
DATABASE THEORY

Lecture 9: Query Optimisation

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 29th May 2018

Review

We have studied FO queries and the simpler conjunctive queries

Our focus was on query answering complexity:

Combined Query Data
complexity complexity complexity

FO queries PSpace-comp. PSpace-comp. in AC0

Conjunctive queries NP-comp. NP-comp. in AC0

Tree CQs in P in P in AC0

Bounded Treewidth CQs in P in P in AC0

Bounded Hypertree width CQs in P in P in AC0

Markus Krötzsch, 29th May 2018 Database Theory slide 2 of 22

Static Query Optimisation

Can we optimise query execution without looking at the database?

Queries are logical formulae, so some things might follow . . .

Query equivalence:
Will the queries Q1 and Q2 return the same answers over any database?

• In symbols: Q1 ≡ Q2

• We have seen many examples of equivalent transformations in exercises

• Several uses for optimisation:
{ DBMS could run the “nicer” of two equivalent queries
{ DBMS could use cached results of one query for the other
{ Also applicable to equivalent subqueries

Markus Krötzsch, 29th May 2018 Database Theory slide 3 of 22

Static Query Optimisation (2)

Other things that could be useful:

• Query emptiness: Will query Q never have any results?

{ Special equivalence with an “empty query”
(e.g., x , x or R(x) ∧ ¬R(x))

{ Empty (sub)queries could be answered immediately

• Query containment: Will the query Q1 return a subset of the results of query Q2?
(in symbols: Q1 v Q2)

{ Generalisation of equivalence:
Q1 ≡ Q2 if and only if Q1 v Q2 and Q2 v Q1

• Query minimisation: Given a query Q, can we find an equivalent query Q′ that is
“as simple as possible.”

Markus Krötzsch, 29th May 2018 Database Theory slide 4 of 22



First-order logic: Decidable or not?

We have seen in recent lectures:

• FO queries can be answered in PSpace (combined complexity) and AC0 (data
complexity)

• FO queries correspond to relational algebra, so every relational DBMS answers FO
queries in practice

In foundational courses on logic, you should have learned

• Reasoning in first-order logic is undecidable

Indeed, Wikipedia says it too (so it must be true . . . ):

• “Unlike propositional logic, first-order logic is undecidable (although
semidecidable)” [Wikidedia article First-order logic]

Is the first-order logic we use different from the first-order logic used elsewhere?
Is mathematics inconsistent?

Markus Krötzsch, 29th May 2018 Database Theory slide 5 of 22

Solving the Mystery

All of the above are true for first-order logic
but people are studying different decision problems:

Problem 1: Model Checking

• Given: a logical sentence ϕ and a finite model I
• Question: is I a model for ϕ, i.e., is ϕ satisfied in I?

• Corresponds to Boolean query entailment

• PSpace-complete for first-order sentences

Problem 2: Satisfiability Checking

• Given: a logical sentence ϕ

• Question: does ϕ have any model?

• (Turing-)equivalent to many reasoning problems (entailment, tautology,
unsatisfiability, etc.)

• Undecidable for first-order sentences
Markus Krötzsch, 29th May 2018 Database Theory slide 6 of 22

Back to Query Optimisation

What do these results mean for query optimisation?

Two similar questions:

(1) Are the Boolean FO queries ϕ1 and ϕ2 equivalent?

(2) Are the FO sentences ϕ1 and ϕ2 equivalent?

{ So FO query equivalence is undecidable?

However, (1) is not equivalent to (2) but to the following:

(2’) Are the FO sentences ϕ1 and ϕ2 equivalent in all finite interpretations?

{ finite-model reasoning for FO logic

Markus Krötzsch, 29th May 2018 Database Theory slide 7 of 22

Finite-Model Reasoning

Does it really make a difference?

Yes. Example formula ϕ:

(∀x.∃y.R(x, y)
) ∧

(∀x, y1, y2.R(x, y1) ∧ R(x, y2)→ y1 ≈ y2
) ∧ R is a function . . .

(∀x1, x2, y.R(x1, y) ∧ R(x2, y)→ x1 ≈ x2
) ∧ . . . and injective . . .

(∃y.∀x.¬R(x, y)
)

. . . but not surjective

Such a function R can only exist over an infinite domain.
{ over finite models, ϕ is unsatisfiable
{ ϕ is finitely equivalent to ∀x.R(x, x) ∧ ¬R(x, x)
{ this equivalence does not hold on arbitrary models

Markus Krötzsch, 29th May 2018 Database Theory slide 8 of 22



Trakhtenbrot’s Theorem

Is finite-model reasoning easier than FO reasoning in general?

