De TECHISCHE
DATABASE THEORY
Lecture 5: Complexity of FO Query Answering (II)
David Carral
Knowledge-Based Systems
TU Dresden, April 21, 2020

Review: Query Complexity

Query answering as decision problem
\leadsto consider Boolean queries
Various notions of complexity:

- Combined complexity (complexity w.r.t. size of query and database instance)
- Data complexity (worst case complexity for any fixed query)
- Query complexity (worst case complexity for any fixed database instance)

Various common complexity classes:

$$
\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSpace} \subseteq \text { ExpTime }
$$

Theorem 4.1 The evaluation of FO queries is PSpace-complete with respect to combined complexity.

We have actually shown something stronger:

Theorem 4.2 The evaluation of FO queries is PSpace-complete with respect to query complexity.

This also holds true when restricting to domain-independent queries

The algorithm showed that FO query evaluation is in L
\leadsto can we do any better?
What could be better than L ?

$$
? \subseteq \mathrm{~L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \ldots
$$

\leadsto we need to define circuit complexities first

Boolean Circuits

Definition 5.1: A Boolean circuit is a finite, directed, acyclic graph where

- each node that has no predecessors is an input node
- each node that is not an input node is one of the following types of logical gate: AND, OR, NOT
- one or more nodes are designated output nodes
\leadsto we will only consider Boolean circuits with exactly one output
\leadsto propositional logic formulae are Boolean circuits with one output and gates of fanout ≤ 1

David Carral, April 11,2020

Circuits as a Model for Parallel Computation

Previous example:

- size: number of gates = total number of computing steps
- depth: longest path of gates = time for parallel computation
\leadsto circuits as a refinement of polynomial time that takes parallelizability into account

Example

A Boolean circuit over an input string $x_{1} x_{2} \ldots x_{n}$ of length n

Corresponds to formula $\left(x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge x_{3}\right) \vee \ldots \vee\left(x_{n-1} \wedge x_{n}\right)$ \leadsto accepts all strings with at least two 1 s

David Carral, April 21, 2020

Solving Problems With Circuits

Observation: the input size is "hard-wired" in circuits
\leadsto each circuit only has a finite number of different inputs
\leadsto not a computationally interesting problem
How can we solve interesting problems with Boolean circuits?
Definition 5.2: A uniform family of Boolean circuits is a set of circuits $C_{n}(n \geq 0)$ that can easily ${ }^{\text {a }}$ be computed from n.
A language $\mathcal{L} \subseteq\{0,1\}^{*}$ is decided by a uniform family $\left(C_{n}\right)_{n \geq 0}$ of Boolean circuits if for each word w of length $|w|$:

$$
w \in \mathcal{L} \quad \text { if and only if } \quad C_{|w|}(w)=1
$$

${ }^{\text {a }}$ We don't discuss the details here; see course Complexity Theory

Measuring Complexity with Boolean Circuits

How to measure the computing power of Boolean circuits?

Relevant metrics:

- size of the circuit: overall number of gates
(as function of input size)
- depth of the circuit: longest path of gates (as function of input size)
- fan in: two inputs per gate or any number of inputs per gate?

Important classes of circuits: small-depth circuits

Definition 5.3: $\left(C_{n}\right)_{n \geq 0}$ is a family of small-depth circuits if

- the size of C_{n} is polynomial in n,
- the depth of C_{n} is poly-logarithmic in n, that is, $O\left(\log ^{k} n\right)$.

Example

family of polynomial size,
constant depth,
arbitrary fan-in circuits
\leadsto in AC^{0}
We can eliminate arbitrary fan-ins by using more layers of gates:

family of polynomial size, logarithmic depth,
bounded fan-in circuits
\rightarrow in NC^{1}
Database Theory

The Complexity Classes NC and AC

Two important types of small-depth circuits:

Definition 5.4: NC^{k} is the class of problems that can be solved by uniform families of circuits $\left(C_{n}\right)_{n>0}$ of fan-in ≤ 2, size polynomial in n, and depth in $O\left(\log ^{k} n\right)$.

