

DATABASE THEORY

Lecture 5: Complexity of FO Query Answering (II)

David Carral Knowledge-Based Systems

TU Dresden, April 21, 2020

Review: Query Complexity

Query answering as decision problem

 \rightsquigarrow consider Boolean queries

Various notions of complexity:

- Combined complexity (complexity w.r.t. size of query and database instance)
- Data complexity (worst case complexity for any fixed query)
- Query complexity (worst case complexity for any fixed database instance)

Various common complexity classes:

 $L \subseteq \mathsf{NL} \subseteq \mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSpace} \subseteq \mathsf{ExpTime}$

David Carral, April 21, 2020

Database Theory

Review: FO Combined Complexity

Theorem 4.1 The evaluation of FO queries is PSpace-complete with respect to combined complexity.

We have actually shown something stronger:

Theorem 4.2 The evaluation of FO queries is PSpace-complete with respect to query complexity.

This also holds true when restricting to domain-independent queries.

Data Complexity of FO Query Answering

The algorithm showed that FO query evaluation is in L \sim can we do any better?

What could be better than L?

 $? \subseteq L \subseteq NL \subseteq P \subseteq \ldots$

 \rightsquigarrow we need to define circuit complexities first

Database Theory

slide 3 of 20

slide 2 of 20

Boolean Circuits

Definition 5.1: A Boolean circuit is a finite, directed, acyclic graph where

- each node that has no predecessors is an input node
- each node that is not an input node is one of the following types of logical gate: AND, OR, NOT
- one or more nodes are designated output nodes
- \rightsquigarrow we will only consider Boolean circuits with exactly one output
- \rightsquigarrow propositional logic formulae are Boolean circuits with one output and gates of fanout ≤ 1

David Carral, April 21, 2020

Database Theory

slide 5 of 20

Circuits as a Model for Parallel Computation

Previous example:

 $\sim n^2$ processors working in parallel \sim computation finishes in 2 steps

- size: number of gates = total number of computing steps
- depth: longest path of gates = time for parallel computation
- ightarrow circuits as a refinement of polynomial time that takes parallelizability into account

David Carral, April 21, 2020

Database Theory

slide 7 of 20

Example

A Boolean circuit over an input string $x_1x_2...x_n$ of length n

Corresponds to formula $(x_1 \land x_2) \lor (x_1 \land x_3) \lor \ldots \lor (x_{n-1} \land x_n)$ \rightsquigarrow accepts all strings with at least two 1s

David Carral, April 21, 2020

Database Theory

slide 6 of 20

Solving Problems With Circuits

Observation: the input size is "hard-wired" in circuits

- \rightarrow each circuit only has a finite number of different inputs
- → not a computationally interesting problem

How can we solve interesting problems with Boolean circuits?

Definition 5.2: A uniform family of Boolean circuits is a set of circuits C_n ($n \ge 0$) that can easily^a be computed from *n*.

A language $\mathcal{L} \subseteq \{0, 1\}^*$ is decided by a uniform family $(C_n)_{n \ge 0}$ of Boolean circuits if for each word *w* of length |w|:

 $w \in \mathcal{L}$ if and only if $C_{|w|}(w) = 1$

^aWe don't discuss the details here; see course Complexity Theory.

David Carral, April 21, 2020

slide 8 of 20

Measuring Complexity with Boolean Circuits

How to measure the computing power of Boolean circuits?

Relevant metrics:

- size of the circuit: overall number of gates (as function of input size)
- depth of the circuit: longest path of gates (as function of input size)
- fan in: two inputs per gate or any number of inputs per gate?

Important classes of circuits: small-depth circuits

Definition 5.3: $(C_n)_{n\geq 0}$ is a family of small-depth circuits if

- the size of C_n is polynomial in n,
- the depth of C_n is poly-logarithmic in *n*, that is, $O(\log^k n)$.

David Carral, April 21, 2020

Database Theory

slide 9 of 20

slide 11 of 20

The Complexity Classes NC and AC

Two important types of small-depth circuits:

Definition 5.4: NC^k is the class of problems that can be solved by uniform families of circuits $(C_n)_{n\geq 0}$ of fan-in ≤ 2 , size polynomial in *n*, and depth in $O(\log^k n)$.

