
DATABASE THEORY

Lecture 5: Complexity of FO Query Answering (II)

David Carral

Knowledge-Based Systems

TU Dresden, April 21, 2020

Review: Query Complexity

Query answering as decision problem
{ consider Boolean queries

Various notions of complexity:

• Combined complexity (complexity w.r.t. size of query and database instance)

• Data complexity (worst case complexity for any fixed query)

• Query complexity (worst case complexity for any fixed database instance)

Various common complexity classes:

L ✓ NL ✓ P ✓ NP ✓ PSpace ✓ ExpTime

David Carral, April 21, 2020 Database Theory slide 2 of 20

Review: FO Combined Complexity

Theorem 4.1 The evaluation of FO queries is PSpace-complete with respect to
combined complexity.

We have actually shown something stronger:

Theorem 4.2 The evaluation of FO queries is PSpace-complete with respect to
query complexity.

This also holds true when restricting to domain-independent queries.

David Carral, April 21, 2020 Database Theory slide 3 of 20

Data Complexity of FO Query Answering

The algorithm showed that FO query evaluation is in L
{ can we do any better?

What could be better than L?

? ✓ L ✓ NL ✓ P ✓ . . .

{ we need to define circuit complexities first

David Carral, April 21, 2020 Database Theory slide 4 of 20

Boolean Circuits

Definition 5.1: A Boolean circuit is a finite, directed, acyclic graph where

• each node that has no predecessors is an input node

• each node that is not an input node is one of the following types of logical
gate: AND, OR, NOT

• one or more nodes are designated output nodes

{ we will only consider Boolean circuits with exactly one output

{ propositional logic formulae are Boolean circuits with one output and gates of fanout  1

David Carral, April 21, 2020 Database Theory slide 5 of 20

Example

A Boolean circuit over an input string x1x2 . . . xn of length n

x1 x2 x3 x4 x5 . . . xn

. . .

. . .

(n2 gates)

. . .

Corresponds to formula (x1 ^ x2) _ (x1 ^ x3) _ . . . _ (xn�1 ^ xn)
{ accepts all strings with at least two 1s

David Carral, April 21, 2020 Database Theory slide 6 of 20

Circuits as a Model for Parallel Computation

Previous example:

x1 x2 x3 x4 x5 . . . xn

. . .

. . .

(n2 gates)

. . .
{ n

2 processors working in parallel
{ computation finishes in 2 steps

• size: number of gates = total number of computing steps

• depth: longest path of gates = time for parallel computation

{ circuits as a refinement of polynomial time that takes parallelizability into account

David Carral, April 21, 2020 Database Theory slide 7 of 20

Solving Problems With Circuits

Observation: the input size is “hard-wired” in circuits
{ each circuit only has a finite number of different inputs
{ not a computationally interesting problem

How can we solve interesting problems with Boolean circuits?

Definition 5.2: A uniform family of Boolean circuits is a set of circuits Cn (n � 0)
that can easilya be computed from n.

A language L ✓ {0, 1}⇤ is decided by a uniform family (Cn)n�0 of Boolean circuits if
for each word w of length |w|:

w 2 L if and only if C|w|(w) = 1

aWe don’t discuss the details here; see course Complexity Theory.

David Carral, April 21, 2020 Database Theory slide 8 of 20

Measuring Complexity with Boolean Circuits

How to measure the computing power of Boolean circuits?

Relevant metrics:

• size of the circuit: overall number of gates
(as function of input size)

• depth of the circuit: longest path of gates
(as function of input size)

• fan in: two inputs per gate or any number of inputs per gate?

Important classes of circuits: small-depth circuits

Definition 5.3: (Cn)n�0 is a family of small-depth circuits if

• the size of Cn is polynomial in n,

• the depth of Cn is poly-logarithmic in n, that is, O(logk
n).

David Carral, April 21, 2020 Database Theory slide 9 of 20

The Complexity Classes NC and AC

Two important types of small-depth circuits:

Definition 5.4: NCk is the class of problems that can be solved by uniform fam-
ilies of circuits (Cn)n�0 of fan-in  2, size polynomial in n, and depth in O(logk

n).

The class NC is defined as NC =
S

k�0 NCk.
(“Nick’s Class” named after Nicholas Pippenger by Stephen Cook)

Definition 5.5: ACk and AC are defined like NCk and NC, respectively, but for cir-
cuits with arbitrary fan-in.
(A is for “Alternating”: AND-OR gates alternate in such circuits)

David Carral, April 21, 2020 Database Theory slide 10 of 20

Example

x1 x2 x3 x4 x5 . . . xn

. . .

