
1Foundations of Logic Programming Termination of Programs

Chapter 8

Termination of Programs

2Foundations of Logic Programming Termination of Programs

Outline

Level mappings

Generally terminating programs: Recurrent programs

Left terminating programs: Acceptable programs

3Foundations of Logic Programming Termination of Programs

Does this Program Terminate?

wine(riesling, chicken).
wine(riesling, veal).
wine(kerner, veal).

diff(riesling, kerner).
diff(kerner, riesling).

interchangeable(X, Y) :- wine(X, Z), wine(Y, Z), diff(X, Y).

4Foundations of Logic Programming Termination of Programs

Do these two Terminate?

edge(a, b).
edge(b, c).
edge(d, e).
path(X, Y) :- edge(X, Y).
path(X, Y) :- edge(X, Z), path(Z, Y).

arc(a, b).
arc(b, c).
arc(d, e).
connected(X, Y) :- arc(X, Y).
connected(X, Y) :- connected(X, Z), arc(Z, Y).

5Foundations of Logic Programming Termination of Programs

And this one?

edge(a, b).
edge(b, c).
edge(d, e).
edge(c, a).

path(X, Y) :- edge(X, Y).
path(X, Y) :- edge(X, Z), path(Z, Y).

6Foundations of Logic Programming Termination of Programs

What About this one?

edge(a, b).
edge(b, c).
edge(d, e).
edge(c, a).

dpath(X, Y, _) :- edge(X, Y).
dpath(X, Y, Depth) :-
 Depth > 0,
 edge(X, Z),
 Depth1 is Depth – 1,
 dpath(Z, Y, Depth1).

path(X, Y) :- dpath(X, Y, 10).

7Foundations of Logic Programming Termination of Programs

A Difficult one ...

jump(1).

jump(N) :-
 N > 1, N mod 2 =:= 1, N1 is 3*N + 1, jump(N1).

jump(N) :-
 N > 1, N mod 2 =:= 0, N1 is N // 2, jump(N1).

8Foundations of Logic Programming Termination of Programs

Termination May Depend on the Query

app([], X, X).
app([X|Y], Z, [X|U]) :- app(Y, Z, U).

The query app([a,b], Y, Z) terminates.

The query app(X, Y, [c,d]) terminates.

The query app(X, [e,f], Z) does not terminate.

How can we prove that certain programs and queries terminate?

9Foundations of Logic Programming Termination of Programs

General vs. PROLOG Termination

app([], X, X).
app([X|Y], Z, [X|U]) :- app(Y, Z, U).

app3(X, Y, Z, U) :- app(X, Y, V), app(V, Z, U).

Query app3([a], [b], [c], U) has an infinite SLD-derivation.

However, PROLOG terminates.

10Foundations of Logic Programming Termination of Programs

Multisets

multiset (written bag(a1, ..., an))

:Û

unordered sequence a1, ..., an

Á (on finite multisets of natural numbers)

:Û

X Á Y iff X = (Y – bag(a))  Z

 for some a  Y and Z such that b  Z. b < a

We write old(X, Y) :Û a and new(X, Y) :Û Z.

Note: Á is irreflexive and antisymmetric

11Foundations of Logic Programming Termination of Programs

Multiset Ordering

transitive closure of a relation R on a set A

:Û

smallest transitive relation on A that contains R

multiset ordering (Á m) :Û transitive closure of Á

Theorem 6.4

The multiset ordering Á m is well-founded.

12Foundations of Logic Programming Termination of Programs

Two Helpful Observations

Lemma 6.2

An infinite, finitely branching tree has an infinite branch.

Note 6.3

An irreflexive, antisymmetric relation is well-founded iff its transitive closure is
well-founded.

Thus finiteness of an SLD-tree (hence, termination) can be proved by finding a
suitable multiset assignment for queries.

13Foundations of Logic Programming Termination of Programs

Level Mappings

level mapping for program P :Û function | | : HBP # ℕ

level of ground atom A :Û |A|

clause c recurrent w.r.t. | |

:Û

for every ground instance A ← B of c and every B  B:

 |A| > |B|

program P recurrent :Û for some level mapping | |,

 each c  P is recurrent w.r.t. | |

14Foundations of Logic Programming Termination of Programs

Example (I)

 member(x, [x|y]) ←

 member(x, [y|z]) ← member(x, z)

With | member(s, t) | :Û “listsize” of t, the clauses are recurrent.

 subset([x|y], z) ← member(x, z), subset(y, z)

 subset([], x) ←

Define | subset(s, t) | :Û listsize(s) + listsize(t).

This shows that the entire program is recurrent.

Incidentally, the program always terminates for ground queries.

