

SEMINAR: KNOWLEDGE REPRESENTATION

Session 1: Introduction / Course Organization

Jonas Karge, Sebastian Rudolph

Computational Logic Group

Slides based in part on Material of Bernardo Cuenca Grau, Ian Horrocks, and Przemysław Walęga

TU Dresden, June 14, 2021

Course information

- Seminar Sessions: Mondays at DS 3
- Examination: Presentation and Term Paper (for modules: INF-AQUA, INF-04-HS, INF-D-940, MCL-PS)

- Examination: non-graded Oral Exam (for modul: INF-PM-FOR)
- For each seminar session there will be a text to read
- Each text will be presented by a student and discussed afterwards
- For more information (email, slides, ...):

```
https://iccl.inf.tu-dresden.de/web/Seminar:
_Knowledge_Representation_(WS2021)
```

Aims of the course

Three objectives:

- 1 Develop skills to do research on previously unknown formalisms;
- 2 Learn how to present key concepts in a well structured way (orally as well as in written form);
- 3 Obtain an understanding of a selection of key topics in Knowledge Representation and Reasoning such as:

- The role of logic in KR
- Modal Logics and some extensions
- Nonmonotonic Reasoning
- Reasoning under Uncertainty

What is Knowledge Representation and Reasoning?

Jonas Karge, June 14, 2021 Seminar: Knowledge Representation slide 4 of 16

What is Knowledge?

Unsettled question and subject to an involved (philosophical) discussion.

What seems clear:

- Statements that involve the notion of "knowledge" typically are of the form: "John knows that Mary is going to the party."
- It seems: Knowledge involves an agent (e.g. John) who forms a judgment about some proposition p (e.g. Mary is going to the party).

- Knowledge seems to involve the truth of the proposition.
- This observation can be used to distinguish knowledge from belief.

What is Representation?

This question seems to be equally vexing.

Roughly, we see representation as:

- A relationship between two domains, where the first is meant to take the place of the second.
- We call the first domain the representor. It is typically more accessible than the second.
- We are mostly concerned with formal symbols as type of representor (e.g. "7" stands for the number 7).

Knowledge representation can then be understood as: "The field of study concerned with using formal symbols to represent a collection of propositions believed by some putative agent" (Brachman & Levesque, 2004: 4).

What is Reasoning?

Brachman & Levesque: "It is the formal manipulation of the symbols representing a collection of believed propositions to produce representations of new ones (2004: 4)."

In our case, this production of new propositions is done via logical inference. With that, we could summarize the general procedure of (logic-based) knowledge representation as follows:

- 1 Start with some set of propisitions.
- 2 Find a good way to formally represent these propositions.
- 3 Apply a suitable form of logical inference to produce new propositions.

General Course Expectations

Presentation

Expectations:

- Presentation of the text for a session of around 30 minutes.
- Goal: Introduce the formalism and key concepts from the text on a formal as well as on an intuitive level.
- Use slides to support your presentation but try to speak as little from your notes as possible.
- Answer central questions such as: What motivates this particular formalism? How
 does it accomplish that? What are the advantages and disadvantages of this
 approach?
- Take questions from the audience after your presentation.
- 50% of the final grade.

Term Paper

Expectations:

- Term paper of around 5 pages where you scrutinize one of the formalisms from the seminar in more detail.
- The term paper will be written during the summer break.
- There will be a consultation session by the end of the semester.
- Make use of additional literature by doing a little bit of research on your own.
- Have a reasonable research question.
- 50% of the final grade.
- Possible approach:
 - 1 Concisely present one of the formalisms from the seminar;
 - 2 Pick one of its drawbacks;
 - 3 Find out how that drawback can be overcome.

Seminar

Expectations:

- Everyone is expected to have read the text for each session (before the seminar starts);
- Everyone is encouraged to contribute to a (hopefully) lively discussion after the presentations.

Literature and Presentation Dates

First Block: Modal Logic and Extensions

26.04 Introduction to Modal Logics - Semantics

Text: Rosja Mastop: Modal Logic for Artificial Intelligence (2011) (Chapter 2 - 4.3)

03.05 Introduction to Modal Logics - Proof Theory

Text: Rosja Mastop: Modal Logic for Artificial Intelligence (2011) (Chapter 5 + 6)

10.05 Temporal Reasoning

Text: Handbook of Knowledge Representation, Temporal Representation and Reasoning (2008) (Chapter 12 - 12.2.3) + Rosja Mastop: Modal Logic for Artificial Intelligence (2011) (Chapter 8-8.4)

17.05 Epistemic Logic

Text: Ernest Davis: Epistemic Logic and its Applications: Tutorial Notes (2009)

Second Block: Nonmonotonic Reasoning

31.05 Introduction to NMR

Text: Handbook of Knowledge Representation, Nonmonotonic Reasoning (2008) (Chapter 6)

07.06 Default Logic

Text: Grigoris Antoniou: A Tutorial on Default Logics (1999)

14.06 Autoepistemic Logic

Text: R.C. Moore: Semantical Considerations on Nonmonotonic Logic (1985)

21.06 New: NMR - Recap and Critizism

Text: Raymond Reiter: Nonmonotonic Reasoning (1987)

Third Block: Reasoning under Uncertainty

28.06 Introduction to Reasoning under Uncertainty

Text: Denoeux, Dubois, Prade: Representations of Uncertainty in Artificial Intelligence: Probability and Possibility (2020) (Chapter 1 - 3.4)

05.07 **Dempster Shafer Theory**

Text: Liu, Yager: Classic Works of the Dempster-Shafer Theory of Belief Functions: An Introduction (2008) (Chapter 1 - 4)

12.07 Paradoxes in Dempster Shafer Theory

Text: Khan, Anwar: Paradox Elimination in Dempster-Shafer Combination Rule with Novel Entropy Function: Application in Decision-Level Multi-Sensor Fusion (2019)

Summary and Outlook

Reading material for every session which will be presented by a student.

Term paper at the end of the semester.

Open questions:

- What's next? (A recap on logic next week)
- Are there any volunteers for the first presentations?