. . .

(n2 gates)

. . .

family of polynomial size,
constant depth,
arbitrary fan-in circuits
{ in AC0

We can eliminate arbitrary fan-ins by using more layers of gates:

x1 x2 x3 x4 x5 . . . xn

. . .
(n2 gates)

. . .

. . .

. . .

. . .

. . .

(n2/2 gates)

(n2/4 gates)

. . .

family of polynomial size,
logarithmic depth,
bounded fan-in circuits
{ in NC1

David Carral, April 21, 2020 Database Theory slide 11 of 20

Relationships of Circuit Complexity Classes

The previous sketch can be generalised:

NC0 ✓ AC0 ✓ NC1 ✓ AC1 ✓ . . . ✓ ACk ✓ NCk+1 ✓ . . .

Only few inclusions are known to be proper: NC0 ⇢ AC0 ⇢ NC1

Direct consequence of above hierarchy: NC = AC

Interesting relations to other classes:

NC0 ⇢ AC0 ⇢ NC1 ✓ L ✓ NL ✓ AC1 ✓ . . . ✓ NC ✓ P

Intuition:

• Problems in NC are parallelisable (known from definition)

• Problems in P \ NC are inherently sequential (educated guess)

However: it is not known if NC , P

David Carral, April 21, 2020 Database Theory slide 12 of 20

Back to Databases . . .

Theorem 5.6: The evaluation of FO queries is complete for (logtime uniform) AC0

with respect to data complexity.

Proof:

• Membership: For a fixed Boolean FO query, provide a uniform construction for a
small-depth circuit based on the size of a database

• Hardness: Show that circuits can be transformed into Boolean FO queries in
logarithmic time (not on a standard TM . . . not in this lecture)

David Carral, April 21, 2020 Database Theory slide 13 of 20

From Query to Circuit

Assumptions:

• query and database schema is fixed

• database instance (and thus active domain) are variable

Construct circuit uniformly based on size of active domain

Sketch of construction:

• one input node for each possible database tuple (over given schema and active domain)
{ true or false depending on whether tuple is present or not

• Recursively, for each subformula, introduce a gate for each possible tuple (instantiation) of
this formula
{ true or false depending on whether the subformula holds for this tuple or not

• Logical operators correspond to gate types: basic operators obvious, 8 as generalised
conjunction, 9 as generalised disjunction

• subformula with n free variables{ |adom|n gates
{ especially: |adom|0 = 1 output gate for Boolean query

David Carral, April 21, 2020 Database Theory slide 14 of 20

Example

We consider the formula

9z.(9x.9y.R(x, y) ^ S(y, z)) ^ ¬R(a, z)

Over the database instance:

R:

a a

a b

S:

b b

b c

Active domain: {a, b, c}

David Carral, April 21, 2020 Database Theory slide 15 of 20

Example: 9z.(9x.9y.R(x, y) ^ S(y, z)) ^ ¬R(a, z)

. . .R(a, a) R(a, b) R(a, c) S(a, a) . . . S(b, a) S(b, b) S(b, c) . . .

(R(x, y) ^
. . .

S(y, z))
[a, b, a]

(R(x, y) ^
S(y, z))

[a, b, b]

(R(x, y) ^
S(y, z))

[a, b, c] . . .

(R(x, y) ^
S(y, z))

[a, a, a]

. . .1 1 0 0 . . . 0 1 1 . . .

David Carral, April 21, 2020 Database Theory slide 16 of 20

Example: 9z.(9x.9y.R(x, y) ^ S(y, z)) ^ ¬R(a, z)

. . .R(a, a) R(a, b) R(a, c) S(a, a) . . . S(b, a) S(b, b) S(b, c) . . .

(R(x, y) ^
. . .

S(y, z))
[a, b, a]

(R(x, y) ^
S(y, z))

[a, b, b]

(R(x, y) ^
S(y, z))

[a, b, c] . . .

(R(x, y) ^
S(y, z))

[a, a, a]

9y.(R(x, y) ^
S(y, z))

[a, a]

.

. . .

. . .

9y.(R(x, y) ^
S(y, z))
[a, b]

9y.(R(x, y) ^
S(y, z))

[a, c]

. . .

9x.9y.(R(x, y) ^
S(y, z))

[a]

. . .

9x.9y.(R(x, y) ^
S(y, z))

[b]

. . .

