Chapter 2

Outline

- Understanding the need for unification
- Defining alphabets, terms, and substitutions
- Introducing the Martelli-Montanari Algorithm for unification
- Proving correctness of the algorithm

The Need to Perform Unification (I)

```
direct(frankfurt,san_francisco).
direct(frankfurt,chicago).
direct(san_francisco,honolulu).
direct(honolulu,maui).
```

```
connection(X, Y) :- direct(X, Y).
connection(X, Y) :- direct(X, Z), connection(Z, Y).
```

```
?- connection(frankfurt, maui).
```

yes

The Need to Perform Unification (II)

```
p(f(X),q(f(C),X)).
? - p(U,q(V,f(W))).
U = f(f(W)),
V = f(c)
? - p(U,g(c,f(W))).
no
?- p(U,q(V,U)).
```

Foundations of Logic Programming

Ranked Alphabeths and Term Universes

- Variables
- Ranked alphabet is a finite set \sum of symbols; to every symbol a natural number ≥ 0 (its arity or rank) is assigned ($\sum^{(n)}$ denotes the subset of \sum with symbols of arity *n*)
- Parentheses, commas
- V set of variables, F ranked alphabet of function symbols: Term universe TU_{F,V} (over F and V) is smallest set T of terms with 1. V ⊆ T 2. f ∈ T, if f ∈ F⁽⁰⁾ (also called a constant) 3. f(t₁, ..., t_n) ∈ T, if f ∈ F⁽ⁿ⁾ with n ≥ 1 and t₁, ..., t_n ∈ T

Ground Terms and Sub-Terms

- $Var(t) : \Leftrightarrow$ set of variables in t
- *t* ground term : \Leftrightarrow *Var*(*t*) = \emptyset
- s sub-term of $t : \Leftrightarrow$ term s is sub-string of t

Substitutions (I)

V set of variables, finite set $X \subseteq V$, *F* ranked alphabet: Substitution : \Leftrightarrow function $\theta : X \rightarrow TU_{F,V}$ with $x \neq \theta(x)$ for every $x \in X$

We use notation
$$\theta = \{x_1/t_1, ..., x_n/t_n\}$$
, where
1. $X = \{x_1, ..., x_n\}$
2. $\theta(x_i) = t_i$ for every $x_i \in X$

Substitutions (II)

Consider a substitution $\theta = \{x_1/t_1, ..., x_n/t_n\}$.

- *empty substitution* $\epsilon : \Leftrightarrow n = 0$
- θ ground substitution : $\Leftrightarrow t_1, ..., t_n$ ground terms
- θ pure variable substitution : $\Leftrightarrow t_1, ..., t_n$ variables
- θ renaming : $\Leftrightarrow \{t_1, ..., t_n\} = \{x_1, ..., x_n\}$
- $Dom(\theta) :\Leftrightarrow \{x_1, ..., x_n\}$

•
$$Y \subseteq V: \theta|_Y : \Leftrightarrow \{y/t \mid y/t \in \theta \text{ and } y \in Y\}$$

Applying Substitutions

- If x is a variable and $x \in Dom(\theta)$, then $x\theta : \Leftrightarrow \theta(x)$
- If x is a variable and $x \notin Dom(\theta)$, then $x\theta :\Leftrightarrow x$
- $f(t_1, ..., t_n) \theta :\Leftrightarrow f(t_1 \theta, ..., t_n \theta)$

- *t* instance of *s* : \Leftrightarrow there is substitution θ with $s\theta = t$
- s more general than $t : \Leftrightarrow t$ instance of s
- *t* variant of $s : \Leftrightarrow$ there is renaming θ with $s\theta = t$

Lemma 2.5

t variant of s iff t instance of s and s instance of t

Foundations of Logic Programming

Composition

Let θ and η be substitutions.