15Foundations of Logic Programming Termination of Programs

Example (II)

 app([], x, x) ←

 app([x|y], z, [x|u]) ← app(y, z, u)

 rev([], []) ←

 rev([x|y], z) ← rev(y, u), app(u, [x], z)

This program is not recurrent.

Incidentally, it does not always terminate for ground queries.

 rev([a, b], c) � rev([b], u1), app(u1, [a], c)

 � rev([], u2), app(u2, [b], u1), app(u1, [a], c)

 � rev([], u2), app(y3, [b], u3), app(u1, [a], c)

 � ...

16Foundations of Logic Programming Termination of Programs

Bounded Queries

atom A bounded w.r.t. | |

:Û for some k  ℕ we have |A'|  k for all A'  ground(A)

level |A| of bounded atom A :Û max{|A'| | A'  ground(A)}

query bounded w.r.t. | | :Û all its atoms are bounded w.r.t. | |

query A1, ..., An bounded by k :Û |Ai|  k for i = 1, ..., n

level |Q| of bounded query Q = A1, ..., An

:Û bag(|A1|, ..., |An|)

17Foundations of Logic Programming Termination of Programs

Boundedness Lemma for Recurrent Programs

Lemma 6.8

Let P be a recurrent (w.r.t. | |) program. If Q1 is a query
bounded w.r.t. | | and Q2 an SLD-resolvent of Q1, then

Q2 is bounded w.r.t. | |

|Q2| Ám |Q1|

Proof:

1. Any instance Q' of Q is bounded and satisfies |Q'| ¹m |Q|.
2. An instance of a recurrent clause is recurrent.

3. For every recurrent H ← B and every bounded A, H, C,

 A, B, C is bounded and satisfies |A, B, C| Ám |A, H, C|.

18Foundations of Logic Programming Termination of Programs

Finiteness for Recurrent Programs

Corollary 6.9

Let P be a recurrent program and Q a bounded query.

Then all SLD-derivations of P  {Q} are finite.

19Foundations of Logic Programming Termination of Programs

Verifying Termination

listsize of a term t (|t|)

:Û

|[s|t]| = |t| + 1

|f(t1, ..., tn)| = 0 if f  [•|•]

 list([]) ←

 list([x|y]) ← list(y)

Defining |list(t)| :Û |t|

shows that this program is recurrent,

hence always terminating for bounded queries.

20Foundations of Logic Programming Termination of Programs

Importance of Choice of Level Mapping

 app([], x, x) ←

 app([x|y], z, [x|u]) ← app(y, z, u)

These clauses are recurrent w.r.t. |app(x, y, z)|1 :Û |x|

 and also w.r.t. |app(x, y, z)|2 :Û |z|.

In each case we obtain different bounded queries.

E.g., app([a, b], y, z) is bounded w.r.t. | |1 but not w.r.t. | |2
 app(x, y, [c, d]) is bounded w.r.t. | |2 but not w.r.t. | |1

Both these queries are bounded w.r.t.

 |app(x, y, z)|3 :Û min(|x|, |z|)

21Foundations of Logic Programming Termination of Programs

Limitations: General SLD vs. Prolog (I)

edge(a, b).
edge(b, c).
edge(d, e).
path(X, Y) :- edge(X, Y).
path(X, Y) :- edge(X, Z), path(Z, Y).

arc(a, b).
arc(b, c).
arc(d, e).
connected(X, Y) :- arc(X, Y).
connected(X, Y) :- connected(X, Z), arc(Z, Y).

Neither program is recurrent.

However, all LD-derivations for the first program are finite.

22Foundations of Logic Programming Termination of Programs

Limitations: General SLD vs. Prolog (II)

 app([], x, x) ←

 app([x|y], z, [x|u]) ← app(y, z, u)

 app3(x, y, z, u) ← app(x, y, v), app(v, z, u)

 |app(x, y, z)| :Û min(|x|, |z|)

 |app3(x, y, z, u)| :Û |x| + |u| + 1

shows that the program is recurrent.

But app3([a], [b], [c], u) is not bounded w.r.t. | | and indeed has an infinite derivation.

However, all LD-derivations of P  {app3([a], [b], [c], u)} are finite.

23Foundations of Logic Programming Termination of Programs

Acceptable Programs

clause c acceptable w.r.t. level mapping | | and interpretation I

:Û

I model of c,

for every ground instance A ← A, B, B of c and every B such that I ╞ A:

 |A| > |B|

program P acceptable

:Û for some level mapping | | and interpretation I, each c  P is acceptable

 w.r.t. | | and I

24Foundations of Logic Programming Termination of Programs

Example (I)

app([], x, x) ←

app([x|y], z, [x|u]) ← app(y, z, u)

rev([], []) ←

rev([x|y], z) ← rev(y, u), app(u, [x], z)

 |app(x, y, z)| :Û min(|x|, |z|)

 |rev(x, y)| :Û |x|

 I :Û {app(x, y, z) | |x| + |y| = |z|}

  {rev(x, y) | |x| = |y|}

shows that the program is acceptable.