Unfortunately no:

Theorem 9.1 (Boris Trakhtenbrot, 1950): Finite-model reasoning of first-order
logic is undecidable.

Interesting observation:

• The set of all true sentences (tautologies) of FO is recursively enumerable
(“FO entailment is semi-decidable”)

• but the set of all FO tautologies under finite models is not.

{ finite model reasoning is harder than FO reasoning in this case!

Markus Krötzsch, 29th May 2018 Database Theory slide 9 of 22

Let’s Prove Trakhtenbrot’s Theorem

Proof idea: reduce the Halting Problem to finite satisfiability

• Input of the reduction:
a deterministic Turing Machine (DTM)M and an input string w

• Output of the reduction: a first-order formula ϕM,w

• Such thatM halts on w if and only if ϕM,w has a finite model

Ok, this would do, because Halting of DTMs is undecidable,
but how should we achieve this?

• Capture the computation of the DTM in a finite model

• The model contains the whole run: the tape and state for every computation step

• A finite part of the tape is enough if the DTM halts

Markus Krötzsch, 29th May 2018 Database Theory slide 10 of 22

TM Runs as Finite Models

Recall: Turing Machine is given asM = 〈Q, qstart, qacc, Σ, ∆〉
(state set Q, tape alphabet Σ with blank �, transitions ∆ ⊆ (Q × Σ) × (Q × Σ × {l, r, s}))

A configuration is a (finite piece of) tape + a position + a state:

q ∈ Q
↓

T A P E C O N T E N T S � · · ·

Here is how we want part of our model (database) to look:

SE, HqST SA SP SC

. . .
right right right right right

Markus Krötzsch, 29th May 2018 Database Theory slide 11 of 22

Encoding TM Runs as Relational Structures

We use several unary predicate symbols to mark tape cells:

• Sσ(·) for each σ ∈ Σ: tape cell contains symbol σ

• Hq(·) for each q ∈ Q: head is at tape cell, and TM is in state q

We use two binary predicate symbols to connect tape positions:

• right(·, ·): neighbouring tape cells at same step

• right+(·, ·): transitive super-relation of right

• future(·, ·): tape cells at same position in consecutive steps

Markus Krötzsch, 29th May 2018 Database Theory slide 12 of 22



Intended Database

SEST , Hq1 SA SP SC

right right right right right

right right right right right

right right right right right

future
future

future

future
future

future

future
future

future

future
future

future

future
future

future

SESH SA, Hq2 SP SC

SESH SO, Hq3 SP SC

(right+ is not shown)

We now need to specify formulae to enforce this intended structure
(or something that is close enough to it).

Markus Krötzsch, 29th May 2018 Database Theory slide 13 of 22

Defining the Initial Configuration

Require that right+ is a transitive super-relation of right:

ϕright+ = ∀x, y.(right(x, y)→ right+(x, y)) ∧
∀x, y, z.(right(x, y) ∧ right+(y, z)→ right+(x, z))

Define start configuration for an input word w = σ1σ2 . . . σn:

ϕw = ∃x1, . . . , xn.Hqstart (x1) ∧ ¬∃z.right(z, x1) ∧
Sσ1 (x1) ∧ ¬∃z.future(z, x1) ∧ right(x1, x2) ∧
Sσ2 (x2) ∧ ¬∃z.future(z, x2) ∧ right(x2, x3) ∧
. . .

Sσn (xn) ∧ ¬∃z.future(z, xn) ∧
∀y.

(
right+(xn, y)→ (S�(y) ∧ ¬∃z.future(z, y))

)

{ there can be any number of cells right of the input, but they must contain �.
Markus Krötzsch, 29th May 2018 Database Theory slide 14 of 22

Consistent Tape Contents, Head, and State

A cell can only contain one symbol:

ϕS =
∧

σ,σ′∈Σ,σ,σ′
∀x.

(¬Sσ(x) ∨ ¬Sσ′ (x)
)

The TM is never at more than one position:

ϕH =
∧

q∈Q
∀x, y.

Hq(x) ∧ right+(x, y)→
∧

q′∈Q
¬Hq′ (y)

 ∧

∧

q∈Q
∀x, y.

right+(x, y) ∧ Hq(y)→
∧

q′∈Q
¬Hq′ (x)



The TM can only be in one state:

ϕQ =
∧

q,q′∈Q,q,q′
∀x.