The composition $\theta\eta$ is defined by $(\theta\eta)(x) :\Leftrightarrow (x\theta)\eta$ for each variable x

Lemma 2.3 Let $\theta = \{x_1/t_1, ..., x_n/t_n\}, \eta = \{y_1/s_1, ..., y_m/s_m\}.$ Then $\theta\eta$ can be constructed from the sequence $x_1/t_1\eta, ..., x_n/t_n\eta, y_1/s_1, ..., y_m/s_m$ 1. by removing all bindings $x_i/t_i\eta$ where $x_i = t_i\eta$, and all bindings y_j/s_j where $y_j \in \{x_1, ..., x_n\}$ 2. by forming a substitution from the resulting sequence

Examples:

- $\{x/y, z/x\} \cdot \{y/7, x/z\} = \{x/7, y/7\}$
- $\{y/7, x/z\} \cdot \{x/y, z/x\} = \{y/7, z/x\}$

Foundations of Logic Programming

A Substitution Ordering

Definition 2.6

Let θ and τ be substitutions.

 θ more general than $\tau : \Leftrightarrow \tau = \theta \eta$ for some substitution η

Examples:

• $\theta = \{x/y\}$ is more general than $\tau = \{x/a, y/a\}$ (with $\eta = \{y/a\}$)

• $\theta = \{x/y\}$ is not more general than $\tau = \{x/a\}$ since for every η with $\tau = \theta \eta$: $x/a \in \{x/y\}\eta \Rightarrow y/a \in \eta \Rightarrow y \in Dom(\theta \eta) = Dom(\tau)$

Unifiers

Definition 2.9

- substitution θ is unifier of terms *s* and *t* : \Leftrightarrow *s* θ = *t* θ
- s and t unifiable : \Leftrightarrow a unifier of s and t exists
- θ most general unifier (MGU) of *s* and *t* : \Leftrightarrow θ unifier of *s* and *t* that is more general than all unifiers of *s* and *t*

Let $s_1, ..., s_n, t_1, ..., t_n$ be terms.

Let $s_i \doteq t_j$ denote the (ordered) pair (s_i, t_j) and let $E = \{s_1 \doteq t_1, ..., s_n \doteq t_n\}$.

- θ is unifier $E :\Leftrightarrow s_i \theta = t_i \theta$ for every $i \in [1, n]$
- θ most general unifier (MGU) of E :⇔
 θ unifier of E that is more general than all unifiers of E

Unifying Sets of Pairs of Terms

- Sets *E* and *E*' of pairs of terms equivalent
 :⇔ *E* and *E*' have the same set of unifiers
- { $x_1 \doteq t_1, ..., x_n \doteq t_n$ } solved : $\Leftrightarrow x_i, x_j$ pairwise distinct variables ($1 \le i \ne j \le n$) and no x_i occurs in t_j ($1 \le i, j \le n$)

Lemma 2.15

If $E = \{x_1 \doteq t_1, ..., x_n \doteq t_n\}$ is solved, then $\theta = \{x_1/t_1, ..., x_n/t_n\}$ is an MGU of *E*. Proof: (i) $x_i\theta = t_i = t_i\theta$ and

(ii) for every unifier η of E: $x_i\eta = t_i\eta = x_i\theta\eta$ for every $i \in [1, n]$ and $x\eta = x\theta\eta$ for every $x \notin \{x_1, ..., x_n\}$; thus $\eta = \theta\eta$.

Foundations of Logic Programming

Martelli-Montanari Algorithm

Let *E* be a set if pairs of terms.

As long as possible choose nondeterministically a pair of a form below and perform the associated action.

(1) $f(s_1, ..., s_n) \doteq f(t_1, ..., t_n)$ replace by $s_1 \doteq t_1, ..., s_n \doteq t_n$ (2) $f(s_1, ..., s_n) \doteq g(t_1, ..., t_m)$ where $f \neq g$ halt with failure(3) $x \doteq x$ delete the pair(4) $t \doteq x$ where t is not a variablereplace by $x \doteq t$ (5) $x \doteq t$ where $x \notin Var(t)$ andperform substitution $\{x/t\}$ x occurs in some other pairon all other pairs(6) $x \doteq t$ where $x \in Var(t)$ and $x \neq t$ halt with failure

The algorithm terminates with success when no action can be performed.

