

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Introduction to Automatic StructuresSummer Semester 2016Exercise Sheet 5 – Word Automatic Structures and First-Order-Logic7th June 2016PD Dr.-Ing. habil. Anni-Yasmin Turhan & Dipl.-Math. Francesco Kriegel

Hint. For two structures \mathcal{A} and \mathcal{B} , we write $\mathcal{A} \leq_{\text{FOL}} \mathcal{B}$ if \mathcal{A} is FOL-definable in \mathcal{B} .

Exercise 5.1 Decide whether the following statements are true or false. Justify your answer.

- (a) Each automata presentable structure has a countable domain.
- (b) There is a finite structure which is not automata presentable.
- (c) If $\mathcal{A} \cong \mathcal{B}$, and \mathcal{A} is automata presentable, then \mathcal{B} is automata presentable, too.
- (d) If $\mathcal{A} \leq_{\text{FOL}} \mathcal{B}$, and \mathcal{A} is automata presentable, then \mathcal{B} is automata presentable, too.
- (e) If $\mathcal{A} \cong \mathcal{B}$, and \mathcal{A} is universal, then \mathcal{B} is universal, too.
- (f) If $\mathcal{A} \leq_{\text{FOL}} \mathcal{B}$, and \mathcal{A} is universal, then \mathcal{B} is universal, too.
- (g) If A is a structure with a pairing function, i.e., a bijection $p: A \times A \rightarrow A$, then A is not automata presentable.

Exercise 5.2 Let $\mathcal{A} := (A; R_1, ..., R_n)$ be a structure such that k_i is the arity of R_i . A congruence relation \approx on \mathcal{A} is an equivalence relation on A that is compatible with each relation R_i of \mathcal{A} , i.e., for each index $i \in \{1, ..., n\}$, $(x_1, ..., x_{k_i}) \in R_i$ and $x_1 \approx y_1, ..., x_{k_i} \approx y_{k_i}$ imply $(y_1, ..., y_{k_i}) \in R_i$. Then, the *quotient* of \mathcal{A} with respect to \approx is defined as the structure

$$A_{\nearrow} \coloneqq (A_{\approx}; R_{1}_{\approx}, \ldots, R_{m}_{\approx}),$$

the domain of which is defined as the quotient

$$A_{\nearrow} \coloneqq \{ [a]_{\approx} \mid a \in A \}$$

that consists of *congruence classes* $[a]_{\approx} := \{ b \in A \mid a \approx b \}$, and furthermore for each index $i \in \{1, ..., m\}$,

$$R_{i/\approx} := \{ ([a_1]_{\approx}, \ldots, [a_{k_i}]_{\approx}) \mid (a_1, \ldots, a_{k_i}) \in R_i \}.$$

Show the following claim:

If \mathcal{A} and \approx are automatic, then their quotient \mathcal{A}_{\approx} is automata presentable.

Hiut Show that $\{ a \in A \mid \forall b \in A : a \approx b \implies a \leq_{\text{llex}} b \}$ is FOL-definable in $(A; R_1, \ldots, R_n, \approx, \leq_{\text{llex}})$.

Exercise 5.3 Let $\mathcal{A} := (A; R_1, ..., R_m)$ be a structure such that k_i is the arity of R_i . Show that the following statements are equivalent:

- (a) \mathcal{A} is automata presentable.
- (b) \mathcal{A} is isomorphic to an automatic structure.
- (c) There is a regular language $L_{\delta} \subseteq \Sigma^*$ and a surjective function $\nu \colon L_{\delta} \to A$ such that the following conditions are satisfied:
 - The kernel $L_{\epsilon} := \ker \nu = \{ (w_1, w_2) \in L_{\delta} \times L_{\delta} | \nu(w_1) = \nu(w_2) \}$ is automatic,
 - for each $i \in \{1, \ldots, m\}$, the relation $L_{R_i} := \{ (w_1, \ldots, w_{k_i}) \in (L_{\delta})^{k_i} | (\nu(w_1), \ldots, \nu(w_{k_i})) \in R_i \}$ is automatic, and
 - L_{ϵ} is a congruence relation of $(L_{\delta}; L_{R_1}, \ldots, L_{R_m})$.

Exercise 5.4 Let $\mathcal{A} \coloneqq (A; R_1, \dots, R_m)$ and $\mathcal{B} \coloneqq (B; S_1, \dots, S_n)$ be structures. Prove that the following statements are equivalent:

- (a) \mathcal{A} is isomorphic to a structure that is FOL-definable in \mathcal{B} .
- (b) There is a *FOL-interpretation* of \mathcal{A} in \mathcal{B} , i.e., there are FOL-formulae $\phi_{\delta}, \phi_{\epsilon}, \phi_{R_1}, \dots, \phi_{R_m}$ over the signature of \mathcal{B} and a surjective function $\nu : \phi_{\delta}^{\mathcal{B}} \to A$ such that the following conditions hold:
 - $\phi_{\epsilon}^{\mathcal{B}} = \ker \nu$,
 - for each $i \in \{1, ..., m\}$, it is true that $\phi_{R_i}^{\mathcal{B}} = \{ (w_1, ..., w_{k_i}) \mid (\nu(w_1, ..., \nu(w_{k_i})) \in R_i \}$, and
 - $\phi_{\epsilon}^{\mathcal{B}}$ is a congruence relation of $(\phi_{\delta}^{\mathcal{B}}; \phi_{R_1}^{\mathcal{B}}, \dots, \phi_{R_m}^{\mathcal{B}})$.

Exercise 5.5 Consider the structure $(\mathbb{N}; +, |_p)$ where + denotes the addition of two natural numbers, and $|_p$ is the *weak divisibility* for a $p \in \mathbb{N} \setminus \{0, 1\}$ defined by $x |_p y$ if $\exists k \in \mathbb{N} : x = p^k | y$.

Prove the following statements:

- (a) $(\mathbb{N}; +, |_p)$ is automata presentable.
- (b) $(\mathbb{N};+,|_p)$ is universal.

FOL-definable. Hiut: The structures $(\mathbb{N}; +, |_p)$ and $(\{0, 1, \dots, p-1\}^*; \leq, S_0, S_1, \dots, S_{p-1}, \mathsf{EqualLength})$ are mutually