The class NC is defined as $NC = \bigcup_{k \ge 0} NC^k$. ("Nick's Class" named after Nicholas Pippenger by Stephen Cook)

Definition 5.5: AC^k and AC are defined like NC^k and NC, respectively, but for circuits with arbitrary fan-in. (A is for "Alternating": AND-OR gates alternate in such circuits)

David Carral, April 21, 2020

```
Database Theory
```

slide 10 of 20

Example

family of polynomial size, constant depth, arbitrary fan-in circuits \sim in AC⁰

We can eliminate arbitrary fan-ins by using more layers of gates:

family of polynomial size, logarithmic depth, bounded fan-in circuits \sim in NC¹

Database Theory

Relationships of Circuit Complexity Classes

The previous sketch can be generalised:

 $\mathsf{NC}^0 \subseteq \mathsf{AC}^0 \subseteq \mathsf{NC}^1 \subseteq \mathsf{AC}^1 \subseteq \ldots \subseteq \mathsf{AC}^k \subseteq \mathsf{NC}^{k+1} \subseteq \ldots$

Only few inclusions are known to be proper: $NC^0 \subset AC^0 \subset NC^1$ Direct consequence of above hierarchy: NC = AC

Interesting relations to other classes:

 $\mathsf{NC}^0 \subset \mathsf{AC}^0 \subset \mathsf{NC}^1 \subseteq \mathsf{L} \subseteq \mathsf{NL} \subseteq \mathsf{AC}^1 \subseteq \ldots \subseteq \mathsf{NC} \subseteq \mathsf{P}$

Intuition:

- Problems in NC are parallelisable (known from definition)
- Problems in P \ NC are inherently sequential (educated guess)

However: it is not known if $NC \neq P$

David Carral, April 21, 2020

Back to Databases

Theorem 5.6: The evaluation of FO gueries is complete for (logtime uniform) AC⁰ with respect to data complexity.

Proof:

- Membership: For a fixed Boolean FO query, provide a uniform construction for a small-depth circuit based on the size of a database
- Hardness: Show that circuits can be transformed into Boolean FO gueries in logarithmic time (not on a standard TM ... not in this lecture)

From Query to Circuit

Assumptions:

- query and database schema is fixed
- database instance (and thus active domain) are variable

Construct circuit uniformly based on size of active domain

Sketch of construction:

- one input node for each possible database tuple (over given schema and active domain) → true or false depending on whether tuple is present or not
- · Recursively, for each subformula, introduce a gate for each possible tuple (instantiation) of this formula
- \sim true or false depending on whether the subformula holds for this tuple or not
- Logical operators correspond to gate types: basic operators obvious, V as generalised conjunction, \exists as generalised disjunction
- subformula with *n* free variables $\rightarrow |\mathbf{adom}|^n$ gates \rightarrow especially: $|adom|^0 = 1$ output gate for Boolean query

David Carral, April 21, 2020

Database Theory

slide 14 of 20

Example: $\exists z.(\exists x.\exists y.R(x,y) \land S(y,z)) \land \neg R(a,z)$

 $(R(x, y) \land$ $(R(x, y) \land$ $(R(x, y) \land$ $(R(x, y) \land$ S(y, z)S(y, z))S(y, z)S(y, z)(۸) [a, b, a][a, b, b][a,b,c][a, a, a]R(a, a)R(a, b)R(a, c)S(a, a)S(b, a)S(b, b)S(b, c)1 0 0 1 1 0 1 David Carral, April 21, 2020 Database Theory slide 16 of 20

David Carral, April 21, 2020

Database Theory

slide 13 of 20

Example

We consider the formula

 $\exists z.(\exists x.\exists y.R(x,y) \land S(y,z)) \land \neg R(a,z)$

Over the database instance:

R:			S:		
	а	а		b	b
	а	b		b	с

Active domain: $\{a, b, c\}$

David Carral, April 21, 2020	Database Theory

slide 15 of 20

Example: $\exists z.(\exists x.\exists y.R(x,y) \land S(y,z)) \land \neg R(a,z)$

Example: $\exists z.(\exists x.\exists y.R(x,y) \land S(y,z)) \land \neg R(a,z)$

Summary and Outlook

The evaluation of FO queries is

- PSpace-complete for combined complexity
- PSpace-complete for query complexity
- AC⁰-complete for data complexity

Circuit complexities help to identify highly parallelisable problems in P

Open questions:

- Are there query languages with lower complexities? (next lecture)
- Which other computing problems are interesting?
- · How can we study the expressiveness of query languages?

David Carral, April 21, 2020