|Q2|I Ám |Q1|I

Proof:

1. Any instance Q' of Q is bounded and satisfies |Q'|I ¹m |Q|I.
2. An instance of an acceptable clause is acceptable.

3. For every acceptable A ← B and every bounded A, C,

 B, C is bounded and satisfies |B, C|I Ám |A, C|I.

 (See the book on page 161.)
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Finiteness for Acceptable Programs

Corollary 6.24

Let P be an acceptable program and Q a bounded query.

Then all LD-derivations of P  {Q} are finite.
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Application

app([ ], x, x) ←

app([x|y], z, [x|u]) ← app(y, z, u)

perm([ ], [ ]) ←

perm(x, [y|z]) ← app(u, [y|v], x), app(u, v, w), perm(w, z)

 |app(x, y, z)| :Û min(|x|, |z|)

 |perm(x, y)| :Û |x| + 1

 I :Û {app(x, y, z) | |x| + |y| = |z|}

  ground(perm(x, y))

This shows that the program is acceptable.
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Objectives

Level mappings

Generally terminating programs: Recurrent programs

Left terminating programs: Acceptable programs
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