25Foundations of Logic Programming Termination of Programs

Example (II)

app([], x, x) ←

app([x|y], z, [x|u]) ← app(y, z, u)

app3(x, y, z, u) ← app(x, y, v), app(v, z, u)

 |app(x, y, z)| :Û |x|

 |app3(x, y, z, u)| :Û |x| + |y| + 1

 I :Û {app(x, y, z) | |x| + |y| = |z|}

  ground(app3(x, y, z, u))

shows that the program is acceptable.

26Foundations of Logic Programming Termination of Programs

Acceptability vs. Recurrence

Note 6.21

A program is recurrent w.r.t. | |

iff it is acceptable w.r.t. | | and HB.

27Foundations of Logic Programming Termination of Programs

An Extended Notion of Boundedness (I)

Let | | be a level mapping, I an interpretation, k  ℕ.

query Q bounded by k w.r.t. | | and I

:Û

for every ground instance A, B, B of Q such that I ╞ A,

 |B|  k

query Q bounded w.r.t. | | and I

:Û Q bounded by some k w.r.t. | | and I

28Foundations of Logic Programming Termination of Programs

Example

app([], x, x) ←

app([x|y], z, [x|u]) ← app(y, z, u)

app3(x, y, z, u) ← app(x, y, v), app(v, z, u)

 |app(x, y, z)| :Û |x|

 |app3(x, y, z, u)| :Û |x| + |y| + 1

 I :Û {app(x, y, z) | |x| + |y| = |z|}

  ground(app3(x, y, z, u))

The program is acceptable (w.r.t. | | and I),

and app3([a], [b], [c], u) is bounded (by k = 3) w.r.t. | | and I.

29Foundations of Logic Programming Termination of Programs

A Notational Convention

max: P(ℕ) # ℕ  {} with

max S:
⇔{0 if S=Ø

n if S is finite but not empty and with maximum n
 if S is infinite

30Foundations of Logic Programming Termination of Programs

An Extended Notion of Boundedness (II)

Let Q be a query consisting of n  1 atoms.

Then for every i = 1, ..., n and every interpretation I,

 |Q| :Û {|Ai| : A1, ..., An ground instance of Q

 I ╞ A1, ..., Ai–1}

If Q is bounded w.r.t. some | | and I, then

 |Q|I :Û bag(max |Q| , ..., max |Q|)

I
i

l

1

l

n

31Foundations of Logic Programming Termination of Programs

Example

app([], x, x) ←

app([x|y], z, [x|u]) ← app(y, z, u)

app3(x, y, z, u) ← app(x, y, v), app(v, z, u)

 |app(x, y, z)| :Û |x|

 |app3(x, y, z, u)| :Û |x| + |y| + 1

 I :Û {app(x, y, z) | |x| + |y| = |z|}

  ground(app3(x, y, z, u))

 |app3([a], [b], [c], u)|I = bag(3)

 |app([a], [b], v1), app(v1, [c], u)|I = bag(1, 2)

32Foundations of Logic Programming Termination of Programs

Boundedness Lemma for Acceptable Programs

Lemma 6.23

Let P be an acceptable (w.r.t. | | and I) program. If Q1 is a query
bounded w.r.t. | | and I, and if Q2 is an LD-resolvent of Q1, then

Q2 is bounded w.r.t. | | and I

|Q2|I Ám |Q1|I

Proof:

1. Any instance Q' of Q is bounded and satisfies |Q'|I ¹m |Q|I.
2. An instance of an acceptable clause is acceptable.

3. For every acceptable A ← B and every bounded A, C,

 B, C is bounded and satisfies |B, C|I Ám |A, C|I.

 (See the book on page 161.)

33Foundations of Logic Programming Termination of Programs

Finiteness for Acceptable Programs

Corollary 6.24

Let P be an acceptable program and Q a bounded query.

Then all LD-derivations of P  {Q} are finite.

34Foundations of Logic Programming Termination of Programs

Application

app([], x, x) ←

app([x|y], z, [x|u]) ← app(y, z, u)

perm([], []) ←

perm(x, [y|z]) ← app(u, [y|v], x), app(u, v, w), perm(w, z)

 |app(x, y, z)| :Û min(|x|, |z|)

 |perm(x, y)| :Û |x| + 1

 I :Û {app(x, y, z) | |x| + |y| = |z|}

  ground(perm(x, y))

This shows that the program is acceptable.

35Foundations of Logic Programming Termination of Programs

Objectives

Level mappings

Generally terminating programs: Recurrent programs

Left terminating programs: Acceptable programs

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35

