Foundations of Semantic Web Technologies

Tutorial 1

Sebastian Rudolph
SS 2015

Exercise 1.1. Explain the following elements of the RDF and RDFS vocabulary (pre-
suming the usual namespace definitions).

(a) rdf:type (f) rdf:resource
(b) rdf:about (g) rdf:nil

(c) rdf:Property (h) rdfs:label
(d) rdf:Seq (i) rdfs:member
(e) rdfs:Resource (j) rdf:value

Exercise 1.2. Decide if the following propositions are true or false:
(a) Blank nodes can stand for arbitrary resources.
(b) URISs can stand for arbitrary resources.
(c) Every blank node has an ID.
(d) Two blank nodes with different IDs can stand for the same resource.
(e) Two different URIs can stand for the same resource.

(f) Blank nodes carrying the same ID that occur in several RDF documents must
stand for the same resource.

(g) URIs that occur in several RDF documents must stand for the same resource.
(h) Two different Literals can never stand for the same value.

(i) Two Literals with different datatype can never stand for the same value.

() A URI can never stand for a datatype value.

(k) Blank nodes cannot occur in the predicate position of triples.

(1) Blank nodes cannot stand for properties (that is, resources that belong to the class
rdf:Property).



Exercise 1.3. Consider the following RDF document:

<rdf :RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax—ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:iswww="http://sw.edu/#"

>

<rdf:Description rdf:about="http://sw.edu/#germany">
<rdf:type rdf:resource="http://sw.edu/#country" />
</rdf:Description>

<rdf:Description rdf:about="http://sw.edu/#capital_of">
<rdf:type
rdf:resource="http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#Property"/
>
<rdfs:domain rdf:resource="http://sw.edu/#city" />
<rdfs:range rdf:resource="http://sw.edu/#country" />
</rdf:Description>

<rdf:Description rdf:about="http://sw.edu/#country">
<rdf:type rdf:resource="http://www.w3.0rg/2000/01/rdf-schema#Class" />
<rdfs:label xml:lang="de">Land</rdfs:label>

</rdf:Description>

<rdf:Description rdf:about="http://sw.edu/#berlin">
<rdfs:label xml:lang="en">Berlin</rdfs:label>
<rdf:type rdf:resource="http://sw.edu/#city" />
<iswww:capital_of rdf:resource="http://sw.edu/#germany" />
</rdf:Description>

<rdf:Description rdf:about="http://sw.edu/#city">
<rdf:type rdf:resource="http://www.w3.0rg/2000/01/rdf-schema#Class" />
<rdfs:label xml:lang="de">Stadt</rdfs:label>

</rdf:Description>

</rdf:RDF>
e Describe in natural language the content of this document.
e Draw the graph representation of the above document.

e Translate the document into Turtle syntax.



Exercise 1.4. Represent the following sketch of an RDF graph in RDF/XML syntax:

rdfs:ContainerMembershipProperty

rdf:type

ex:hasIngredient

rdfs:range

rdfs:subClassOf

ex: Allerg@

'
-
assertional knowledge (RDF) H
'
'
'
'

dfs:subPropertyOf

ex:thaiDishBasedOn

rdfs:domain

terminological knowledge (RDFS)

'
N ex:eats . ex:thaiDishBasedOn N
ex:sebastian ex:ThaiCurry ex:coconutMilk

Exercise 1.5. Explain the difference between open and closed lists and give for each
an example in Turtle syntax. What is meant by “open” and “closed”?

Exercise 1.6. Represent the following sentences graphically by means of reified triples
(for space reasons, you may use usual prefixes instead of full URIs):

e Romeo thought that Juliet was dead.
e John believes that Mary wants to marry him.
e The dwarf noticed that somebody had been eating from his plate.

Exercise 1.7. Decide whether the following propositions can be satisfactorily modeled
in RDFS and, if so, give the corresponding RDF(S) specification.

e Every pizza is a meal.
e Pizzas always have at least two toppings.
e Every pizza from the class PizzaMargarita has a Tomato topping.

Everything having a topping is a pizza.

e No pizza from the class PizzaMargarita has atopping from the class Meat.
e “Having a topping” is a containedness relation.

Exercise 1.8. Describe an RDFS interpretation that is a model of the example ontology
from Exercise 1.4.

Exercise 1.9. For the ontology from Exercise 1.4, find
e atriple that is simply entailed,
e a triple that is RDF-entailed but not simply entailed,

e a triple that is RDFS-entailed but not RDF-entailed.



Exercise 1.10. As you know, the unique name assumption does not hold in RDF(S),
i.e. in a model, several URIs might be assigned to the same resource. Contemplate
whether (and if so, how) it is possible to specify in RDFS that two given URIs refer to
the same resource.

Exercise 1.11. The empty graph does not contain any triples (i.e. it corresponds to the
empty set). Give derivations showing that the empty graph RDFS-entails the following
triples:

1. rdfs:Resource rdf:type rdfs:Class.

2. rdfs:Class rdf:type rdfs:Class.

3. rdfs:Literal rdf:type rdfs:Class.

4. rdf:XMLLiteral rdf:type rdfs:Class.

5. rdfs:Datatype rdf:type rdfs:Class.

6. rdf:Seq rdf:type rdfs:Class.

7. rdf:Bag rdf:type rdfs:Class.

8. rdf:Alt rdf:type rdfs:Class.

9. rdfs:Container rdf:type rdfs:Class.
10. rdf:List rdf:type rdfs:Class.
11. rdfs:ContainerMembershipProperty rdf:type rdfs:Class.
12. rdf:Property rdf:type rdfs:Class.
13. rdf:Statement rdf:type rdfs:Class.
14. rdfs:domain rdf:type rdf:Property.
15. rdfs:range rdf:type rdf:Property.
16. rdfs:subPropertyOf rdf:type rdf:Property .
17. rdfs:subClassOf rdf:type rdf:Property.
18. rdfs:member rdf:type rdf:Property.
19. rdfs:seeAlso rdf:type rdf:Property .
20. rdfs:isDefinedBy rdf:type rdf:Property.
21. rdfs:comment rdf:type rdf:Property .

22. rdfs:label rdf:type rdf:Property.



Exercise 1.12. Let the instance I be given as follows (find a visualization in Fig. 1):
1(00,01),7(01,11),u(11,12), r(12,22), u(22, 23),r(23, 33), (11, 31), u(31, 33)
and the Datalog program

d(x,z) + ulx,y) Ar(
d(z, z) + r(z,y) Au(y, 2)
d(z,2) + d(z,y) ANd(y, 2)

=
w
N

Provide a naive algorithm for computing all instances of the relation (the predicate) d,
based on the fixpoint semantics. For each iteration step, note down which tuple belong
to the (intermediate) relation.

Abbildung 1: Visualization of the instance from Exercise 1.12

Exercise 1.13. Note that the theorem linking the RDFS entailment with the presented
deduction calculus just guarantees soundness of the latter. When the calculus was pro-
vided in the RDF semantics specification, it was also considered complete, but a bit
later that turned out not to be the case.

As an example of the calculus’ incompleteness, consider the following set of triples:

ex:isHappilyMarriedTo rdfs:subPropertyOf _:bnode
_:bnode rdfs:domain ex:Person
ex:markus ex:isHappilyMarriedTo ex:anja

It is not hard to show that the triple
ex:markus rdf:type ex:Person

is a semantic consequence of the above. However, it cannot be derived by means of the
given deduction calculus. Make a suggestion how the calculus could be “repaired”.