The class NC is defined as NC $=\bigcup_{k \geq 0} \mathrm{NC}^{k}$
("Nick's Class" named after Nicholas Pippenger by Stephen Cook)

Definition 5.5: AC^{k} and AC are defined like NC^{k} and NC , respectively, but for circuits with arbitrary fan-in.
(A is for "Alternating": AND-OR gates alternate in such circuits)

Relationships of Circuit Complexity Classes

The previous sketch can be generalised:

$$
\mathrm{NC}^{0} \subseteq \mathrm{AC}^{0} \subseteq \mathrm{NC}^{1} \subseteq A C^{1} \subseteq \ldots \subseteq A C^{k} \subseteq \mathrm{NC}^{k+1} \subseteq \ldots
$$

Only few inclusions are known to be proper: $\mathrm{NC}^{0} \subset \mathrm{AC}^{0} \subset \mathrm{NC}^{1}$ Direct consequence of above hierarchy: NC = AC

Interesting relations to other classes:

$$
\mathrm{NC}^{0} \subset \mathrm{AC}^{0} \subset \mathrm{NC}^{1} \subseteq \mathrm{~L} \subseteq \mathrm{NL} \subseteq \mathrm{AC}^{1} \subseteq \ldots \subseteq \mathrm{NC} \subseteq P
$$

Intuition:

- Problems in NC are parallelisable (known from definition)
- Problems in $P \backslash N C$ are inherently sequential (educated guess)

However: it is not known if $\mathrm{NC} \neq \mathrm{P}$

Back to Databases ...

Theorem 5.6: The evaluation of FO queries is complete for (logtime uniform) AC^{0} with respect to data complexity.

Proof:

- Membership: For a fixed Boolean FO query, provide a uniform construction for a small-depth circuit based on the size of a database
- Hardness: Show that circuits can be transformed into Boolean FO queries in logarithmic time (not on a standard TM ... not in this lecture)

David Carral, April 11,2020

From Query to Circuit

Assumptions:

- query and database schema is fixed
- database instance (and thus active domain) are variable

Construct circuit uniformly based on size of active domain

Sketch of construction:

- one input node for each possible database tuple (over given schema and active domain) \leadsto true or false depending on whether tuple is present or not
- Recursively, for each subformula, introduce a gate for each possible tuple (instantiation) of this formula
\leadsto true or false depending on whether the subformula holds for this tuple or not
- Logical operators correspond to gate types: basic operators obvious, \forall as generalised conjunction, \exists as generalised disjunction
- subformula with n free variables $\leadsto \mid$ adom $\left.\right|^{n}$ gates
\leadsto especially: \mid adom $\left.\right|^{0}=1$ output gate for Boolean query
David Carral, April 21, 2020 Database Theory

We consider the formula

$$
\exists z \cdot(\exists x \cdot \exists y \cdot R(x, y) \wedge S(y, z)) \wedge \neg R(a, z)
$$

Over the database instance:

Active domain: $\{a, b, c\}$

Example: $\exists z .(\exists x \cdot \exists y \cdot R(x, y) \wedge S(y, z)) \wedge \neg R(a, z)$

Example: $\exists z .(\exists x \cdot \exists y \cdot R(x, y) \wedge S(y, z)) \wedge \neg R(a, z)$

Example: $\exists z .(\exists x \cdot \exists y \cdot R(x, y) \wedge S(y, z)) \wedge \neg R(a, z)$

Summary and Outlook

The evaluation of FO queries is

- PSpace-complete for combined complexity
- PSpace-complete for query complexity
- AC^{0}-complete for data complexity

Circuit complexities help to identify highly parallelisable problems in P

Open questions

- Are there query languages with lower complexities? (next lecture)
- Which other computing problems are interesting?
- How can we study the expressiveness of query languages?