(2) \triangleq "clash", (6) \triangleq "occur check"-failure

Martelli-Montanari (Theorem)

Theorem 2.16

If the original set E has a unifier, then the algorithm successfully terminates and produces a solved set E' that is equivalent to E; otherwise the algorithm terminates with failure.

Lemma 2.15 implies that in case of success E' determines an MGU of E.

Proof Steps

- 1. Prove that the algorithm terminates.
- 2. Prove that each action replaces the set of pairs by an equivalent one.
- 3. Prove that if the algorithm terminates successfully, then the final set of pairs is solved.
- 4. Prove that if the algorithm terminates with failure, then the set of pairs at the moment of failure does not have a unifier.

Relations

- *R* relation on a set $\mathcal{A} : \Leftrightarrow R \subseteq \mathcal{A} \times \mathcal{A}$
- *R* reflexive : \Leftrightarrow (*a*, *a*) \in *R* for all *a* \in \mathcal{A}
- R irreflexive : \Leftrightarrow (*a*, *a*) \notin *R* for all $a \in A$
- *R* antisymmetric : \Leftrightarrow (*a*, *b*) \in *R* and (*b*, *a*) \in *R* implies *a* = *b*
- *R* transitive : \Leftrightarrow (*a*, *b*) \in *R* and (*b*, *c*) \in *R* implies (*a*, *c*) \in *R*

Well-founded Orderings

- (A, ⊑) (reflexive) partial ordering
 :⇔ ⊑ reflexive, antisymmetric, and transitive relation on A
- (A, □) (irreflexive) partial ordering
 :⇔ □ irreflexive and transitive relation on A
- irreflexive partial ordering (A, ⊂) well-founded
 :⇔ there is no infinite descending chain

$$\dots \sqsubset a_2 \sqsubset a_1 \sqsubset a_0$$

of elements $a_0, a_1, a_2, \dots \in \mathcal{A}$

Examples:

 $(\mathbb{N}, \leq), (\mathbb{Z}, \leq), (\mathcal{P}(\{1, 2, 3\}), \subseteq)$ are partial orderings; $(\mathbb{N}, <), (\mathbb{Z}, <), (\mathcal{P}(\{1, 2, 3\}), \subset)$ are irreflexive partial orderings; $(\mathbb{N}, <), (\mathcal{P}(\{1, 2, 3\}), \subset)$ are well-founded, whereas $(\mathbb{Z}, <)$ is not.

Lexicographic Ordering

The lexicographic ordering $\prec_n (n \ge 1)$ is defined inductively on the set \mathbb{N}^n of *n*-tuples of natural numbers:

•
$$(a_1) \prec_1 (b_1) :\Leftrightarrow a_1 < b_1$$

• $(a_1, ..., a_{n+1}) \prec_{n+1} (b_1, ..., b_{n+1})$ (for $n \ge 1$)
: \Leftrightarrow
 $(a_1, ..., a_n) \prec_n (b_1, ..., b_n)$
or $(a_1, ..., a_n) = (b_1, ..., b_n)$ and $a_{n+1} < b_{n+1}$

Examples:

 $(3, 12, 7) \prec_3 (4, 2, 1) \text{ and } (8, 4, 2) \prec_3 (8, 4, 3).$

Theorem. (\mathbb{N}^n, \prec_n) is well-founded

Foundations of Logic Programming

The MM-algorithm terminates.