9x.9y.(R(x, y) ^
S(y, z))

[c]

. . .

R
(a

,x
)[

a
]

¬R
(a

,x
)[

a
]

¬R
(a

,x
)[

b
]

¬R
(a

,x
)[

c
]

R
(a

,x
)[

b
]

R
(a

,x
)[

c
]

. . .1 1 0 0 . . . 0 1 1 . . .

David Carral, April 21, 2020 Database Theory slide 17 of 20

Example: 9z.(9x.9y.R(x, y) ^ S(y, z)) ^ ¬R(a, z)

. . .R(a, a) R(a, b) R(a, c) S(a, a) . . . S(b, a) S(b, b) S(b, c) . . .

(R(x, y) ^
. . .

S(y, z))
[a, b, a]

(R(x, y) ^
S(y, z))

[a, b, b]

(R(x, y) ^
S(y, z))

[a, b, c] . . .

(R(x, y) ^
S(y, z))

[a, a, a]

9y.(R(x, y) ^
S(y, z))

[a, a]

.

. . .

. . .

9y.(R(x, y) ^
S(y, z))
[a, b]

9y.(R(x, y) ^
S(y, z))

[a, c]

. . .

9x.9y.(R(x, y) ^
S(y, z))

[a]

. . .

9x.9y.(R(x, y) ^
S(y, z))

[b]

. . .

9x.9y.(R(x, y) ^
S(y, z))

[c]

. . .

R
(a

,x
)[

a
]

¬R
(a

,x
)[

a
]

¬R
(a

,x
)[

b
]

¬R
(a

,x
)[

c
]

R
(a

,x
)[

b
]

R
(a

,x
)[

c
]

�9x.9y.(R(x, y) ^
S(y, z))

� ^ ¬R(a, z)
[c]

�9x.9y.(R(x, y) ^
S(y, z))

� ^ ¬R(a, z)
[b]

�9x.9y.(R(x, y) ^
S(y, z))

� ^ ¬R(a, z)
[a]

9z.
�9x.9y.(R(x, y) ^
S(y, z))

� ^ ¬R(a, z)

. . .1 1 0 0 . . . 0 1 1 . . .

David Carral, April 21, 2020 Database Theory slide 18 of 20

Example: 9z.(9x.9y.R(x, y) ^ S(y, z)) ^ ¬R(a, z)

. . .R(a, a) R(a, b) R(a, c) S(a, a) . . . S(b, a) S(b, b) S(b, c) . . .

(R(x, y) ^
. . .

S(y, z))
[a, b, a]

(R(x, y) ^
S(y, z))

[a, b, b]

(R(x, y) ^
S(y, z))

[a, b, c] . . .

(R(x, y) ^
S(y, z))

[a, a, a]

9y.(R(x, y) ^
S(y, z))

[a, a]

.

. . .

. . .

9y.(R(x, y) ^
S(y, z))
[a, b]

9y.(R(x, y) ^
S(y, z))

[a, c]

. . .

9x.9y.(R(x, y) ^
S(y, z))

[a]

. . .

9x.9y.(R(x, y) ^
S(y, z))

[b]

. . .

9x.9y.(R(x, y) ^
S(y, z))

[c]

. . .

R
(a

,x
)[

a
]

¬R
(a

,x
)[

a
]

¬R
(a

,x
)[

b
]

¬R
(a

,x
)[

c
]

R
(a

,x
)[

b
]

R
(a

,x
)[

c
]

�9x.9y.(R(x, y) ^
S(y, z))

� ^ ¬R(a, z)
[c]

�9x.9y.(R(x, y) ^
S(y, z))

� ^ ¬R(a, z)
[b]

�9x.9y.(R(x, y) ^
S(y, z))

� ^ ¬R(a, z)
[a]

9z.
�9x.9y.(R(x, y) ^
S(y, z))

� ^ ¬R(a, z)

. . .1 1 0 0 . . . 0 1 1 . . .

David Carral, April 21, 2020 Database Theory slide 19 of 20

Summary and Outlook

The evaluation of FO queries is

• PSpace-complete for combined complexity

• PSpace-complete for query complexity

• AC0-complete for data complexity

Circuit complexities help to identify highly parallelisable problems in P

Open questions:

• Are there query languages with lower complexities? (next lecture)

• Which other computing problems are interesting?

• How can we study the expressiveness of query languages?

David Carral, April 21, 2020 Database Theory slide 20 of 20