(¬Hq(x) ∨ ¬Hq′ (x)
)

Markus Krötzsch, 29th May 2018 Database Theory slide 15 of 22

Transitions

For every non-moving transition δ = 〈q,σ, q′,σ′, s〉 ∈ ∆:

ϕδ = ∀x.Hq(x) ∧ Sσ(x)→ ∃y.future(x, y) ∧ Sσ′ (y) ∧ Hq′ (y)

For every right-moving transition δ = 〈q,σ, q′,σ′, r〉 ∈ ∆:

ϕδ = ∀x.Hq(x) ∧ Sσ(x)→ ∃y.future(x, y) ∧ Sσ′ (y) ∧ ∃z.right(y, z) ∧ Hq′ (z)

For every left-moving transition δ = 〈q,σ, q′,σ′, l〉 ∈ ∆:

ϕδ = ∀x.Hq(x) ∧ Sσ(x) ∧ (∃v.right(v, x))→ ∃y.future(x, y) ∧ Sσ′ (y) ∧
∃z.right(y, z) ∧ Hq′ (z)

Summing all up:

ϕ∆ =
∧

δ∈∆
ϕδ

Markus Krötzsch, 29th May 2018 Database Theory slide 16 of 22



Preserve Tape if not Changed by Transition

Contents of tape cells that are not under the head are kept:

ϕmem = ∀x, y.

∧

σ∈Σ

Sσ(x) ∧

∧

q∈Q
¬Hq(x)

 ∧ future(x, y)→ Sσ(y)



Markus Krötzsch, 29th May 2018 Database Theory slide 17 of 22

Building the Configuration Grid

If one cell has a future (→) or past (←), respectively, all cells of the tape do:

ϕfp1 = ∀x2, y1.(∃x1.right(x1, y1) ∧ future(x1, x2))↔ (∃y2.future(y1, y2) ∧ right(x2, y2))

ϕfp2 = ∀x1, y2.(∃y1.right(x1, y1) ∧ future(y1, y2))↔ (∃x2.future(x1, x2) ∧ right(x2, y2))

Left (l) and right (r) neighbours, and future (f ) and past (p) are unique:

ϕr = ∀x, y, y′.right(x, y) ∧ right(x, y′)→ y ≈ y′

ϕl = ∀x, x′, y.right(x, y) ∧ right(x′, y)→ x ≈ x′

ϕf = ∀x, y, y′.future(x, y) ∧ future(x, y′)→ y ≈ y′

ϕp = ∀x, x′, y.future(x, y) ∧ future(x′, y)→ x ≈ x′

Markus Krötzsch, 29th May 2018 Database Theory slide 18 of 22

Finishing the Proof of Trakhtenbrot’s Theorem

We obtain a final FO formula

ϕM,w = ϕright+ ∧ ϕw ∧ ϕS ∧ ϕH ∧ ϕQ ∧ ϕ∆ ∧ ϕmem ∧
ϕfp1 ∧ ϕfp2 ∧ ϕr ∧ ϕl ∧ ϕf ∧ ϕp

Then ϕM,w is finitely satisfiable if and only ifM halts on w:

• IfM has a finite run when started on w,
then ϕM,w has a finite model that encodes this run.

• If ϕM,w has a finite model,
then we can extract from this model a finite run ofM on w.

Note: the proof can be made to work using only one binary relation symbol and no
equality (not too hard, but less readable)

Markus Krötzsch, 29th May 2018 Database Theory slide 19 of 22

The Impossibility of FO Query Optimisation

Trakhtenbrot’s Theorem has severe consequences for static FO query optimisation

Theorem 9.2 (Exercise): All of the following decision problems are undecidable:

• Query equivalence

• Query emptiness

• Query containment

{ “perfect” FO query optimisation is impossible

Other important questions about FO queries are also undecidable, for example:

• Is a given FO query domain independent?

Markus Krötzsch, 29th May 2018 Database Theory slide 20 of 22



Is Query Optimisation Futile?

Not quite: things are simpler for conjunctive queries

Example 9.3: Conjunctive query containment:

Q1 : ∃x, y, z. R(x, y) ∧ R(y, y) ∧ R(y, z)

Q2 : ∃u, v, w, t. R(u, v) ∧ R(v, w) ∧ R(w, t)

Q1 find R-paths of length two with a loop in the middle
Q2 find R-paths of length three

{ in a loop one can find paths of any length
{ Q1 v Q2

Markus Krötzsch, 29th May 2018 Database Theory slide 21 of 22

Summary and Outlook

There are many well-defined static optimisation tasks that are independent of the
database
{ query equivalence, containment, emptiness

Unfortunately, all of them are undecidable for FO queries
{ Slogan: “all interesting questions about FO queries are undecidable”

Open questions:

• More positive results for conjunctive queries

• Measure expressivity rather than just complexity

• Look at query languages beyond first-order logic

Markus Krötzsch, 29th May 2018 Database Theory slide 22 of 22