Variable *x* solved in *E* : $\Leftrightarrow x \doteq t \in E$, and this is the only occurrence of *x* in *E*

> $uns(E) :\Leftrightarrow$ number of variables in *E* that are unsolved $lfun(E) :\Leftrightarrow$ number of occurrences of function symbols in the first components of pairs in *E* $card(E) :\Leftrightarrow$ number of pairs in *E*

Each successful MM-action reduces (*uns*(*E*), *lfun*(*E*), *card*(*E*)) wrt. \prec_3 .

Proof

For every *u*, *I*, $c \in \mathbb{N}$ the reduction is as follows:

(1)
$$(u, l, c) \succ_3 (u - k, l - 1, c + n - 1)$$
 for some $k \in [0, ..., n]$
(3) $(u, l, c) \succ_3 (u - k, l, c - 1)$ for some $k \in \{0, 1\}$
(4) $(u, l, c) \succ_3 (u - k_1, l - k_2, c)$ for some $k_1 \in \{0, 1\}$ and $k_2 \ge 1$
(5) $(u, l, c) \succ_3 (u - 1, l + k, c)$ for some $k \ge 0$

Termination is now a consequence of (\mathbb{N}^3 , \prec_3) being well-founded.

Each action replaces the set of pairs by an equivalent one.

This is obviously true for MM-actions (1), (3), and (4).

Regarding MM-action (5), consider $E \cup \{x \doteq t\}$ and $\{x/t\} \cup \{x \doteq t\}$. Then

> θ is a unifier of $E \cup \{x \doteq t\}$ iff (θ is a unifier of E) and $x\theta = t\theta$ iff (θ is a unifier of $E\{x/t\}$) and $x\theta = t\theta$ iff θ is a unifier of $E\{x/t\} \cup \{x \doteq t\}$

If the algorithm successfully terminates, then the final set of pairs is solved.

If the algorithm successfully terminates, then MM-actions (1), (2), and (4) do not apply, so each pair in *E* is of the form $x \doteq t$ with *x* being a variable.

Moreover, MM-actions (3), (5), and (6) do not apply, so the variables in the first components of all pairs in E are pairwise disjoint and do not occur in the second component of a pair in E.

If the algorithm terminates with failure, then the set of pairs at the moment of failure does not have a unifier.

If the failure results by MM-action (2), then some $f(s_1, ..., s_n) \doteq g(t_1, ..., t_m)$ (where $f \neq g$) occurs in *E*, and for no substitution θ we have $f(s_1, ..., s_n)\theta = g(t_1, ..., t_m)\theta$.

If the failure results by MM-action (6), then some $x \doteq t$ (where x is a proper subterm of t) occurs in E, and for no substitution θ we have $x\theta = t\theta$.

Unifiers may be Exponential

 $f(x_1) \doteq f(g(x_0, x_0))$ $\theta_1 = \{x_1/g(x_0, x_0)\}$

 $f(x_1, x_2) \doteq f(g(x_0, x_0), g(x_1, x_1))$ $\theta_2 = \theta_1 \cup \{x_2/g(g(x_0, x_0), g(x_0, x_0))\}$

 $f(x_1, x_2, x_3) \doteq f(g(x_0, x_0), g(x_1, x_1), g(x_2, x_2))$ $\theta_3 = \theta_2 \cup \{x_3/g(g(g(x_0, x_0), g(x_0, x_0)), g(g(x_0, x_0), g(x_0, x_0)))\}$:

Implementation of the MM-Algorithm

In most PROLOG systems the occur check does not apply, for the sake of efficiency. As for the Martelli-Montanari Algorithm this amounts to drop action (6).

Then the algorithm terminates with success, e.g., for $\{x \doteq f(x)\}$, despite x and f(x) not being unifiable.

Also, for the sake of efficiency, action (5) is normally not implemented in PROLOG systems.

Then the algorithm may terminate with a set that only implicitly represents an MGU, e.g., $\{x = f(y), y = g(a)\}$.

Objectives

- Understanding the need for unification
- Defining alphabets, terms, and substitutions
- Introducing the Martelli-Montanari Algorithm for unification
- Proving correctness of the algorithm